

BASIC TWcks for the TI-99/4A ™

Allen Wyatt has been actively involved with the microcomputer industry for six years
and is currently software development supervisor for Sams Software-in Indianapolis,
Indiana. Mr. Wyatt has had extensive experience in computer consulting and software
development.

He has written several commercial software packages utilizing many of the same
techniques detailed in BASIC Tricks for the TI-99I4A. The broad range of computer
programs runs the gamut from small system data bases to games and utilities.

Besides being a computer author, Allen is a devoted family man and active church
member. He uses his personal computers to assist him in all of these areas. At home, his
family spends many hours using the computer every day.

BASIC THcks for the
TI-99/4A™

by
Allen Wyatt

Howard W. Sams & Co., Inc.
4300 West 62nd Street

Indianapolis, Indiana 46268 USA

Copyright © 1984 by Allen Wyatt

FIRST EDITION

FIRST PRINTING -1984

All rights reserved. No part of this book shall be repro
duced, stored in a retrieval system, or transmitted by any
means, electronic, mechanical, photocopying, recording, or
otherwise, without written permission from the publisher.
No patent liability is assumed with respect to the use of the
information contained herein. While every precaution has
been taken in the preparation of this book, the publisher
assumes no responsibility for errors or omissions. Neither is
any liability assumed for damages resulting from the use of
the information contained herein.

International Standard Book Number: 0-672-22384-4

Library of Congress Catalog Card Number: 84-50802

Edited by Susan Pink

Printed in the United States ofAmerica.

TI is a trademark of Texas Instruments Incorporated.

Preface

BASIC Tricks for the TI-99/4A has several purposes. As best as I can
determine, they are as follows:

1. To encourage programmers and computer users to think logically.
2. To provide a source of efficient subroutines for the aspiring

programmer.

3. To provide a fix for computer junkies.
4. To make money for the author.

This book is dedicated to my parents, James and Virginia Wyatt. They are
just now beginning to understand what I have known all along—that com
puters offer the most fun and the best chance for self-education available.
I believe that they are partof a growing number of people who have been
bitten by the computer bug.

Allen Wyatt

A NOTE TO THE READER

The programs in this book were not written as applications software but
as educational examples of what your personal computer can do. All of
the programs have been tested and work on the machine configuration for
which they were designed. The programs, or subroutines, are unprotected.
This means that you can modify them to better understand how they work
or to fit a different machine configuration.

What is a Combo Pack?

A Combo Pack, like this package, is a step beyond your average tech
nical book. While most books give you programming examples through
printed listings (which we do here), Combo Packs provide the book and
the listings recorded on magnetic media, either diskette, cassette tape, or
both.

Every effort has been made to be clear, concise, and informative about
how these programs and routines work. If you experience any difficulty
with the software operations, the solution can be found in the book or in
your computer manuals.

We are rather proud of the time and effort that went into preparing the
Combo Pack. If you have purchased the Combo Pack and have enjoyed
using it, let us know your thoughts. Your comments will be valuable in
preparing future Combo Packs.

LOADING INSTRUCTIONS

The cassette accompanying this Combo Pack contains the subroutine
listings and/or program listings printed in the book.

To load a cassette file from this tape, perform the following steps:

1. Put the cassette into the cassette recorder.

2. Position the tape at the beginning of the subroutine or program you
wish to load.

3. Type OLD CS1
Press <ENTER>

4. Follow the directions as they appear on your video screen.

This will cause the next program on the tape to load into the computer's
memory. When the program is loaded, it is ready to be used as described
in the book.

The following list shows the listing names and tape counter positions
for the contents of the cassette tape. These numbers are approximate and
may vary from recorder to recorder. They should, however, assist you in
locating the programs you are searching for.

Tape Directory
;ing# Program Name Counter Location

2-1 Numeric Input Routine 4

2-2 Payroll Program 10

2-3 Alphanumeric Input Routine 18

2-4 Payroll Program 24

3-1 Rounding Examples 34

4-1 Dollars & Cents Routine 40

4-2 Dollars & Cents Routine 44

4-3 Dollars & Cents Routine 51

4-4 Dollars & Cents with Commas 59

5-1 Report Headings Routine 64

5-2 Payroll Program with Reports 69

6-1 Date Analysis 85

6-2 Days of Week 93

6-3 Birthday Program 99

7-1 Time Routine 113

7-2 Time Routine (Hours,
Minutes, Seconds)

121

7-3 Convert to Time 129

8-1 Upper Case Convert 136

8-2 Case Conversion Sample 142

8-3 Lower Case Convert 154

9-1 Substitution Sort 160

9-2 Modified Substitution Sort 167

9-3 Sort Comparison 173

9-4 Shell Sort 183

9-5 Sort Comparison 193

9-6 Quicksort 203

9-7 Sort Comparison 212

10-1 Menu Generator 230

Introduction

One day I was browsing through the offerings at the book store in my
hometown mall, and I noticed something interesting. There were no books
to help a computeruserwrite BASIC routines thatwereuseful, quick, and
efficient.

Most of the books said, in effect, "Here are the tools, BASIC and your
computer. They are great." But no book demonstrated how to make the
personal computer do great things, although one did show me how to
program a few outstanding games of tic-tac-toe.

I hope this book will go a long way toward filling this need. That is not
to say that it will be a cure-all, or the cat's meow. Probably far from it.
We may not even see the catbeginto stiruntilthe coming generation fully
unleashes the power of the personal computer.

However, I think thatthisbook can be useful. It is organized so thatyou
can start just about anywhere. You can read it as a novel or you can use it
as a reference manual.

This book assumes that you know BASIC. I know what they say about
assuming, but, again, there aremany who already know BASIC, but can't
quite figure out how to make it do all the neat tricks we've heard it can
do.

Hence the name, BASIC Tricks for the TI-99/4A, and since this book is
written specifically for the TI-99/4A, it would be helpful for you to have
access to that computer. The version of BASIC employed here is straight
TI BASIC. You can use Extended BASIC, but in writing the book, I
thought it best to use a common version of the language. If you have
experienced problems with any of this thus far, I am sure that your local
department, discount, orcomputer store would just love for you to wander
in to discuss programming and maybe buy a computer. If you do order a
computer or two, tell them I sent you. Then they will love me too.

There are a lot of people, so-called "micro professionals", who may
scoff at a book like this, because they feel that BASIC is too slow and

elementary, or that machine code is more elegant and powerful. To them I
can only say—"Ha!" BASIC is fine for many everyday applications, and
if we do what we do well, it doesn't matter what programming language
we use.

The first chapter gives you a short history of the development of BASIC.
You may find this chapter interesting, although not essential to using
BASIC effectively. If my computer science professor heard me say that,
he would give me a retroactive "F" in my Intro To Data Processing class.
Oh well, the secret is out. You don't need to know the history of tools to
know how to build a house.

Fig. 1-1. Abner Fritzbingle, the first computer science teacher
(Whatsamatter U, March, 1919).

The remaining chapters are self-contained lessons on various applica
tions routines. They can be read in or out of sequence.

Each chapter includes variable tables for each subroutine. They will
help you convert these routines for use in your programs. The tables are
included immediately after each listing.

Finally, it should be noted that there is a difference between working
BASIC, effective BASIC, and efficient BASIC. Each represents a new
level of programming expertise that encompasses the previous level, while
doing the same task faster and better. I hope this book will help you master
each level.

That's it for the introduction. Let's get on with the rest of the book.

Contents

CHAPTER 1

A Brief History of BASIC 13

CHAPTER 2

Selective Input 15
The CALL KEY Statement — Numeric Input Routines — Alphanumeric
Input Routines—Input Conclusions

CHAPTER 3

Rounding 29
Rounding to the Nearest Figure — Rounding Up — Rounding Down —
Odd Rounding

CHAPTER 4

Dollars and Cents 35
Formatted Output — Formatting Negative Numbers — Formatting With
Commas

CHAPTER 5

Report Formatting 45
Standardization — Report Headings — Line Preparation — Special Line
Positioning

CHAPTER 6

Working With Dates 57

Dates, Calendars and Dating Conventions — Date Standardization — In
putting Dates — Manipulating Dates —Days of the Week — Printing Dates
— Pulling it all Together

CHAPTER 7

Time And Time Again 69
Inputting Time — Hours, Minutes and Seconds — Manipulating Time
— Time Output

CHAPTER 8

Character Cases 79
The Problem in Case — Lower to Upper Case — Upper to Lower Case
— Case Conclusions

CHAPTER 9

Sorting 87

Sorting Fundamentals — Substitution Sorting — Speeding Up Substitution
— Shell Sort — Shell Sort Comparison — Quicksort — Quicksort Com
parison — Sorting Conclusions

CHAPTER 10

Program Menus 109
Menu Components — Menu Choices — Menu Display — Choice Selection
— The Menu Routine

CHAPTER 11

Error Handling 117
Type I Error Messages — Type II Error Messages — Type III Error Mes
sages — Error Conclusions

GLOSSARY 123

Chapter 1

A Brief History of BASIC

What follows is not an in-depth history of BASIC, but rather a brief
history of its development. This discussion includes some material on the
TI-99/4A. This is, then, sort of your basic brief BASIC history.

BASIC was developed at Dartmouth College by Drs. John Kemeny and
Thomas Kurtz primarily as a teaching language for a time-sharing environ
ment. By 1965 it was commercially available.

BASIC is an acronym for Beginner's All-purpose Symbolic /nstruction
Code. It is a compilation of elements found in both FORTRAN and AL
GOL. Since its introduction, the simple structure and plain-English com
mands of BASIC have made it the most-used computer language in the
world. Its many versions are used on all types of computers.

One of BASIC'S chief advantages is that it is highly user-interactive.
Each BASIC instruction is interpreted (parsed) when the program is run
rather than when it's compiled. Before BASIC, the instructions in most
languages had to be compiled (translated to machine language) to be
understood by the computer. As a result, programs written in BASIC can
be developed more quickly than programs written in earlier languages.
Recently, several computer manufacturers have introduced both interpreter
and compiler versions of BASIC for their machines. Thus, not only can a
program be developed more quickly in BASIC, it can also be compiled to
execute faster.

13

14 BASIC Tricksfor the TI-99I4A

BASIC'S simplicity and popularity have, however, led to the develop
ment of many different versions of the original language. No one version
of BASIC is widely accepted; each hardware manufacturer changes the
language slightly to take advantage of their machines' particular features.

In many ways, the de facto standard of BASIC is the Microsoft version.
In one form or another, the different versions of the language developed
by this company have touched almost every personal computer.

Microsoft began writing its version of BASIC in the mid-1970's. It has
evolved considerably since then, but somewhere during development it
crossed over from a "minimal" to an "extended" language. What was still
needed was a version of BASIC that was a minimum acceptable imple
mentation of the language.

The American National Standards Institute, ANSI, decided on a mini

mal subset of the BASIC versions that were available in the late 1970's. It

retained many useful features of the language, but did not specify any one
hardware configuration with machine-dependant enhancements. This ver
sion is known as ANSI Minimal BASIC.

TI BASIC is a superset of ANSI Minimal BASIC. ANSI's standard is
used as the basis for implementation, but other commands have been added
to allow the language to use special features available on the TI-99/4A. In
addition two enhancements were made—in memory allocation, to allow
larger arrays with up to three dimensions to be programmed, and in pro
gram entry, to make available a built-in line editor.

Texas Instruments built TI BASIC into the TI-99/4A on ROM chips, or
Read Only Memory. As a result, to use and program the TI-99/4A you
need only to plug the computer in, turn it on, and flip a switch. This
feature has made the TI-99/4A a very popular computer. Of course, its low
retail price may have had something to do with it.

In addition to such features, all part of standard TI BASIC, Texas Instru
ments has also produced an enhanced version of BASIC available on a
separate cartridge. This BASIC has more features and capabilities than the
standard version of BASIC. But it does cost more and, therefore, not

everyone will have access to it.
However, standard TI BASIC is adequate for most programming needs.

In this book, we will be working with TI BASIC to develop routines and
programs that exemplify how to use the language to solve specific tasks.

Chapter 2

Selective Input

Most programs have one thing in common—they require human input
to make them valuable. For example, what good would a payroll program
be unless the paymaster could tell the computer how many hours, and at
what rate, John Doe worked last week?

Although input makes a program valuable, it also can create potential
problems. Not everyone thinks like you and me, and some have no idea
what a program really wants when it asks a question. For instance, con
sider the following short program:

10 INPUT "HOW MANY HOURS: ":H

20 INPUT "WHAT RATE OF PAY: ":R

30 P = H*R

40 PRINT "CORRECT PAY IS: ";P

Looks like a whiz-bang program, right? Wrong! At this very moment,
there is some paymaster in Podunksville who entered STANDARD as his
answer to the first question. We don't have to consider the second question,
because the computer will generate an error after the invalid answer to the
first question.

What is the best way to handle this type of problem? The first, and most
important, way is to never use numeric variables in inputs because they
can create problems. Did you know that when using the TI-99/4A, pressing

75

16 BASIC Tricksfor the TI-99I4A

ENTER when you are prompted for a numeric variable will cause an error?
After all, ENTER is not a number.

Therefore, the first step is to write the program using string variables,
and then convert the strings to their numeric equivalents. But if you do this
using the VAL statement, as shown in the following program, an error will
still be generated if the paymaster enters STANDARD for his response.

10 INPUT "HOW MANY HOURS: ":H$
15 H= VAL(H$)
20 INPUT "WHAT RATE OF PAY: ":R$
25 R = VAL(R$)
30 P = H*R

40 PRINT "CORRECT PAY IS: ";P

This error occurs because BASIC does not recognize the direct conver
sion of a string containing any non-numeric characters to a number when
using the VAL statement. We need a different way to input information;
one that will accept virtually any input without generating an error.

The following program accepts the input as a string and analyzes it
quickly for non-numeric characters. If there are any non-numeric charac
ters, their value is set to zero, and program execution continues. This
result, though not ideal, is better than an execution error.

':H$10 INPUT "HOW MANY HOURS:

12 A$ = H$
14 GOSUB 60

16 H=A

20 INPUT "WHAT RATE OF PAY:

22 A$ = R$
24 GOSUB 60

26 R=A

30 P=H*R

40 PRINT "CORRECT PAY IS: ";P
50 END

60 FORJ = 1TOLEN(A$)
65 A=ASC(SEG$(A$,J.1))
70 IF(A<48) + (A>57) THEN 90
75 NEXT J

80 A = VAL(A$)
85 GOTO 95

90 A=0

95 RETURN

:R$

Selective Input 17

Although the program is longer, thereis no execution error when a user
answers incorrectly. For instance, you won't get an error if our paymaster
enters STANDARD for the number of hours. However, you also won't get
any pay becausethe numeric valueof STANDARD is zero, and, as we all
know, zero multiplied by anything else is still zero.

Now comes the interesting part. How do we check to make sure that the
user has input a valid entry? First, we have to follow a very simple set of
guidelines:

1. Decide what input is wanted.
2. Develop a routine to get only that type of input.
3. Check to make sure the input is within predetermined bounds.
4. Test the heck out of it.

5. Let someone else test the heck out of it.

6. Never assume that the routine is foolproof, because some fool is
bound to prove you wrong.

Simple, right? The first step is to determine what type of input you
want. This can be either numeric or alphanumeric input. We will discuss
both types in just a moment, but first, let's look at one of the neatest
commands since sliced bread (how's that for a mixed metaphor?).

THE CALL KEY STATEMENT

BASIC has a neat little internal subroutine that will allow your computer
to do wonderful things—the CALL KEY statement. This subroutine allows
you to test if the keyboard is being pressed at the moment the KEY routine
is called. The correct format for the statement is:

100 CALLKEY(T,A,S)

There are three variables in the statement, and each has individual sig
nificance. T is used to designate the keyboard type. The type you specify
determines what type of values are returned in the next variable, A. This
is the corresponding key code for the key pressed, if any. Finally, S will
have one of three values: it will be 1 if a new key has been pressed, -1 if
the key is being held down, and 0 if no key is being pressed.

For our purposes, it is best to use a keyboard type of 0. This will return
ASCII codes for the keys pressed. Forinstance, pressing the letter G would
set variable A equal to 71, andthe status flag S equal to 1. A quick program
to show how the CALL KEY statement works is shown below:

18 BASIC Tricksfor the TI-99I4A

100 CALL KEY(0,A,S)
110 IFS = 0THEN100

120 PRINTAfCHR$(A)
130 GOTO 100

Once this program is run, the only way to exit is to press FCTN CLEAR.
This is because the program is an endless loop that cycles while waiting
for someone to press any key on the keyboard. If you do press a key, the
key's associated keyboard code, or ASCII code since we specified a key
board type of 0, is printed along with the key's character.

It is clear from this simple exercise why use of keyboard type 0 was
recommended. The keyboard codes that are returned when you specify
keyboard type 0 can then be translated directly into characters by use of
the CHR$ statement.

Well, how do we make use of all this information in an input routine?
Since we already started with an example of inputting numerics, we will
continue with that. Later we will discuss alphanumeric input.

NUMERIC INPUT ROUTINES

By using the CALL KEYstatement, and slightly modifying the example
that was shown a short while ago, we can develop a basis for our numeric
input routine:

100 CALL KEY(0,A,S)
110 IFS = 0THEN100

115 IF(A<48) + (A>57)THEN 100
120 PRINT CHR$(A);
130 GOTO 100

This set of instructions, in only three lines, does quite a bit. First of all,
line 100 gets a character from the user's input. Then line 115 checks the
character to make sure that it is a valid number. The ASCII value for the
number 0 is 48, and for 9 it is 57. If the keypress had a value that was less
than 0 (A<48) or greater than 9 (A>57), then the keypress was out of
range. If this is the case, the keypress is ignored, and the computer goes
back to wait for another keypress.

Finally, if the keypress was acceptable, the computer prints what was
typed with the statement in line 120. The semi-colon at the end of this
statement keeps all the printed characters on the same line.

Now, we need to add a few more lines. We need to accumulate, in a
handy place, the answer that the user is typing. We also need to check to
see if the user typed an ENTER, or if the first typed character was a

Selective Input 19

negative sign, and if a decimal point has been entered. With these features,
our routine now looks like this:

Listing 2-1

1 REM LISTING 2-1

100 B$=,,H
105 D=0

110 C=LEN(A$)+3
115 PRINT A$;
120 GOTO 130

125 CALL SOUND(100,1000,10)
130 CALL KEY(0,A,S)
135 IF S<>1 THEN 130

140 IF A=13 THEN 235

145 IF A<>8 THEN 195

150 IF LEN(B$)=0 THEN 125
155 IF SEG$(B$,LEN(B$),1)<>"." THEN 165
160 D=0

165 B$=SEG$(B$,1,LEN(B$)-1)
170 J=LEN(B$)-1+C
175 IF LEN(B$)=0 THEN 185
180 CALL HCHAR(24,J,ASC(SEG$(B$,LEN(B$),1)))
185 CALL HCHAR(24,J+1,32)
190 GOTO 130

195 IF (B$="")*(A=45)THEN 220
200 IF ((A<48)+(A>57))*(A<>46)THEN 125
205 IF (A=46)*(D=1)THEN 125
210 IF A<>46 THEN 220

215 D=l

220 B$=B$&CHR$(A)
225 CALL HCHAR(24,C+LEN(B$)-1,A)
230 GOTO 130

235 B=0

240 IF (B$=",,)+ (B$=,,.")THEN 250
245 B=VAL(B$)
250 RETURN

Table 2-1. Entry and Exit Variables
for Numeric Input Routine

On entry: On exit:

A$—User prompt A$—User prompt

B$—String entered by user

B —Numeric value of string

Notice our fundamental routine? It has been shifted around a bit, but all

we did was add an initialization line to clear the variables that will be used

in the routine (lines 100-110). Then we print the question prompt, which'
should be contained in A$ when this routine is entered.

After getting the keypress and making sure that a new key was pressed
(lines 130-135), line 140 checks if the keypress is the ENTER key. If it is,

20 BASICTricksfor the TI-99I4A

execution branches to line 235 which assigns the actual value that was
input to variable B and returns from the routine.

Lines 145 through 190 handle the keypress if it was a backspace,
CHR$(8). After all, everyone makes mistakes. If it was pressed, line 150
checks that there is something there to backspace over. If not, a beep is
sounded and the routine waits for the next keypress.

Table 2-2. Variable Table

for Numeric Input Routine

Variable Type Purpose Used in lines

A Numeric Keypress character 130, 140, 145,

195,200,205,
210,220,225

A String User prompt 110,115

B String User input 100,150,155,

165,170,175,
180, 195,220,
225, 240, 245

B Numeric String value 235, 245

C String Prompt length 110, 170,225

D Numeric Decimal flag 105,205,215

J Numeric String position 170,180,185

s Numeric Keyboard status 130, 135

If there is something to backspace over, lines 155 and 160 handle the
instances when the user wants to backspace over the decimal point in the
number. If the program is erasing the decimal point, the numeric flag D is
set to 0 and the rightmost character of B$ is dropped. Lines 180 and 185
print the new last character of the input string and blank out the old last
character. Then the routine goes back to wait for another keypress.

Line 195 checks if the character pressed was a minus sign. If it was the
minus sign and if it will be the first character of the entry, it is accepted.
Notice that B$ will be null (equal to nothing) only if we are analyzing the
first character that is pressed.

A routine is also included to check that only one decimal point was
entered in the number. Lines 200 through 210 check, and set the flag, if a
decimal point has been entered. A decimal point will only be allowed if D
is still zero. When one decimal point has been entered, D is equal to one,
and we continue on our merry way, accepting numbers only. As pointed

Selective Input 21

out, all this changes if we backspace over the decimal point, in which case
D is set to zero again so we can accept anotherdecimal point.

Finally, line 220 adds the keypress to B$. Then we print the key pressed
and go back to get another keypress at line 130.

The whole idea behind this routine is to accept only numeric input; a
negative sign and any legal number or decimal point (only one) will be
accepted.

Will this work under all circumstances? Probably not, because users can
be very resourceful in finding illegal entries to make programs bomb.
However, it is more reliable and sophisticated than the INPUT statement.

There are a few other statements that can be added to this routine to

tailor it to your specific needs. You could add a statement at the end of the
routine to check to make sure that the input is within limits. For instance,
if you do not want a number smaller than 0, or larger than 999.99, take
out the checks for a negative sign, and then check to make sure that the
length of B$ never goes beyond six characters.

How will the numeric input routine fit into our payroll program that we
started to develop earlier? Like this:

Listing 2-2

1 REM LISTING 2-2

2 CALL CLEAR

90 GOTO 1000

100 B$=M"
105 D=0

110 C=LEN(A$)+3
115 PRINT A$;
120 GOTO 130

125 CALL SOUND(100,1000,10)
130 CALL KEY(0,A,S)
135 IF S<>1 THEN 130

140 IF A=13 THEN 235

145 IF A<>8 THEN 195

150 IF LEN(B$)=0 THEN 125
155 IF SEG$(B$,LEN(B$),1)<>M.M THEN 165
160 D=0

165 B$=SEG$(B$,1,LEN(B$)-1)
170 J=LEN(B$)-1+C
175 IF LEN(B$)=0 THEN 185
180 CALL HCHAR(24,J,ASC(SEG$(B$,LEN(B$),1)))
185 CALL HCHAR(24,J+1,32)
190 GOTO 130

195 IF (B$=,,H)*(A=45)THEN 220
200 IF ((A<48)+(A>57))*(A<>46)THEN 125
205 IF (A=46)*(D=1)THEN 125
210 IF A<>46 THEN 220

215 D=l

220 B$=B$&CHR$(A)
225 CALL HCHAR(24,C+LEN(B$)-1,A)
230 GOTO 130

cont. on next page

22 BASIC Tricksfor the TI-99/4A

Listing 2-1—cont.

235 B=0

240 IF (B$=,,H)+(B$=" .")THEN 250
245 B=VAL(B$)
250 RETURN

1000 A$="HOW MANY HOURS: "
1010 GOSUB 100

1020 H=B

1030 A$="WHAT RATE OF PAY: "
1040 GOSUB 100

1050 R=B

1060 P=H*R

1070 PRINT "CORRECT PAY IS:";P
9999 END

Table 2-3. Variable Table for Payroll Program

Variable Type Purpose Used in lines

A Numeric Keypress character 130, 140, 145, 195,

200,205,210,220,

225

A String User prompt 110,115,1000,

1030

B String User input 100, 150,155,165,

170, 175, 180, 195,

220, 225, 240, 245

B Numeric String value 235,245,1020,

1050

C String Prompt length 110, 170,225

D Numeric Decimal flag 105,205,215

H Numeric Hours 1020, 1060

J Numeric String position 170, 180, 185

P Numeric Pay 1060, 1070

R Numeric Rate 1050, 1060

S Numeric Keyboard status 130,135

We have renumbered the earlier part of the program and added it to the
end of our subroutine. This was not done to confuse you, but to conform
to a standard required of those who want to write good, efficient BASIC
code. All common subroutines should be located near the beginning of the
program, with all controlling routines residing after them. Believe it or
not, this actually helps the program execute faster! Not a whole lot faster
on a small program, but when using BASIC, every little bit helps.

Selective Input 23

ALPHANUMERIC INPUT ROUTINES

Now let's talk about alphanumeric input. Again, we could use the stan
dard INPUT statement, but it doesn't allow several things. First, if you
input commas or colons you will get an input error warning message. At
the least, this can be disconcerting, and can leave a user wondering what
to do next.

Another minus for the INPUT statement—you can't limit input length
while the user is typing an entry. Wouldn't it be great if you could have a
bell ring every time a key was pressed when you were beyond the legal
length for the entry; or if all characters beyond that point were ignored?

Well, we can do all of this with minor modifications to our numeric
input routine. We will use the same basic instructions, but with slightly
different input checks. The changed routine looks like this:

Listing 2-3

1 REM LISTING 2-3

300 B$=""
305 C=LEN(A$)+3
310 PRINT A$;
315 GOTO 325

320 CALL SOUND(100,1000,10)
325 CALL KEY(0,A,S)
330 IF S<>1 THEN 325

335 IF A=13 THEN 400

340 IF A<>8 THEN 380

345 IF LEN(B$)=*0 THEN 320
350 B$=SEG$(B$,1,LEN(B$)-1)
355 J=LEN(B$)-1+C
360 IF LEN(B$)=0 THEN 370
365 CALL HCHAR(24,J,ASC(SEG$(B$,LEN(B$),1)))
370 CALL HCHAR(24,J+1,32)
375 GOTO 325

380 IF (A<32)+(A>126)THEN 320
385 B$=B$&CHR$(A)
390 CALL HCHAR(24,C+LEN(B$)-1,A)
395 GOTO 325

400 PRINT

405 RETURN

Table 2-4. Entry and Exit Variables
for Alphanumeric Input Routine

On entry: On exit:

A$—User prompt B$—User Input string

This routine is simpler than the numeric routine used earlier because we
can accept a wider range of characters than before. We have enhanced the

24 BASICTricksfor the TI-99I4A

liable 2-5. Variable Table

for Alphanumeric Input Routine

Variable Type Purpose Used in lines

A Numeric Keypress character 325, 335, 340,

380, 385, 390

A String User prompt 305,310

B String Input string 300, 345, 350,

355, 360, 365,

385, 390

C Numeric Prompt length 305, 355, 390

J Numeric String position 355, 365, 370

S Numeric Keyboard status 325, 330

input capabilities by allowing the user to enter commas, colons, quotes,
and all other printable characters. While it may be possible to do this by
having the user put quote marks around their responses, it is simpler and
friendlier to take care of that with a routine like this.

So far, so good. We are getting the keypress, checking it, and adding it
to our input string. It would be nice, however, to add a length check. This
can be accomplished by adding one line of code:

381 IF LEN(B$) = UL THEN 320

This line will make sure that the length of the entry doesn't go beyond a
pre-determined boundary. The length should be specified by setting UL to
an upper limit before entering the routine. If the user tries to enter any
character over the limit except a backspace or a RETURN, the bell will
ring and the keypress is ignored.

Let's put the basic alphanumeric input routine to work in our payroll
program. Now it's all starting to look pretty good:

LISTING 2-4

1 REM LISTING 2-4

2 CALL CLEAR

90 GOTO 1000

100 B§=,,M
105 D=0

110 C=LEN(A$)+3
115 PRINT A$;
120 GOTO 130

125 CALL SOUND(100,1000,10)
130 CALL KEY(0,A,S)
135 IF S<>1 THEN 130

140 IF A=13 THEN 235

145 IF A<>8 THEN 195

150 IF LEN(B$)=0 THEN 125
155 IF SEG$(B$,LEN(B$),1)<>"." THEN 165
160 D=0

165 B$=SEG$(B$,1,LEN(B$)-1)
170 J=LEN(B$)-1+C
175 IF LEN(B$)=0 THEN 185
180 CALL HCHAR(24,J,ASC(SEG$(B$,LEN(B$),1)))
185 CALL HCHAR(24,J+1,32)
190 GOTO 130

195 IF (B$="U)*(A=45)THEN 220
200 IF ((A<48)+(A>57))*(A<>46)THEN 125
205 IF (A=46)*(D=1)THEN 125
210 IF A<>46 THEN 220

215 D=l

220 B$=B$&CHR$(A)
225 CALL HCHAR(24,C+LEN(B$)-1,A)
230 GOTO 130

235 B=0

240 IF (B$=",,)+ (B$=" .")THEN 250
245 B=VAL(B$)
250 RETURN

300 B$=,,M
305 C=LEN(A$)+3
310 PRINT A$;
315 GOTO 325

320 CALL SOUND(100,1000,10)
325 CALL KEY(0,A,S)
330 IF S<>1 THEN 325

335 IF A=13 THEN 400

340 IF A<>8 THEN 380

345 IF LEN(B$)=0 THEN 320
350 B$=SEG$(B$,1,LEN(B$)-1)
355 J=LEN(B$)-1+C
360 IF LEN(B$)=0 THEN 370
365 CALL HCHAR(24,J,ASC(SEG$(B$,LEN(B$),1)))
370 CALL HCHAR(24,J+1,32)
375 GOTO 325

380 IF (A<32)+(A>126)THEN 320
385 B$=B$&CHR$(A)
390 CALL HCHAR(24,C+LEN(B$)-1,A)
395 GOTO 325

400 PRINT

405 RETURN

1000 A$="EMPL0YEE NAME: "
1010 GOSUB 300

1020 N$=B$
1030 A$="HOW MANY HOURS: "
1040 GOSUB 100

1050 H=B

1060 A§="WHAT RATE OF PAY: "
1070 GOSUB 100

1080 R=B

1090 P=H*R

1100 PRINT "CORRECT PAY FOR ";N$;M IS";P
9999 END

Selective Input 25

Now, if our Podunksville paymaster enters the name DOE, JOHN, there
won't be a problem. The routines allow for this without generating an error
message that would confuse the user.

26 BASICTricksfor the TI-99I4A

Table 2-6. Variable Table

for Payroll Program

Variable Type Purpose Used in lines

A Numeric Keypress character 130, 140, 145, 195,

200,205,210,220,

225, 325, 335, 340,

380, 385, 390

A String User prompt 110, 115,305,310,

1000, 1030, 1060

B String User input 100, 150,155,165,

170, 175,180,195,

220, 225, 240, 245,

300, 345, 350, 355,

360, 365, 385, 390,

1020

B Numeric String value 235,245, 1020,1050

C String Prompt length 110, 170,225,305,

355, 390

D Numeric Decimal flag 105,205,215

H Numeric Hours 1050, 1090

J Numeric String position 170, 180,185,355,

365, 370

N String Employee name 1020, 1100

P Numeric Pay 1090, 1100

R Numeric Rate 1080, 1090

S Numeric Keyboard status 130, 135,325,330

INPUT CONCLUSIONS

Now, a final comment or two—life requires constant tradeoffs. This is
a good place to give an example of one of those little tradeoffs.

Since we have gained so much latitude with regard to user input, we
have to give up something somewhere, right? Right! By using input rou
tines such as those listed, we lose some program speed. The user won't
usually notice it when typing an entry, but the slow-down is there,
nonetheless.

Because so much string manipulation is being done with each keypress,
your TI-99/4A has quite a bit of program overhead to go through. This

Selective Input 27

shouldn't be a big problem, unless your program is very long or uses quite
a bit of memory.

So much for the trade-off. In our next chapter we will look at how to
round numbers. You may finally get to discover why all your teachers
stressed math.

Chapter 3

Rounding

Rounding is the art of making numbers come out to the nearest "some
thing." Rounding is usually used with money figures, and that "some
thing" can be the nearest dollar, penny, or fraction of a penny.

There are many other uses for rounding. For example, you may want to
round a number to the nearest hundred for a calculation, or, when calcu

lating disk space from within a configuration program, you may want to
round down to make sure that there is enough room on the disk for the
records.

The rounding technique is a simple one. The basic rounding equation
looks like this:

N = INT(N/D + K)*D

There are only three variables used—N, D, and K. Variable N is the
number we want to round. It should be set to a value before entering this
formula, and after exiting it will be equal to the rounded value that we
want.

Variable D is the divisor and multiplier because it serves as both at
different times within the equation. This variable determines to how many
decimal places, or to what precision, N will be rounded. In a moment we
will look at the effect that various values of D have on N.

29

30 BASIC Tricksfor the TI-99/4A

Variable K is the "kicker". That sounds like a descriptive term, doesn't
it? Well, that is exactly what it does. It "kicks" our number either up,
down, or to the nearest figure. Its effect will be seen in the examples.

To use this formula in a program, we would first need to decide to how
many places we wanted our numbers rounded. If we were only working
with dollars and cents, this would be a simple decision; we would need to
round our figures to two decimal places. This, again, determines what we
would use for the value of D in our formula.

Some common values for D, based on rounding to powers of 10, are
shown in Table 3-1.

Table 3-1. Rounding Divisors & Multipliers

Divisor/ Result rounded to

Multiplier nearest:

0.0001 4 decimal places
0.001 3 decimal places
0.01 2 decimal places
0.1 1 decimal place
1 whole number

10 ten

100 hundred

1000 thousand

10000 ten thousand

For dollars and cents, use a value of .01 for D. For K, there are usually
only 3 different values used when rounding to powers of 10. When K is
equal to 1, we are rounding up. If K is equal to .5, we are rounding to the
nearest figure. If K is equal to 0, we are rounding down. Notice that if K
was equal to 0, it could be left out of the equation completely.

ROUNDING TO THE NEAREST FIGURE

To round a dollar and cents figure to the nearest penny, we could use
the following line of code:

100 N = INT(N/.01 + .5)*.01

Instead of using a line of BASIC code similar to the one listed above,
we could just as easily have used the DEF FN statement. This would allow
us to define our rounding formula as an integral function, as follows:

100 DEF RD(N) = INT(N / .01 + .5) * .01

Rounding 31

The advantage is that you can later call this by simply setting a number
equal to RD(x), where you substitute the number to be rounded for x. For
instance, such a statement could look like this:

200 A = RD(A)

Both routines, whether as a callable subroutine, or as an independent
function, will round the number. If you follow through on the logic, the
routine takes a number that you feed to it (within the variable N), and then
rounds it. Perhaps it is best to show an example.

First we substitute an unrounded dollar figure (157.19832 in this exam
ple) for the variable N. Our equation looks like this:

N = INT (157.19832/.01 +.5)*.01

Next, by performing the calculation within the parentheses (remember
that within the computer, division will be done before addition), our for
mula will look like this:

N = INT (15720.332)*.01

Next, the INT function is executed. This function will truncate all the
numbers following the decimal point of the argument value. Therefore,
during the next step the formula looks like this:

N = 15720*.01

Multiplying the number by .01 is the last operation. The answer is:

N = 157.2

Upon completion, our number is rounded to the nearest penny. This is
great for printing dollar figures without trailing fractions of pennies that
only the pickiest accountants would be interested in anyway. In a later
chapter, we will discuss ways of formatting the rounded numbers so they
look nice and neat.

ROUNDING UP

Using the dollars and cents example, we see that it is easy to round up.
The statement to do this is:

100 N = INT(N/.01 + 1)*.01

This routine will always round a number to the next highest penny.
Great for bankers figuring interest due, huh? Well, the proof, using the
previous example, works like this:

32 BASIC Tricksfor the TI-99I4A

N = INT(157.19832 / .01 + 1) * .01
N = INT(15719.832 + 1) * .01
N = INT (15720.832)*.01
N = 15720*.01

N = 157.2

This works fine with this example, but what about a number that nor
mally would have been rounded down? Let's examine it using
12.00001103 in the formula:

N = INT (12.00001103 / .01 + 1) * .01
N = INT(1200.001103 + 1) * .01
N = INT (1201.001103)*.01
N = 1201 * .01

N = 12.01

Again, our figure, although just slightly over $12.00 to begin with, was
rounded to the next highest cent.

ROUNDING DOWN

Rounding down uses the same procedure as rounding up, except there
is no kicker added to the formula. The kicker in the above equation, the
number 1, was added to force a round up. With no kicker, the line of code
to round down would look like this:

100 N = INT(N/.01)*.01

As a proof, let's use our original number, since that is a number that is
usually rounded up:

N = INT (157.19832/.01)*.01
N = INT (15719.832)*.01
N = 15719*.01

N = 157.19

The number has been rounded down to the next lowest penny.
So far, we have discussed rounding to a penny, whether it be nearest,

up, or down. This is also referred to as rounding to two decimal places.
You can round to more (or fewer) decimal places by simply increasing (or
reducing) the number of zeros in the divisor, and consequently the
multiplier.

Rounding 33

ODD ROUNDING

In our examples thus far, we have rounded only to powers of 10. We
could just as easily round to a different value to achieve different results.
For instance, you may want (for some unknown reason) to round to the
nearest 50, or to the nearest 25, or to the nearest 30. All it takes is using
slightly different numbers in the formula.

If you want to experiment with different values for rounding, try the
following short program. It will run through a few quick rounding
formulas:

Listing 3-1

1 REM LISTING 3-1

2 CALL CLEAR

10 FOR J=l TO 100 STEP .26

20 RESTORE

30 FOR K=l TO 6

40 READ D

50 Nl=INT(j/D+l)*D
60 N2=INT(J/D+.5)*D
70 N3=INT(j/D)*D
80 PRINT " NUMBER:";J
90 PRINT " FACTOR:";D

100 PRINT " UP: M ?N1

110 PRINT " DOWN: " ?N2
120 PRINT "NEAREST: it ;N3

130 PRINT

140 NEXT K

150 PRINT

160 PRINT

170 NEXT J

180 DATA .001 .01,. 1 ,3,10, 11

190 END

Table 3-2. Variable Table

for Rounding Example

Variable Type Purpose Used in lines

D Numeric Unrounded number 40, 50, 60, 70, 90

J Numeric Loop counter 10,50,60,70,80,

170

K Numeric Loop counter 30, 140

N1 Numeric Rounded number 50, 100

N2 Numeric Rounded number 60, 110

N3 Numeric Rounded number 70, 120

34 BASIC Tricksfor the T1-99I4A

When you run the program, it goes by on your screen rather quickly, so
you may want to modify it to print only a portion of the output at a time.
If this type of program really does something for you, you could change
the print statements to make the output go to your printer so that you will
have a copy of various numbers rounded in different ways.

The program can also be changed by using different step values in line
10, or by using different DATA elements to experiment with different
rounding capabilities.

As a final note, even computers are not perfect. The TI-99/4A does
strange things with some numbers, as you may notice on your output.
Because of the internal representation of some numbers, they are never
quite derived in the expected manner. Do not despair! We all have to work
within the limits of a general-purpose computer. Such is life.

Chapter 4

Dollars and Cents

How to make sense of dollars and cents? What a perplexing question.
In this chapter, you will see how to format your numeric output.

First of all, if you haven't noticed, numbers come in all shapes and
sizes. There are big numbers (1.5623 E 23), small numbers (1.5623 E -23),
and some in between (0). All of these numbers are useful, and indeed
necessary for various applications, but they need to be formatted for a
professional appearance on reports, as well as the video screen.

The biggest problem is the numbers to the right of the decimal point,
because when your decimal points are not in line, it looks like a chicken
tracked all over your report. This can be very disconcerting. Well, never
fear! There is a solution.

If you ask a non-TI-99/4A user for the solution, they will probably laugh
smugly and point to their version of BASIC which has formatted output
built in. Well, the TI-99/4A doesn't, and that's that, and you have to work
with what you have.

The first rule of printing numbers is to not print numbers—print only
strings because it is much easier to format and position strings than num
bers. For instance, the following program prints just numbers. Try running
it, and take a look at what is displayed:

100 FOR J = 1 TO 50 STEP 5.25

110 PRINT J

120 NEXT J

35

36 BASIC Tricksfor the TI-99/4A

This program prints output all over the place! Fig. 4-1 shows what you
should have seen on your video screen. We got all the numbers we asked
for, but they would have looked nicer lined up in standard column order.
There is no intrinsic way to accomplish this on the TI-99/4A.

>RUN

Fig. 4-1.

FORMATTED OUTPUT

The first step when creating a formatting routine is to convert all num
bers to strings, and then print the strings. The strings should all be a
uniform length, and each number should be right-justified within the
string. This is not as difficult as it may sound. Our program, with the
following subroutine, does all of this:

Listing 4-1

1 REM LISTING 4-1

2 CALL CLEAR

5 GOTO 100

10 N=INT(N/.01+.5)*.01
20 A$=SEG$(" "&STR$(N),LEN(STR$(N))+1,10)
30 RETURN

100 FOR J=l TO 50 STEP 5.25

110 N=J

120 GOSUB 10

130 PRINT A$

140 NEXT J

Dollars and Cents 3 7

Table 4-1. Entry and Exit Variable Table
for Dollars & Cents Routine Example

On entry: On exit:

N—Number to be rounded and formatted A$—Formatted string

N —Rounded number

Table 4-2. Variable Table for

Dollars & Cents Routine Example

Variable Type Purpose Used in lines

A String Formatted

output

20,130

J Numeric Loop counter 100, 110, 140

N Numeric Work number 10,20, 110

Also included is a rounding function in line 10 (see Chapter 3) that
rounds the numbers to no more than two decimal places. When this pro
gram is run, your screen should appear similar to Fig. 4-2. The figures are
lined up on the right, and each figure ends in the tenth column on the
screen. This is a very good start. The only remaining problem is that the
numbers are still not lined up by decimal points, because each number
does not have the same number of digits to the right of the decimal point.
We need a way to make sure that trailing zeros are included in each number
so that two decimal places are displayed.

>RUN

>

1

6.25

11.5

16.75

22

27.25

32.5

37.75

43

48.25

Fig. 4-2.

38 BASIC Tricksfor the TI-99/4A

Let's change this routine slightly, and see if this can be straightened out.

Listing 4-2

1 REM LISTING 4-2

2 CALL CLEAR

5 GOTO 100

10 N=INT(N/.01+.5)*.01
15 A$=STR$(N)
20 IF N<>0 THEN 30

25 A$=,,H
30 IF INT(N)<>0 THEN 40
35 A$="0"&A$
40 IF N<>INT(N)THEN 55
45 A$=A$&".00"
50 GOTO 65

55 IF ASC(SEG$(A$,LEN(A$)-2,1))=46 THEN 65
60 AS=A$&"0"
65 A$=SEG$(" "&A$,LEN(A$)+1,10)
70 RETURN

100 FOR J=l TO 50 STEP 5.25

110 N=J

120 GOSUB 10

130 PRINT A$
140 NEXT J

Table 4-3. Entry and Exit Variable Table
for Dollars & Cents Routine Example

On entry: On exit:

N—Number to be rounded and formatted A$—Formatted string

N —Rounded number

Table 4-4. Variable Table for

Dollars & Cents Routine Example

Variable Type Purpose Used in lines

A String Formatted 15,25,35,45,

output 55,60,65, 130

J Numeric Loop counter 100, 110, 140

N Numeric Work number 10, 15,20,30,

40, 110

We added a few lines to make the routine more useful. Line 15 converts

N to a string (A$), then the program checks to see if N is a zero. If it is,
A$ is set to zero so that all of the following manipulations will work
correctly.

Next, in line 30, the program checks if N is between zero (inclusive)
and one. If it is, a leading zero is added to the string. In line 40, the

Dollars and Cents 39

program checks if N is a whole number. If it is, then our job is simple. All
that remains to be done is to add the decimal point and two zeros. Then
execution skips to line 65 where the string is filled out to 10 spaces.

If N is not a whole number, we should only have to add, at most, one
zero. However, the number may already have two significant digits. It
would be counter-productive to add a zero to a number that already is
justified to two decimal places. Line 55 checks to see if the third character
from the right is a decimal point. The ASCII value for a decimal point is
46. If it is a decimal point (as is the case with a number already containing
two significant digits), execution branches to line 65.

However, if there is only one significant digit, a zero is added to the end
of the string to make sure that there are two places to the right of the
decimal point.

All routine execution goes through line 65, which adds enough spaces
to the left of the string to make sure that it is 10 characters long. This right-
justifies the number within the string.

When this program is run, as shown in Fig. 4-3, the output is in col
umns. After all, isn't that what we wanted in the first place?

>RUN

Fig. 4-3.

For most applications, you can use this routine with no modifications.
However, if you will be processing numbers greater than 9999999.99,
make your formatted strings longer than 10 characters. Simply change line
35 to reflect a string size larger than 10.

Other special cases are processing negative numbers, or formatting num
bers using commas. Read on.

40 BASIC Tricksfor the TI-99/4A

FORMATTING NEGATIVE NUMBERS

Negative numbers can be formatted in one of two ways. The negative
sign can either precede or trail the number. Both methods are acceptable
for reports.

To format with a preceding negative sign, the above routine will work
fine if the number does not exceed 10 places, including the negative sign.
When we convert the number to a string, the sign is converted as well. By
using this routine with no modification, the smallest negative number that
could be used is -999999.99. Again, if you need to allow for smaller
numbers, simply change line 65 to reflect a larger string.

If you want trailing negative signs, a change will need to be made to
this routine. This is done by using a sign string and an absolute value of
the number to be formatted, as shown below:

Listing 4-3

1 REM LISTING 4-3

2 CALL CLEAR

5 GOTO 100

10 N=INT(N/.01+.5)*.01
11 NS$=" "
12 IF N>=0 THEN 15

13 NSS=n-M

14 N=ABS(N)
15 A$=STR$(N)
20 IF N<>0 THEN 30

25 A$=M"
30 IF INT(N)<>0 THEN 40
35 A$=,,0,,&A$
40 IF N<>INT(N)THEN 55
45 A$=A$&".00"
50 GOTO 65

55 IF ASC(SEG$(A$,LEN(A$)-2,1))=46 THEN 65
60 A$=A$&,,0"

65 A$=SEG$(" "&A$,LEN(A$)+1,9)&NS$
70 RETURN

100 FOR J=-25 TO 25 STEP 5.25

110 N=J

120 GOSUB 10

130 PRINT A$
140 NEXT J

Table 4-5. Entry and Exit Variable Table
for Dollars & Cents Routine Example

On entry: On exit:

N—Number to be rounded and

formatted

A$—Formatted string

N —Rounded number

Dollars and Cents 41

Table 4-6. Variable Table for

Dollars & Cents Routine Example

Variable Type Purpose Used in lines

A String Formatted 15,25,35,45,
output 55,60,65,130

J Numeric Loop counter 100,110,140

N Numeric Work number 10,12,14, 15,
20,30,40,110

NS String Sign string 11,13,65

We added lines 11 through 14 and changed line 65. The additional lines
set a negative sign equal to a space or a minus sign, depending on whether
N is less than 0 or not. If N is less than zero, it is changed to a positive
number for the remainder of the calculations by using the ABS function.

In line 65, the sign string is appended to the formatted string. If the
number is negative it will have a trailing minus sign.

Note that in line 65 we reduced, by one digit, the size of the number
that could be sucessfully formatted. This allows the sign string to fill up
the format to 10 characters. It is just as easy to use any other size string
by changing 9 to some other number.

If you run this routine, the output would look similar to Fig. 4-4.

>RUN

25.ee

19.75

14.50

9.25

4.ee

1.25

6.50

11.75

17.ee

22.25

>

Fig. 4-4.

42 BASIC Tricksfor the TI-99I4A

FORMATTING WITH COMMAS

Commas in formatted numbers have a good side and a bad side. They
look great on some reports, but they can be a real bear to use and, depend
ing on the size of the numbers being formatted, they may slow down the
processing because of the amount of string manipulation that's needed.

To include commas, it is best to drastically alter our subroutine to allow
separate processing of the decimal and whole parts of the number. This
makes it easier to insert commas. The subroutine, when written the follow

ing way, does this rather nicely:

Listing 4-4

1 REM LISTING 4-4

2 CALL CLEAR

5 GOTO 100

10 N=INT(N/.01+.5)*.01
13 NS?=" "
16 IF N>=0 THEN 25

19 NS$="-"
22 N=ABS(N)
25 N1=INT(N)
28 N2=N-N1

31 W$=STR$(N1)
34 Wl$=""
37 IF N1<>0 THEN 43

40 W$="0U
43 D$=STR$(N2)
46 IF N2<>0 THEN 52

49 D$=".00"
52 IF LEN(D$)>2 THEN 58
55 D$=D$&,,0"
58 IF LEN(W$)<4 THEN 70
61 Wl$=","&SEG$(W$,LEN(W$)-2,3)&W1$
64 W$=SEG$(W?,l,LEN(W$)-3)
67 GOTO 58

70 W1$=W$&W1$
73 A$=SEG$(" "&W1$&D$,LEN(W1$&D$)+1,9)&NS$
76 RETURN

100 FOR J=-10000 TO 10000 STEP 1500.25

110 N=J

120 GOSUB 10

130 PRINT A$

140 NEXT J

Table 4-7. Entry and Exit Variables for
Dollars & Cents with Commas Routine

On entry: On exit:

N—Number to be formatted A$—Formatted output

N —Rounded number

Dollars and Cents 43

Table 4-8. Variable Table for

Dollars & Cents with Commas Routine

Variable Type Purpose Used in lines

A String Formatted

output
73, 130

D String Temporary string 43, 49, 52, 55, 73

J Numeric Loop counter 100,110, 140

N Numeric Work number 10,16,22,25,
28, 110

N1 Numeric Integer value 25,28,31,37

N2 Numeric Integer value 28, 43, 46

NS String Sign string 13,19,73

W String Temporary string 31,40,58,61,
64,70

W1 String Temporary string 34,61,70,73

This is the super-duper do-it-all routine that inserts commas, justifies,
and adds trailing negative signs if necessary. Lines 58 through 67 add
commas by successively breaking apart the whole string into three-digit
parts and adding them to the target string. In line 73 the formatting is
completed.

Because we are still limiting our output to a total of nine absolute digits
(the tenth is used for the sign), the largest number we can format with this
routine is 99999.99. Anything above that will be truncated on the left,
with only the nine right digits showing. If you anticipate using larger
numbers, increase the string limiter in line 73 from a 9 to a larger digit.

We have also changed lines 100 through 130 to use larger numbers and
negatives, to show the full formatting potential of the routine. When the
program is run, the output should be similar to Fig. 4-5. In the next
chapter, we will use this technique to format report lines.

44 BASIC Tricksfor the TI-99/4A

>RUN

10,000.00-
8,499.75-
6,999.50-
5,499.25-
3,999.00-
2,498.75-

998.50-

502.75

2,003.00
3,503.25
5,003.50
6,503.75
8,004.00
9,504.25

>

Fig. 4-5.

Chapter 5

Report Formatting

Report formatting is an important aspect in the success of a program.
Usually, the first contact a person has with a program is the written output,
and the readability of that output may color their feelings about your
program.

If the report that your program generates is either too short or too long,
you have failed the user. The report should adequately cover the informa
tion needs of the user without burying him in a mountain of useless num
bers or paper.

Many times the word "report" conjures up visions of a stack of paper
or printers disgorging numbers at an ever increasing rate. Reports, how
ever, are not limited to hardcopy (paper) output. They can be printed either
to the screen or to the printer. It is a big plus for a program if it handles
both types of output because it shows planning on the part of the program
mer. Your program should have separate sections for both screen and
printer output. This is because screen reports only need to be formatted for
28 column lines, while printed reports generally need to be formatted for
80 or 132 column lines.

STANDARDIZATION

Reports consist of two general parts—headings, which appear on each
page, and individual lines that make up the body of the report. We will
cover each area in detail.

45

46 BASIC Tricksfor the TI-99I4A

GOLIATH WIDGET CORPORATION -

Week Ending 02/31/1984 Prepared by

Line Metropolitan Location Date 10000 11000

Fig. 5-1. Sample 132-column report heading.

It is easier to read output, both video and printed, that is standardized.
This means that all associated output begins at a certain column, or that
the output is all left or right justified. Justification is the process used to
make text either begin at a specified left margin (left justification), or end
at a specified right margin (right justification), or both (fill justification).
It is beyond the scope of this book to discuss fill justification, so we will
only discuss the first two topics, as well as standardization.

The first step, when planning your program (you do plan your programs,
don't you?), is to decide on the output format. When planning a report,
there are many questions that need to be answered:

1. What should appear on the heading?
2. Should the heading be centered?
3. Should a date and page numbers be included?
4. What size paper will this be printed on?
5. How wide is your report going to be?
6. How many lines for the heading?
7. How many columns?
8. What should the columns contain?

9. What order should the data be presented in?
10. What should the column headings say?
11. Should the report be single or double spaced?
12. How many blank lines should there be at the top of the screen?
13. How many blank lines should there be at the bottom of the screen?

As you can see, there are quite a few questions to consider, and your
needs may raise questions that were not touched on here. It is best to
answer such questions in the planning stage of the program. The answers
that you give may vary considerably from report to report, depending on
factors such as the complexity of the report subject, value of the report,
and intended report audience.

Because these are individual questions, we will only consider the two
basic components of a report. You can then use those sections that are
needed for your reports.

ReportFormatting 47

-WEEKLY SUMMARY RECAPITULATION

Johnathan Doe Page 1

Accounts

12000 17500 20100 23000 24000 25100 Comments

REPORT HEADINGS

Report headings are the lines that identify the report. The heading should
contain information that will help the reader understand the contents of the
report. Generally, a heading contains several standard items—a title, date,
page number, column headings, and divider. A sample report heading for
a 132-column report appears in Fig. 5-1. Each part of the heading is
distinct and easily recognized by the reader.

The placement of these items in a heading depends, in large measure,
on the report's width. On narrow reports, you may want your heading
several lines deep. On a wide report, the heading may be only one line.
Most headings are a total (counting blank lines) of approximately 5 to 6
lines. Again, this may vary under any given conditions. For instance, the
report heading in Fig. 5-2 is the same as that referred to earlier, but it has
been formatted for an 80-column report.

GOLIATH WIDGET CORPORATION - WEEKLY SUMMARY RECAP

Week Ending 02/31/1984 Page 1

Line Location Date Account Amount Comments

Fig. 5-2. Sample 80-column report heading.

Printing the heading should be handled by a separate subroutine so it
can be easily called at the beginning of each page of output. A typical
heading subroutine might look like this:

Listing 5-1

1 REM LISTING 5-1

50 P=P+1

55 CALL CLEAR

60 PRINT TAB(2);"SAMPLE TECHNICAL REPORT"
65 PRINT DATES;
70 PRINT TAB(20);"PAGE";P
75 PRINT :HD$
80 FOR J=l TO 28

85 PRINT "=";
90 NEXT J

95 PRINT ::

100 LC=6

105 RETURN

48 BASIC Tricksfor the TI-99/4A

Table 5-1. Entry and Exit Variables
for Report Headings Routine

On entry: On exit:

DATE$—Date for report

HD$ —Column headings

P —Last page #

LC—Number of lines printed

P —New page value

Table 5-2. Variable Table

for Report Headings Routine

Variable Type Purpose Used in lines

DATE String Date 65

HD String Column headings 75

J Numeric Loop counter 80,90

LC Numeric Line counter 100

P Numeric Page number 50,70

This routine does several important things. First, it increments the page
counter in line 50 to produce a consecutive page number on each page of
the report. At some point before entering this heading routine for the first
time, you will need to make sure that variable P gets set to zero so that the
first page will always be 1. Generally, it is a good idea to begin your
reports with page one so that the reader doesn't think that you are only
providing a partial report.

The next item handled is the report title. This is centered for 80 columns
by using the TAB command in the print statement. For instance, PRINT
TAB(10); A$ will cause the variable A$ to be printed beginning at the
tenth column of the output line.

Centering the report title gives it added importance and draws the read
er's attention to the top and middle of the page. In addition, the title of the
report is important enough that the reader should not have to search for it.
Here we have both centered the title, as well as given it a full line.

The next line contains only two items, but for most reports, they are
only slightly less important than the title. The date appears to the left side
of the line, and the page number appears to the right. The page number is
set each time the heading routine is accessed, but the date will have to be
set before entering the routine.

Next is a blank line and the column headers. The variable HD$ was

used for the headers line, but this could be easily changed to individual

Report Formatting 49

print commands. In general, I like to use the string method because it
makes it easier to change the headings, and the routine will look less
cluttered.

Before entering this routine, HD$ needs to be set equal to the column
headings that you want printed. Grab your pencil and paperand write out
the column headings you want. Be sure to space correctly between the
columns, and then type it into the program. Chances are, your column
heading line will need to be changed later, so don't throw your notes away
yet.

Finally, there is a dividing line of equal signs and then a blank line.
These separate the heading from the rest of the report.

The last part of the subroutine sets the line counter to six, the number
of individual lines that have been printed by this routine. What this counter
is set to will vary with the number of lines printed by your heading subrou
tine. The importance of this in the overall report will be discussed shortly.

None of the routines presented here are cast in concrete, and they can
be changed to reflect your specific needs. The important thing is that you
develop a routine that will print clear, concise report headings.

After working out, in theory, your heading routine, it is best to make a
few test runs printing only the heading. You can then determine if it will
fit your needs, and you can make changesbefore you aretoo far into actual
report development. After all, let's face the fact that if we get something
to work the first time around, it usually means we have overlooked an
obvious flaw that will make the program bomb later. This is just an irre
futable law of programming.

When your report headings are completed to your satisfaction, it is time
to proceed to the body of the report.

LINE PREPARATION

The body of any report is usually made up of individual data lines,
repeated over and over again.

Preparing those lines for output is simply a matter of collecting the data
you want to print, and printing it at the right position. To illustrate this,
we need to pull together a program that will include all the subroutines we
have developed up to this point. This program will allow a user to input
individual payroll information, and print out the resultant information in
an 80-column format. This will not be your basically marketable (or even
useful) payroll program. However, it will illustrative. The program would
look like this:

50 BASIC Tricksfor the TI-99/4A

Listing 5-2

1 REM LISTING 5-2

2 CALL CLEAR

10 HD$="EMPLOYEE NAME HOURS RA
TE PAY"

20 OPEN #1:,,RS232.BA=9600.DA=8",OUTPUT
90 GOTO 1000

100 B$=""
105 D=0

110 C=LEN(A$)+3
115 PRINT A$;
120 GOTO 130

125 CALL SOUND(100,1000,10)
130 CALL KEY(0,A,S)
135 IF S<>1 THEN 130

140 IF A=13 THEN 235

145 IF A<>8 THEN 195

150 IF LEN(B$)=0 THEN 125
155 IF SEG$(B$,LEN(B$),l)o"." THEN 165
160 D=0

165 B$=SEG$(B$,1,LEN(B$)-1)
170 J=LEN(B$)-1+C
175 IF LEN(B$)=0 THEN 185
180 CALL HCHAR(24,J,ASC(SEG$(B$,LEN(B$),1)))
185 CALL HCHAR(24,J+1,32)
190 GOTO 130

195 IF (B$=,,M)*(A=45)THEN 220
200 IF ((A<48)+(A>57))*(A<>46)THEN 125
205 IF (A=46)*(D=1)THEN 125
210 IF A<>46 THEN 220

215 D=l

220 B$=B$&CHR$(A)
225 CALL HCHAR(24,C+LEN(B$)-1,A)
230 GOTO 130

235 B=0

240 IF (B$="")+(B$=M.")THEN 250
245 B=VAL(B$)
250 RETURN

300 B$=""
305 C=LEN(A$)+3
310 PRINT A$;
315 GOTO 325

320 CALL SOUND(100,1000,10)
325 CALL KEY(0,A,S)
330 IF S<>1 THEN 325

335 IF A=13 THEN 400

340 IF A<>8 THEN 380

345 IF LEN(B$)=0 THEN 320
350 B$=SEG$(B$,1,LEN(B$)-1)
355 J=LEN(B$)-1+C
360 IF LEN(B$)=0 THEN 370
365 CALL HCHAR(24/J,ASC(SEG$(B$,LEN(B$)/1)))
370 CALL HCHAR(24,J+1,32)
375 GOTO 325

380 IF (A<32)+(A>126)THEN 320
385 B$=B$&CHR$(A)
390 CALL HCHAR(24,C+LEN(B$)-1/A)
395 GOTO 325

400 PRINT

405 RETURN

445 REM ROUNDING ROUTINE

Report Formatting 51

450 N=INT(N/.01+.5)*.01
455 RETURN

495 REM ROUTINE TO CONVERT NUMBERS FOR OUTPUT

500 N=INT(N/.01+.5)*.01
505 NS$=" "
510 IF N>=0 THEN 525

515 NS$="-"
520 N=ABS(N)
525 N1=INT(N)
530 N2=N-N1

535 W$=STR$(N1)
540 Wl$=""
545 IF N1<>0 THEN 555

550 W$="0"
555 D$=STR$(N2)
560 IF N2<>0 THEN 570

565 D$=".00"
570 IF LEN(D$)>2 THEN 580
575 D$=D$&,,0"
580 IF LEN(W$)<4 THEN 600
585 Wl$='\ "&SEG$(W$,LEN(W$)-2,3)&W1$
590 W$=SEG$(W$,l,LEN(W$)-3)
595 GOTO 580

600 W1$=W$&W1$
605 A$=SEG$(" "&W1$&D$,LEN(W1$&D$)+2,9)&NS$
610 RETURN

695 REM ROUTINE TO PRINT REPORT HEADINGS

700 P=P+1

710 PRINT #1:TAB(28);"PAYROLL WORKSHEET REPORT"
715 PRINT #1:DATE$;TAB(72);"PAGEM;P
720 PRINT #1::HD$
730 FOR J=l TO 80

735 PRINT #1:"= ,,7
750 NEXT J

755 PRINT #1::

760 LC=6

765 RETURN

795 REM ROUTINE TO PRINT INDIVIDUAL REPORT LINE

800 PRINT #1:N$;
805 I=LEN(N$)
810 FOR J=I TO 24

815 PRINT #1:" ";
820 NEXT J

825 N=H

830 GOSUB 500

835 PRINT #1:A$;"
840 N=R

845 GOSUB 500

850 PRINT #1:A$;"
855 N=PA

860 GOSUB 500

865 PRINT #1:A$
870 LC=LC+1

875 IF LC<60 THEN 890

880 PRINT #1:CHR$(12)
885 GOSUB 700

890 RETURN

995 REM MAIN CONTROL ROUTINES

1000 P=0

1010 DATE$="0l/0l/99"
1020 GOSUB 700

1030 A$="EMPLOYEE NAME: "
1040 GOSUB 300

cont. on next page

52 BASICTricksfor the TU99I4A

Listing 5-2—cont.

1050 N$=B§
1060 IF B$=H" THEN 1170
1070 A$="HOW MANY HOURS: "
1080 GOSUB 100

1090 H=B

1100 A$="WHAT RATE OF PAY:
1110 GOSUB 100

1120 R=B

1130 PA=H*R

1140 GOSUB 800

1150 PRINT ::

1160 GOTO 1030

1170 PRINT #1:CHR$(12)
1175 CLOSE #1

9999 END

Table 5-3. Variable Table

Payroll Program
for

Variable Type Purpose Used in lines

A Numeric Keypress character 130, 140, 145, 195,

200,205,210,220,
225, 325, 335, 340,
380, 385, 390

A String User prompt 110, 115,305,310,
& return string 605, 835, 850, 865,

1030, 1070, 1100

B Numeric String value 235,245, 1090,

1120

B String User input 100, 150, 155, 165,

170, 175, 180, 195,
220, 225, 240, 245,

300, 345, 350, 355,
360, 365, 385, 390,
1050, 1060

C String Prompt length 110, 170,225,305,
355, 390

D Numeric Decimal flag 105,205,215

D String Temporary 555, 565, 570, 575,
605

DATE String Date 715,1010

H Numeric Hours 825, 1090,1130

HD String Headers 10,720

1 Numeric Temporary 805,810

ReportFormatting 53

Table 5-3—cont. Variable Table for

Payroll Program

Variable Type Purpose Used in lines

J Numeric String position
& loop counter

170,180,185,355,
365, 370, 730, 750,

810,820

LC Numeric Line counter 760, 870, 875

N Numeric Operation number 450,500,510,520,

525, 530, 825, 840,
855

N String Employee name 800,805,1050

N1 Numeric Integer value 525, 535, 545

N2 Numeric Integer value 530, 555, 560

NS String Sign indicator 505,515,605

P Numeric Page counter 700,715, 1000

PA Numeric Pay 855,1130

R Numeric Rate 840, 1120, 1130

S Numeric Keyboard status 130,135,325,330

W String Temporary string 535, 550, 580, 585,

590, 600

W1 String Temporary string 540, 585, 600, 605

If you run this program you may be surprised, because it does a nice job
of printing a usable report, and it even handles multiple pages. Most of the
routines in this program are presented elsewhere in this book, so we will
only concentrate on lines 800 through 899. These program lines print the
individual lines that make up the body of the report.

The routines in this program were designed to direct output to the TI
Impact Printer through a serial interface. If you are using a different type
of interface or printer, you will need to make a change in line 20. This is
the only place where the printer file is opened, so one change should do it
all.

Line 800 prints the employee's name, and a FOR NEXT loop in lines
805 through 820 positions the cursor for printing the next variable. Then
we convert the number we want printed to a formatted string, and print it.
The balance of the routine repeats this process for the rate and the total
pay. In line 870 we increment the line counter (L). If it is above a certain

54 BASIC Tricksfor the TI-99/4A

number of lines (60 in this program) we execute our subroutine to do
headings again for the next page.

This routine can be made more complex for other reports, depending on
the data to be printed. Another change that could be implemented for other
reports is a line that will keep a running total of the amounts printed. Then,
when the printing of data is complete, you can print the totals for the
report.

SPECIAL LINE POSITIONING

There is one last area about reports to cover. When printing information,
it may be desirable to left justify, center, or right justify your output.

Fig. 5-3. Early manual line formatter.

Left justification is simple because all you need to do is position the
cursor to the column where you want to begin printing, and then print it.
If you are printing from the left column use the TAB statement, otherwise
use a FOR NEXT loop to space correctly between fields on the same line.
Simple, huh?

Report Formatting 55

Well, centering variable length information is a little trickier, but if it's
handled in a common subroutine it can be made simpler. As with all of
our routines so far, you will need to be sure that you make the common
variable (A$) equal to the string to be centered. The routine looks like this:

100 PRINTTAB(14 - LEN(A$) / 2); A$
110 RETURN

The heart of the routine is the formula 14 - LEN(A$) / 2. Simply stated,
this routine takes half the length of the string to be centered, subtracts it
from the center point of the output line, and moves the cursor to that
column. The string is then printed.

This centering routine is for the 28-column screen on the TI-99/4A; to
make it work for any other size output line, all you need to do is change
14 to a number that represents half of the length of your output line. For
example, use 40 for 80-column centering, 36 for 72-column centering, 66
for 132-column centering, etc.

This routine will not center a string that is longer than the line on which
you want it centered. This will cause the program to try to TAB a negative
amount. Since this can't be done, the TI-99/4A will begin printing at the
leftmost line position.

Centering isn't too bad now, is it? Neither is right justification, as long
as you approach it in the same manner. All right justification means is
positioning each string to be printed so that it ends at a specific column.
Here is a routine that will handle that:

100 PRINTTAB(27 - LEN(A$)); A$
110 RETURN

Simple, right? Right! All that needs to be done is to subtract the length
of the string to be printed from a number that represents the column where
you want the string to end.

I suppose it goes without saying that if you want the printing to end at a
different place than column 27, all you need to do is change the number
27 to a number that represents the rightmost printing position. But I'll
remind you anyway.

Well, now you know the deep, dark secrets about how to print reports
and strings to get the output appearance that you want. All that needs to
be done now is to arrange them in the order necessary to get the report that
you want. The creative process that you go through may be the toughest
part of programming.

In later chapters we will be discussing routines that can be helpful when
formatting output for your report. Stick around, OK?

Chapter 6

Working with Dates

In this chapter, we will only be working with the kind of dates that
determine our present position in relation to the continuum that stretches
from yesterday through tomorrow.

Many programs need to work with dates—either inputting, manipulat
ing, or printing them. We will discuss how to standardize dates, how to let
the user input dates, how to manipulate them, and how to print them. First,
however, we should give some general purpose information concerning
dates.

DATES, CALENDARS, AND DATING
CONVENTIONS

Our present calendar is the Gregorian calendar, named after Pope Gre
gory XIII. It was adopted by most of the world in 1582, and corrected
errors in the previous (Julian) calendar. The transition between the two
was rather abrupt, with 10 days dropped from the middle of October to
correct differences between the sun's position and the calendar. After all,
that had to be easier than moving the earth or sun to match the calendar.

So, October 5, 1582 became October 15, 1582, and most of the world

adopted the new calendar system. Most, that is, except for certain Ger
manic nations that adopted it in approximately 1700. Great Britain did not

57

58 BASIC Tricksfor the TI-99I4A

change until 1752, Russia until 1918, and Turkey was the last nation to
switch in 1927.

The Gregorian calendar is based largely on the Julian calendar with 12
months of varying length. However, the new calendar corrected cumulative
errors in the Julian calendar by changing the method of figuring leap year
days. Instead of a leap year every 4 years, the Gregorian calendar allowed
for a leap year every 4 years except in century years. In these years, there
would be no leap year unless the year was divisible by 400. For example,
1900 was not a leap year, since it is not divisible by 400, but 2000 will be
a leap year because it is.

A lot of the problems with checking and comparing dates has to do with
leap years. Before discussing these problems, however, we should discuss
standardization of dates.

DATE STANDARDIZATION

If you haven't noticed, nearly everyone uses a different notation for
dates. For instance, each of the following signifies the same date:

August 18,1983
18 August 1983
8/18/83

08/18/83

18/8/83

18/08/83

To complicate matters further, the year portion of each date could have
four digits (1983) instead of two (83), or each date could have a different
field separator, such as a hyphen (-) instead of the slash (/). If you allow
the users of your program to input dates in any format they want, you will
usually get one more format than you were able to think of. This, in turn,
will cause your program to go bonkers.

I rest my case for date standardization. It should be obvious that if you
are going to do any type of manipulation with dates, you need to have a
standard that the user will follow.

The best way to proceed is to determine what the standard is for other
programs that the user is running. It is frustrating to have to remember
from program to program how to input dates. For a user, it should be as
painless as possible to input information, particularly dates. Further, if the
user is familiar with one type of notation, he is going to loathe any change.
If possible, determine what the user wants and is used to doing.

If no standard for inputting dates is evident, it is up to you to determine

Working withDates 59

one. Remember, however, that your preference may not be the market
preference.

Most computer programs use a MM/DD/YY or MM/DD/YYYY format
for inputting dates. Computers work with numbers better than names of
months, and allowing the user to spell out the name of the month will
usually open the door to frustration because of possible misspellings.

INPUTTING DATES

Now that you have decided on a standard, let's look at a method of
inputting dates. Since the MM/DD/YY format is the most common, we
will use that in our discussions and examples. If you decide to use some
other format, you will have to change the routine to reflect your format.

Basically, all we have to do is allow the user to input a string of char
acters, break them up to check their validity, and then put them back
together in a standardized format.

The prompt that you present the user with should also show the format
the program expects the response to follow. For instance, presenting the
user with DATE (MM/DD/YY): leaves little room for doubt as to what is
expected. The actual input routine then used should be rather selective.
Chapter 2 presents a string input routine that will work just fine.

After getting the input from the user, the next step is to break it apart to
check its validity. For instance, you may have someone who actually
believes that there are 31 days in September. Since we all know that this
only happens once every 327 years, we have to gently remind the user to
re-enter the date. The following routine will break up the string to check
for the validity of a date. It is then formatted to the standard (MM/DD/
YY), and returns to the caller. On entry, A$ should contain the string to
be analyzed. On a successful exit, MM contains the number of the month
(1-12), DD contains the day (1-valid for month, e.g. 28, 29, 30, 31), and
YY contains the year. The re-formatted date is also back in A$.

Listing 6-1

1 REM LISTING 6-1

100 MM=0

105 DD=0

110 YY=0

115 K=LEN(A$)
120 IF (K<6)+(K>8)THEN 210
125 FOR J=l TO K

130 IF (ASC(SEG$(A$,J,1))<48)+(ASC(SEG$(A$,J,1))>57)THE
N 140

135 GOTO 150
cont. on next page

60 BASIC Tricksfor the TI-99I4A

Listing 6-1—cont.

140 DD=YY

145 YY=J+1

150 NEXT J

155 IF DD=0 THEN 210

160 MM=VAL(SEG$(A$,l,DD-2))
165 DD=VAL(SEG$(A$,DD,YY-DD-1))
170 YY=VAL(SEG$(A$,YY,K-YY+1))
175 IF (MM<1)+(MM>12)THEN 210
180 IF (DD<1)+(DD>31)THEN 210
185 IF (MM=2)*((INT(YY/4)*4)OYY)*((INT(YY/400)*400)<>Y

Y)*(DD>28)THEN 210
187 IF (MM=2)*(DD>29)THEN 210
190 IF ((MM=4)+(MM=6)+(MM=9)+(MM=11))*(DD>30)THEN 210
195 A$=SEG$(,,00,,&STR$(MM),LEN(STR$(MM))+l,2)&'7"&SEG$ ("

00,,&STR$(DD),LEN(STR$(DD))+l/2)&"/"
200 A$=A$&SEG$("00M&STR$(YY),LEN(STR$(YY))+l,2)
205 GOTO 215

210 A$=,,n
215 RETURN

Table 6-1. Entry and Exit Variables
for Date Analysis Routine

On entry: On exit:

A$—Preliminary date A$ —Formatted date

DD —Day

MM—Month

YY —Year

Table 6-2. Variable Table

for Date Analysis Routine

Variable Type Purpose Used in lines

A String Date (in & out) 115, 130, 160, 165,

170,195,200,210

DD Numeric Day 105,140,155,160,

165, 180, 185, 187,

190, 195

J Numeric Loop counter 125, 130,145,150

K Numeric Length of input 115, 120,125,170

MM Numeric Month 100,160, 175, 185,

187, 190, 195

YY Numeric Year 110, 140, 145, 165,

170, 185,200

Working withDates 61

There are several things to note about this routine. First, the length of
A$ is checked upon entry. If it is less than 6 characters, or greater than 8
characters, the user has made an invalid date entry. This is because the
smallest possible date in the MM/DD/YY format would be something
similar to 1/1/83. This is only six characters. If the month and day were
two characters each, the string would still only be 8 characters long.
Anything over that doesn't fit the format.

If the date falls outside of these length specifications, execution
branches to line 210. All our early exits from this routine will exit by way
of line 210. You can test for a correct completion of this routine by
checking to see if A$ is set to anything. If it isn't, you should have the
program loop back to get the date again.

The next several instructions are used to break A$ apart so it can be
completely analyzed. Lines 125 through 150 loop through the entire A$
variable to find the delimiters. A delimiter is a non-numeric divider be

tween the components of the date. In the string 01/02/84, the slashes are
delimiters, and this routine will find them. Then DD (day variable) is
assigned equal to YY (year variable), and YY is set equal to the character
position following the position of the delimiter within the string.

This process is repeated until the program reaches the end of the string.
Upon exiting this loop, if DD is still equal to 0 we know the user did not
enter a complete date. If this is the case, the routine is exited early by way
of line 210.

Line 160 sets MM equal to the first part of the string, which should be
the month. Lines 165 and 170 set DD and YY equal to the value of the
two consecutive characters following the delimiters. Remember that DD
and YY were previously set equal to the character position following each
delimiter during the analysis loop.

Line 175 checks that the month is a valid number. If it is too small or

large, a branch is made to line 210 for an early routine exit. Lines 180
through 187 then make sure that the day entered is valid for the month that
was entered. Line 185 even allows for leap years based on the year entered.
As you remember from our discussion earlier, we have to check for years
divisible by 4 and centuries divisible by 400 to accurately figure the date.
If an illegal date is detected due to entering the wrong day (based on the
month entered), then the routine branches to line 210.

Finally, lines 195 and 200 reassemble A$ to exactly 8 characters by
padding each component of the date with a leading zero, if needed. It also
uses dashes as delimiters, although this could easily be changed to some
other character if desired. After this, execution is returned to the caller.

By using this routine, several things are accomplished. First of all, you

62 BASICTricksfor theTI-99I4A

can find month, day, and year values for future use in calculations. Second,
each date will be formatted exactly the same. In fact, it is possible for
someone to enter a date such as 6:1*84, and the program will return it as
06/01/84. This standardization is imperative for efficient program
execution.

MANIPULATING DATES

To manipulate a date, it needs to be converted to a single number for
comparison, addition, or whatever. This would be rather simple to do, if it
weren't for leap years. However, the following formula will accomplish
this task quickly:

10 DEF DATE = 365 * YY + DD + 31 * (MM -1) + ((MM > 2)
* (INT (.4 * MM + 2.3))) + INT ((YY + (MM < 3)) / 4) - INT
(.75 * (INT ((YY + (MM < 3)) / 100 + 1)))

Pretty long equation, right? Well, I thought it best to keep it one equa
tion and make it a function so that it could be utilized anywhere within a
program. Now, to use the function, use N = DATE, and N will be made
equal to the unique value corresponding to the date entered.

When using this statement, it is assumed that MM, DD, and YY have
already been set to valid (checked) values. YY can be set to either a two-
digit value or a four-digit value. If you are sure that all dates entered will
be within the same century, two-digit values for years would be fine.
However, if this is not the case, four-digit values are required. Otherwise,
the calculations will not be accurate. In any case, the year should never be
less than 1582, chiefly because that is the year that the Gregorian calendar
was adopted, and this formula is based on that calendar.

As an overview, this formula converts any given date to a number that
represents the number of total days in the date. To understand this formula
completely, let's look at each part of it, beginning with the formula portion
of the statement itself. It is assumed that you already know the purpose of
defining functions and how to use them.

10 DEF DATE = 365*YY + DD + 31 * (MM -1) + ((MM > 2)
* (INT (.4 * MM + 2.3))) + INT ((YY + (MM < 3)) / 4) - INT
(.75 * (INT((YY + (MM < 3))/100 + 1)))

This part of the formula converts years to days, and adds the partial
portion of the month to the number. Then the number of days in the
completed months of the year is added to that number.

Workingwith Dates 63

10 DEF DATE = 365 * YY + DD + 31 * (MM - 1) + ((MM >
2) * (INT (.4 * MM + 2.3))) + INT ((YY + (MM < 3)) / 4) -
INT (.75 * (INT ((YY + (MM < 3)) / 100 + 1)))

In the previous part of the formula, we based all months on 31 days.
This part of the formula corrects that by subtracting the correct number of
days from our number. This, however, should only happen if the date is
later than or equal to March 1st, so we do a check during this part of the
equation. If it is false, then this whole part of the equation will be equal to
zero. Only if it is true (MM will be greater than 2) will this portion of the
formula be utilized.

10 DEF DATE = 365 * YY + DD + 31 * (MM - 1) + ((MM >
2) * (INT (.4 * MM + 2.3))) + INT ((YY + (MM < 3)) / 4) -
INT(.75*(INT((YY + (MM < 3))/100 + 1)))

This part of the equation adds the number of leap days that have oc
curred so far. If the date being analyzed is in January or February, YY is
decremented by one so that we are not counting a leap day that hasn't
happened yet.

10 DEF DATE = 365 * YY + DD + 31 * (MM - 1) + ((MM >
2) * (INT (.4 * MM + 2.3))) + INT ((YY + (MM < 3)) / 4) -
INT (.75 * (INT ((YY + (MM < 3)) / 100 + 1)))

This final part of the formula corrects for the century years that do not
contain leap days. It also takes into account the fact that we may be
analyzing a January or February date in a century year by decrementing
YY if this is the case.

This formula is accurate, as long as certain conditions are met. First of
all, you should make sure that MM, DD, and YY are valid figures. If they
were derived after completing the date input routine discussed earlier in
this chapter, then they should be correct.

Another consideration is that the year variable (YY) should never be
equal to zero. So that this doesn't happen, it is a good idea, though not
necessary, to always use four-digit years. In this way you will be sure to
have unique numbers. This routine is only accurate for dates after October
15, 1582. Usually, however, you will not have someone entering an earlier
date. Remember that there were no actual dates between 10/5/1582 and

10/14/1582.

Some examples of unique numbers associated with certain dates are
shown in Fig. 6-1. These numbers were derived by using this formula.

64 BASIC Tricksfor the TI-99/4A

Date

06/11/1956

05/25/1983

02/29/1984

03/01/1984

11/05/1984

12/31/1999

01/01/2000

08/12/2013

Unique #

714576

724420

724700

724701

724950

730484

730485

735457

Fig. 6-1. Unique Numbers
for Specific Dates.

Once this formula has been executed, the unique number can be stored
so that it can later be compared to unique numbers from other dates. In
this way, you can get an idea of how many days are between dates, or
which date came first, etc.

DAYS OF THE WEEK

Once you have performed the above function on a date, you can do one
more function to determine the day of the week based on what date was
entered. The following series of lines will do it for you:

Listing 6-2

1 REM LISTING 6-2

50 RESTORE 80

55 FOR J=0 TO 6

60 READ W$(J)
65 NEXT J

70 D=INT(7*(N/7-INT(N/7))+.5)
75 PRINT W$(D)
80 DATA SATURDAY, SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSD

AY,FRIDAY

Table 6-3. Entry and Exit Variables
for Day ofWeek Routine

On entry: On exit:

N—Unique calculated date value D —Numeric day of week

W$(*)—Days of week

Working withDates 65

Table 6-4. Variable Table

for Day of Week Routine

Variable Type Purpose Used in lines

D Numeric Day of week 70,75

J Numeric Loop counter 55, 60, 65

N Numeric Unique date 70

W$(*) String Days of week 60,75

This routine finds the remainder after dividing evenly by 7. The remain
der is then rounded so that it returns a number between 0 and 6. These

represent the days of the week between Saturday and Friday.
Pretty simple, right? Well, how could this be used in a program? It

would be useful in a business program to have a user enter today's date
when they start using the program. Then you would be able to return a
standardized date and even the day of the week. This is not the only use.
If you think about it, there are many other uses of these routines.

PRINTING DATES

There are many ways to print dates. The best way is the one of the most
use to your intended audience.

For most people the format MM/DD/YY will be sufficient. However,
you may want to use the name of the month in the format—September 22,
1983. This is easy if you have previously analyzed the date. Set up an
alphanumeric array with the names of the months of the year in a 1 through
12 matrix. Then print the name of the month using MM as a subscript.
This is basically the same thing that was done with the day of the week.

The most important consideration when printing dates is to be consist
ent. Consistency, in whatever format you are using, looks professional.

PULLING IT ALL TOGETHER

So far, we have covered a lot of ground concerning dates. If we put
these routines together, we can create a useful (albeit rather simplistic)
program.

66 BASIC Tricks for the TI-99I4A

Listing 6-3

1 REM LISTING 6-3

10 DEF DATE=365*YY+DD+31*(MM-l)+((MM>2)*(INT(.4*MM+2.3)
))+INT((YY+(MM<3))/4)-INT(.75*(INT((YY+(MM<3))/100+1)))

15 DATA SATURDAY,SUNDAY,MONDAY,TUESDAY,WEDNESDAY,THURSD
AY,FRIDAY

20 RESTORE 15

25 FOR J=0 TO 6

30 READ W$(J)
35 NEXT J

40 GOTO 1000

100 MM=0

105 DD=0

110 YY=0

115 K=LEN(A$)
120 IF (K<8)+(K>10)THEN 210
125 FOR J=l TO K

130 IF (ASC(SEG$(A$,J,1))<48)+(ASC(SEG$(A$,J,1))>57)THE
N 140

135 GOTO 150

140 DD=YY

145 YY=J+1

150 NEXT J

155 IF DD=0 THEN 210

160 MM=VAL(SEG$(A$,l,DD-2))
165 DD=VAL(SEG$(A$,DD,YY-DD-1))
170 YY=VAL(SEG$(A$,YY,K-YY+1))
175 IF (MM<1)+(MM>12)THEN 210
180 IF (DD<1)+(DD>31)THEN 210
182 IF LEN(STR$(YY))<>4 THEN 210
185 IF (MM=2)*((INT(YY/4)*4)<>YY)*((INT(YY/400)*400)OY

Y)*(DD>28)THEN 210
187 IF (MM=2)*(DD>29)THEN 210
190 IF ((MM=4)+(MM=6)+(MM=9)+(MM=11))*(DD>30)THEN 210
195 A$=SEG$(H00,,ScSTR$(MM),LEN(STR$(MM))+l,2)&'7"&SEG$(M

00"&STR$(DD),LEN(STR$(DD))+l,2)&"/"
200 A$=A$&SEG$("0000"&STR$(YY),LEN(STR$(YY))+1,4)
205 GOTO 215

210 A$=MM
215 RETURN

300 B$="M
305 C=LEN(A$)+3
310 PRINT A$;
315 GOTO 325

320 CALL SOUND(100,1000,10)
32 5 CALL KEY(0,A,S)
330 IF S<>1 THEN 325

335 IF A=13 THEN 400

340 IF A<>8 THEN 380

345 IF LEN(B$)=0 THEN 320
350 B$=SEG$(B$,1,LEN(B$)-1)
355 J=LEN(B$)-1+C
360 IF LEN(B$)=0 THEN 370
365 CALL HCHAR(24,J,ASC(SEG$(B$,LEN(B$)/1)))
370 CALL HCHAR(24,J+1,32)
375 GOTO 325

380 IF (A<32)+(A>126)THEN 320
385 B$=B$&CHR$(A)
390 CALL HCHAR(24,C+LEN(B$)-1,A)
395 GOTO 325

400 PRINT

Workingwith Dates 67

405 RETURN

1000 CALL CLEAR

1010 PRINT "ENTER TODAY'S DATE"

1020 A$="(MM/DD/YYYY): "
1030 GOSUB 300

1040 A$=B$
1050 GOSUB 100

1060 IF A$<>"" THEN 1090
1070 CALL SOUND(100,1000,10)
1080 GOTO 1010

1090 D1$=A$
1100 D1=DATE

1110 PRINT :"ENTER YOUR BIRTHDAY"

1120 A$="(MM/DD/YYYY): "
1130 GOSUB 300

1140 A$=B$
1150 GOSUB 100

1160 IF A$<>,,H THEN 1180
1165 CALL SOUND(100,1000,10)
1170 GOTO 1110

1180 D2$=A?
1190 D2=DATE

1200 Wl=INT(7*(Dl/7-INT(Dl/7))+.5)
1210 W2=INT(7*(D2/7-INT(D2/7))+.5)
1220 DIF=ABS(D1-D2)
1230 CALL CLEAR

1240 PRINT "TODAY IS ";W$(Wl);", ";D1$::
1250 PRINT "YOU WERE BORN ON ";W$(W2);", ";D2$::
1260 PRINT "THAT WAS ";STR$(DIF);" DAYS AGO."
9999 END

Table 6-5. Variable Table

for Birthday Program

Variable Type Purpose Used in lines

A String Prompt & 115, 130, 160, 165,

Work string 170,210,305,310,

1020, 1040, 1060,

1090, 1120, 1140,

1160,1180

A Numeric ASCII keypress 325, 335, 340, 380,

385, 390

B String Input string 300, 345, 350, 355,

360, 365, 385, 390,

1040, 1140

C Numeric Screen pointer 305, 355

D1 String Today's date 1090, 1240

D1 Numeric Unique value of
today's date

1100, 1200, 1220

D2 String Birthday 1180, 1250

D2 Numeric Unique value of
birthday

1190, 1210, 1220

68 BASIC Tricksfor the TI-99I4A

Table 6-5—cont. Variable Table

for Birthday Program

Variable Type Purpose Used in lines

DATE Numeric Derive unique 10, 1100, 1190

Function number from date

DD Numeric Day 10, 105, 140, 155,

160, 165, 180, 185,
187, 190, 195

DIF Numeric Date difference 1220, 1260

J Numeric Loop counter 25,30,35,125,

& string pointer 130, 145, 150,355,

365, 370

K Numeric Length of string 115, 120, 125, 170

MM Numeric Month 10, 100, 160, 175,

185, 187,190, 195

s Numeric Keyboard status 325, 330

W(*) String Days of week 30, 1240,1250

W1 Numeric Day of week 1200, 1240

W2 Numeric Day of week 1210, 1250

YY Numeric Year 10, 110, 140,145,

165, 170, 182, 185,

200

This program requests two dates from a user—today's date in lines 1010
through 1080 and the user's birthdate in lines 1110 through 1170. The
program analyzes each date as it is entered (lines 100 through 215) to
determine if it is in the correct format. If not, then a bell is sounded and

the questions are repeated.
Finally, the dates are compared (lines 1100 and 1190) and the days of

the week that correspond to those dates are figured (lines 1200 and 1210).
The results are then printed and the program ends.

This is a good example of how to use the information covered in this
chapter. Notice also that the input routine contained in lines 300 through
405 is the one that was developed in Chapter 2.

In the next chapter, time will be analyzed using your computer.

Chapter 7

Time and Time Again

Have you ever noticed that we have a strange way of telling time in our
society? Time is based on sixties. There are sixty seconds in a minute, and
sixty minutes in an hour. After that it gets really messed up. Well, a
computer can handle all sorts of messy items and details, as long as it is
programmed correctly.

In this chapter we will discuss all the nitty-gritty details that have to do
with hours, minutes, and seconds. We will not discuss how to time events,
because software timers are generally very inaccurate (particularly over
long periods of time). Our attention, however, will be directed towards
manipulating units of time—in other words, once you have a beginning
and ending time, how to calculate the intervals in between.

INPUTTING TIME

For most applications that require calculations with time, having a user
input a beginning and ending time will be sufficient. As in inputting dates
(see Chapter 6), the entry that the user makes will need to be analyzed to
make sure that it is formatted correctly and within bounds.

If a more accurate (or trustworthy) inputting of time is needed, there are
numerous peripherals available that provide a direct input of time to a
program. These are usually called chronographs or clock cards. The use

69

70 BASIC Tricksfor the TI-99I4A

Fig. 7-1. Father Time.

and interfacing of these devices is beyond the scope of this book. The
multitude of peripherals that exist for the purpose of inputting time to a
computer would make such a task monumental.

The keyboard input of the time string can best be done by using the
string input routine (see Chapter 2). When analyzing it, however, a spe
cialized routine will be needed. The complexity of this routine depends, in
large part, on the accuracy needed for later calculations. For instance, if
you only want accuracy to the nearest minute, then you only need to expect
a user to input time as hours and minutes. If, however, you want to account
for seconds, then the user will also need to enter those as well.

In this section, examples will be given of routines that may be used for
both degrees of accuracy. First, let's look at an example of a routine used
to analyze strings that consist of hours and minutes separated by a colon,
in the format HH:MM T. The variable T stands for either an A or a P,
depending on whether or not the time being entered is AM or PM.

Timeand TimeAgain 71

Fig. 7-2. Topical computer chronograph store.

Listing 7-1

1 REM LISTING 7-1

100 IF LEN(A§)<4 THEN 220
105 IF (SEG$(A$,LEN(A$),1)<>MA,,)*(SEG$(A$,LEN(A$),1)<>"

P")THEN 220
110 N=0

115 FOR J=l TO LEN(A$)
120 K=ASC(SEG$(A$,J,1))
125 IF (K>47)*(K<58)THEN 150
130 M=N

135 N=J+1

140 IF M=0 THEN 150

145 J=LEN(A$)
150 NEXT J

155 IF M=0 THEN 220

160 IF N-M<2 THEN. 220

165 H=VAL(SEG$(A$,l,M-2))
170 M=VAL(SEG$(A$,M,N-M-1))
175 IF (M<0)+(M>59)THEN 220
180 IF (H<1)+(H>12)THEN 220
185 A$=SEG$("00',&STR$(H),LEN(STR$(H))+1,2)&":"&SEG$(,,00

"&STR$(M),LEN(STR$(M))+1,2)&" "&SEG$(A$,LEN(A$),1)
190 T=H*60+M

195 IF T<720 THEN 205

200 T=T-720

205 IF SEG$(A$,LEN(A$),1)="A" THEN 215
210 T=T+720

215 RETURN

220 A$="u
225 GOTO 215

72 BASICTricksfor the TI-99I4A

Table 7-1. Entry and Exit Variables
for Time Routine (Hours and Minutes)

On entry: On exit:

A$ —String to be analyzed A$—Return string
Format: HH:MMT Format: HH:MMT

HH—Hours HH—Hours

MM—Minutes MM—Minutes
T—A or P T—A or P

If equal to "" (null)
then error in input
string.

H —Hours

M —Minutes

T —Total minutes

Table 7-2. Variable Table for

Time Routine (Hours and Minutes)

Variable Type Purpose Used in lines

A String Entry/Exit 100, 105, 115, 120,
145, 165,170,185,
205, 220

H Numeric Hours 165, 180, 185,190

J Numeric Loop counter 115, 120,135,145,
150

K Numeric ASCII values 120, 125

M Numeric Minutes 130, 140, 155, 160,

165,170,175,185,
190

N Numeric End delimiter 110, 130, 135, 160,
170

T Numeric Total minutes 190, 195,200,210

Before an explanation of the routine's operation, it is useful to mention
the variables used. A$ is used both as input and the primary return value.
This is the string to be checked, and it is the completely formatted string
that is returned when the routine is completed. The variables H, M, and T
represent hours, minutes and total minutes, respectively. Total minutes is
the total amount of time represented by the input string and calculated

Time and Time Again 73

according to a 24-hour clock. Thus, Tcan vary from 0 to 1439 (number of
minutes in a day, minus one).

Now for the routine itself. First, line 100 checks that the length of the
string entered is valid. If it is not at least four characters in length, execu
tion is transferred to line 220 where a null string is returned.

Line 105 makes sure that the rightmost character of the string entered is
an A or a P. This signifies AM or PM, and saves the user from having to
manually calculate time based on 24 hours. If the input string does not end
with either of these characters, an early exit is taken through line 220.

Lines 110 through 170 do the actual work of breaking down the string
to component parts. Each character of the string is examined to see if it is
a non-numeric character. The first non-numeric character is assumed to be

the delimiter between hours and minutes. If such a delimiter is found, M
is set equal to the character position following the non-numeric character.

This loop is completed in line 150. Upon completion, if M still equals
zero, an early exit is taken. This is because M will only be equal to zero if
no delimiter was found in the preceding loop. Again, this is an invalid
format, so an early exit is necessary.

Line 165 sets H equal to the number of hours in the input string, and
line 170 sets M equal to the minute value of the input string. These values
are then checked in lines 175 and 180 to make sure they are valid. If the
minutes are not between 0 and 59, or if the hours are less than 1 or greater
than 12, an early exit is taken.

By the time the program executes line 185, the input string has been
completely checked and is valid. Line 185 puts the derived values back
together in a standard format. The user could enter the time as 1/1P, and
when line 185 is executed the return string will be equal to 01:01 P. This
re-formatted string is assigned to A$, the same variable that was the input
string. This helps conserve variable space and also means you won't have
to redefine any variables after returning from this routine.

Lines 170 and 180 calculate the total number of minutes that was input.
This figure is assigned to variable T, and can be used for later calculations
of elapsed and cumulative time.

After this routine is called and executed, the length of A$ should be
checked. If the length is equal to zero (null), then an error was detected in
the user's entry. At this point, the time entry should be requested again.
Checking the length of A$ is the quickest way to determine the validity of
the time entered by the user.

A final note is in order. In analyzing a user's input, it is assumed that
noon is entered as 12:00 P, and midnight as 12:00 A. Obviously, if these
are confused by a user, later calculations will be inaccurate.

74 BASIC Tricksfor the TI-99I4A

HOURS, MINUTES AND SECONDS

The preceding routine works fine when you are figuring hours and
minutes, and will be adequate for the majority of applications. A few
people also need to figure seconds, though. The following listing shows
the routine slightly modified to account for seconds:

Listing 7-2

1 REM LISTING 7-2

100 IF LEN(A$)<6 THEN 255
105 B$=SEG$(A$,LEN(A$),1)
110 IF (B$<>MA")*(B$<>"P")THEN 255
115 N=0

120 FOR J=l TO LEN(A$)
125 K=ASC(SEG$(A$,J,1))
130 IF (K>47)*(K<58)THEN 160
135 M=S

140 S=N

145 N=J+1

150 IF M=0 THEN 160

155 J=LEN(A$)
160 NEXT J

165 IF M=0 THEN 255

170 IF (N-S)<2 THEN 255
175 IF (S-M)<2 THEN 255
180 H=VAL(SEG$(A$,l,M-2))
185 M=VAL(SEG$(A$,M,S-M-1))
190 S=VAL(SEG$(A$,S,N-S-1))
195 IF (S<0)+(S>59)THEN 255
200 IF (M<0)+(M>59)THEN 255
205 IF (H<1)+(H>12)THEN 255
210 A$=SEG$("00"&STR§(H),LEN(STR?(H))+1,2)&":"&SEG?("00

"&STR$(M) ,LEN(STR$(M))+l, 2)&,,:,,
215 A$=A$&SEG$("00"&STR$(S),LEN(STR$(S))+lr2)&" "&B$
220 T=H*60+M

225 IF T<720 THEN 235

230 T=T-720

235 IF B$="A" THEN 245
240 T=T+720

245 T=T*60+S

250 RETURN

255 A$=""
260 GOTO 250

Since this routine is basically the same as the one used to calculate hours
and minutes, only the changed lines will be examined.

Line 100, which still checks the length of the user's entry, now allows
a minimum string length of six characters. Thus, 1:0:0A is the minimum
that can be entered.

The verification loop in lines 115 through 175 has been expanded to
include the variable S which is used to denote seconds. Here we will be

searching for two delimiters, instead of only one. If both delimiters are
found (M will no longer be equal to zero when this happens), the loop is
terminated.

Time and Time Again 75

Table 7-3. Entry and Exit Variables
for lime Routine

(Hours, Minutes and Seconds)

On entry: On exit:

A$ —String to be analyzed
Format: HH:MM:SST

HH—Hours

MM—Minutes

SS—Seconds

T—A or P

A$ —Return string
Format: HH:MM:SST

HH—Hours

MM—Minutes

SS—Seconds

T—A or P

If equal to ""(null)
then error in input
string.

H —Hours

M —Minutes

S —Seconds

T —Total seconds

Table 7-4. Variable Table

for Time Routine

(Hours, Minutes and Seconds)

Variable Type Purpose Used in lines

A String Entry/Exit 100, 105, 120, 125,

155, 180, 185, 190,

210,215,255

B String AM/PM

marker

105, 110,215,235

H Numeric Hours 180,205,210,220

J Numeric Loop counter 120, 125, 145, 155,

160

K Numeric ASCII value 125, 130

M Numeric Minutes 135, 150, 165, 175,

180, 185,200,210,

220

N Numeric End delimiter 115, 140, 145, 170,

190

s Numeric Seconds 140, 170, 175, 185,

190,195,215,245

T Numeric Total seconds 220, 225, 230, 240,

245

76 BASIC Tricksfor the TI-99I4A

Line 195 checks that the user has input a valid number of seconds. If S
is less than 0 or greater than 59, the routine is exited.

Line 215 now allows the inclusion of seconds in the formatted output
string. If 1:0:0A was the input string, line 215 will format it to 01:00:00
A.

Finally, line 245 converts all of the calculated minutes to seconds. To
prepare for any manipulations, we need to use the smallest common de
nominator for the calculated totals. If hours and minutes are all that are

being worked with, everything is converted to minutes. This is how the
totals were handled in the previous section. If seconds are included, every
thing needs to be converted to seconds.

MANIPULATING TIME

Once the "time strings" have been converted to similar units of time,
they can then be manipulated like any other numbers. The most frequent
manipulations, of course, would be subtraction and addition. Be careful,
when subtracting, to use the absolute value of the result. Differentials in
time are usually expressed as positive numbers.

After you have manipulated the figures, you may want to convert back
to hours, minutes and seconds. This is very easy to do, as shown by the
following steps:

Listing 7-3

1 REM LISTING 7-3

100 S=N

105 M=INT(S/60)
110 S=S-(M*60)
115 H=INT(M/60)
120 M=M-(H*60)
125 A$=SEG$("00"&STR$(H),LEN(STR§(H))+l, 2)&":"&SEG$("00

"&STR$(M),LEN(STR$(M))+1,2)&" :"
130 A$=A$&SEG$("00"&STR$(S),LEN(STR§(S))+1,2)
135 RETURN

Table 7-5. Entry and Exit Variables
for Convert-to-Time Routine

On entry: On exit:

N--Value to be converted A$—Formatted time string

H —Hours

M —Minutes

N —Original number

S —Seconds

Timeand TimeAgain 77

Table 7-6. Variable Table

for Convert-to-Tlme Routine

Variable Type Purpose Used in lines

A String Formatted time 125, 130

H Numeric Hours 115, 120, 125

M Numeric Minutes 105, 110, 115, 120,

125

N Numeric Input figure 100

s Numeric Seconds 100, 105, 110, 130

This routine allows all three gradations of time. If you were only work
ing to the nearest minute, you could substitute M for S, and H for M, and
then drop the final original references to H. An alternate solution would
be to multiply N by 60 prior to entering this routine. This would convert
the total minutes to total seconds.

Fig. 7-3. Mother Time.

78 BASIC Tricksfor the TI-99I4A

TIME OUTPUT

Printing the time is easy when you use the above routines because the
formatted time is always in A$. The only thing that needs to be done is to
determine where to print A$. For printing reports, you may find Chapter 6
useful.

If the hours and minutes routine is used, the output is always seven
characters long. Output from the hours, minutes, and seconds routine is
always ten characters long.

Working with time is easy if you do all your input, analysis, manipula
tion, and output in modular subroutines. Many programs can be enhanced
by the use of time and time-related figures. Most notable among these are
payroll, time-keeping, and cost-accounting programs that require direct
time input from the user.

In the next chapter we will be looking at upper and lower cases.

Chapter 8

Character Cases

This could be the beginning of a great (but cheap) detective novel,
Character Cases I Have Known and Loved. Sounds like a best seller,

right? Well, this won't be quite as dramatic. However, it will be very
useful in your programming efforts.

The TI-99/4A is equipped to handle both upper and lower case charac
ters. On the display screen, upper case appears as capital letters, and lower
case appears as slightly squashed capital letters. This distinction may not
be readily apparent to the computer neophyte, so your program should take
into account the fact that a user can enter both upper and lower case letters.

THE PROBLEM IN CASE

The problem arises with string handling, and particularly ordering, be
cause any given string may contain both upper and lower case characters.
For example, you have a program that accepts customer names from a
user, and later you need to search that data for a specific name. Following
is a partial list of some of the name strings that the file could contain:

BAKER, MARTHA Pease, Debra

Doe, John Porter, Thomas
JOHNSON, DOUGLAS Thackery, Richard
Jones, Barbara Thomas, Albert
Mitchell, Dennis WYATT, ALLEN

79

STANDARD ASCII CHARACTER CODES

ASCII ASCII

CODE CHARACTER CODE CHARACTER

32 (space) 81 Q

33 1 (exclamation point) 82 R

34 " (quote) 83 S

35 # (number or pound sign) 84 T

36 $ (dollar) 85 U

37 % (percent) 86 V

38 & (ampersand) 87 w

39 * (apostrophe) 88 X

40 < (open parenthesis) 89 Y

41) (close parenthesis) 90 z

42
* (asterisk) 91 [(open bracket)

43 + (plus) 92 \ (reverse slant)
44 , (comma) 93] (close bracket)
45 - (minus) 94 A (exponentiation)
46 (period) 95 (line)
47 / (slant) 96 (grave)
48 0 97 A

49 1 98 B

50 2 99 C

51 3 100 D

52 4 101 E

53 5 102 F

54 6 103 G

55 7 104 H

56 8 105 I

57 9 106 J

58 (colon) 107 K

59 ; (semicolon) 108 L

60 < (less than) 109 M

61 = (equals) 110 N

62 > (greater than) 111 O

63 ? (question mark) 112 P

64 @ (at sign) 113 Q

65 A 114 R

66 B 115 S

67 C 116 T

68 D 117 U

69 E 118 V

70 F 119 w

71 G 120 X

72 H 121 Y

73 I 122 z

74 J 123 { (left brace)
75 K 124 ;

76 L 125 } (right brace)
77 M 126 " (tilde)
78 N 127 DEL(appears on
79 O screen as a

80 P blank.)

Fig. 8-1. ASCII character chart.

Character Cases 81

Overall, the list looks about average. Some entries are all caps, and
some are caps and lower case. This is not, in itself, a problem. A typical
problem surfaces when you try to search for specific information. For
instance, if you ask a user to enter a name to look for, and he enters
THOMAS, Albert, you may run into a problem in the search. This is
because the name, as it appears in the file, is really Thomas, Albert.

At this point it is helpful to look at an ASCII character chart. Notice in
Fig. 8-1 that the ASCII character set includes all kinds of characters. We
are just interested, however, in the alphameric (letters only) characters,
both upper and lower case.

Each character has a corresponding number value so that the computer
can manipulate it. The computer uses these numbers, instead of the letters
themselves.

Fig. 8-2 shows the numeric conversion of both the user's entry and the
file entry for Albert Thomas. The computer uses the numbers, not the
letters, to make comparisons. By comparing the numbers it is obvious that
the two strings do not match.

User: THOMAS, Albe r t

Codes: 84 72 79 77 65 83 44 65 108 98 101 114 116

File: Th omas,Albe r t

Codes: 84 104 111 109 97 115 44 65 108 98 101 114 116

Fig. 8-2. Names in ASCII Code.

It should be obvious by now that the only way to make the computer
think like a human (in this instance) is to convert each string so that it has
the greatest likelihood of being matched. This is primarily accomplished
by converting both the source and object strings to either upper or lower
case.

LOWER TO UPPER CASE

By using the ASCII numeric representation of data, instead of actual
letters, you can quickly manipulate the characters to the form needed. The
following subroutine uses this principle to convert mixed-case input to all
upper case.

This subroutine takes the original string (A$) and converts it, one char
acter at a time, to upper case. Line 100 sets the resulting string (B$) to
null, and also checks that the input string is at least one character in length.

82 BASIC Tricksfor the TI-99I4A

Listing 8-1

1 REM LISTING 8-1

100 B$=""
105 IF LEN(A$)=0 THEN 140
110 FOR J=l TO LEN(A$)
115 A=ASC(SEG$(A?,J,1))
120 IF (A<97)+(A>122)THEN 130
125 A=A-32

130 B$=B$&CHR$(A)
135 NEXT J

140 RETURN

Table 8-1. Entry and Exit Variables
for Upper Case Converter Routine

On entry: On exit:

A$—String to convert A$ —Original string

B$ —Upper case string

Table 8-2. Variable Table

for Upper Case Converter Routine

Variable Type Purpose Used in lines

A String Input string 105, 110, 115

A Numeric ASCII values 115, 120, 125, 130

B String Return string 100, 130

J Numeric Loop counter 110, 115, 135

Line 110 starts the loop that derives the ASCII value of each successive
character in A$. Line 120 then checks to see if the character is lower case

(remember the ASCII chart). If it isn't lower case, then the case conversion
is skipped. If it is lower case, then line 125 subtracts 32 from the ASCII
value of the character. This effectively changes the character from lower
to upper case. Finally, line 130 converts the number back to a character
and adds it to B$. The loop is repeated until the process is finished, and
the routine returns to line 140.

Although this routine is rather short, it is very effective. It is also useful
because it is much easier to compare strings when everything is all either
in upper case or in lower case.

In our earlier example, we could have used this routine on the search
name input by the user to ensure that it was all upper case. Then, as each
name was extracted from the name list, we could have used this routine on

Character Cases 83

it to do a quick conversion. To expand on this point, the conversion routine
could be used in this way:

Listing 8-2

1 REM LISTING 8-2

10 DIM F$(10)
20 RESTORE

30 FOR J=l TO 10

40 READ F$(J)
50 NEXT J

60 GOTO 1000

100 B$= ""
105 IF LEN(A$)=0 THEN 140
110 FOR J=l TO LEN(A$)
115 A=ASC(SEG$(A$,J,1))
120 IF (A<97)+(A>122)THEN 130
125 A=A-32

130 B$=B$&CHR$(A)
135 NEXT J

140 RETURN

300 B$=""
305 C=LEN(A$)+3
310 PRINT A§;
315 GOTO 325

320 CALL SOUND(100,1000,10)
325 CALL KEY(0,A,S)
330 IF S<>1 THEN 325

335 IF A=13 THEN 400

340 IF A<>8 THEN 380

345 IF LEN(B$)=0 THEN 320
350 B$=SEG$(B$,1,LEN(B$)-1)
355 J=LEN(B$)-1+C
360 IF LEN(B$)=0 THEN 370
365 CALL HCHAR(24,J,ASC(SEG$(B$,LEN(B$),1)))
370 CALL HCHAR(24,J+1,32)
375 GOTO 325

380 IF (A<32)+(A>126)THEN 320
385 B$=B$&CHR$(A)
390 CALL HCHAR(24,C+LEN(B$)-1,A)
395 GOTO 325

400 PRINT

405 RETURN

1000 CALL CLEAR

1010 PRINT "ENTER NAME TO SEARCH FOR:"
1020 A$="M
1030 GOSUB 300

1040 IF B$=M" THEN 9999
1050 E$=B$
1060 A$=B$
1070 GOSUB 100

1080 N$=B$
1090 FOR K=l TO 10

1100 A$=F$(K)
1110 GOSUB 100

1120 IF N$=B$ THEN 1150
1130 NEXT K

1140 GOTO 1180

1150 PRINT ::"NAME ENTERED: ";E$
1160 PRINT "NAME MATCHED: ";F$(K)::

cont. on next page

84 BASIC Tricksfor the TI-99I4A

Listing 8-2—cont.

1170 GOTO 1010

1180 PRINT ::"SORRY, NAME NOT FOUND 1":
1185 CALL SOUND(100,1000,10)
1190 GOTO 1010

1200 DATA "BAKER, MARTHA","Doe, John"
1210 DATA "JOHNSON, DOUGLAS","Jones, Barbara"
1220 DATA "Mitchell, Dennis","Pease, Debra"
1230 DATA "Porter, Thomas","Thackery, Richard"
1240 DATA "Thomas, Albert","WYATT, ALLEN"
9999 END

Table 8-3. Variable Table

for Case Conversion Sample Program

Variable Type Purpose Used in lines

A Numeric ASCII value of 115, 120, 125, 130,

keypress 325, 335, 340, 380,

385, 390

A String Entry/Prompt 105, 110, 115,305,

310, 1020,1060,

1100

B String Work string 100, 130,300,345,

350, 355, 360, 365,

385,390, 1040,

1050,1060, 1080,

1120

C Numeric Screen position 305, 355, 390

E String What user entered 1050, 1150

F(*) String Names array 10,40, 1100, 1160

J Numeric Loop counter 30,40,50, 110,

115, 135,355,365,

370

K Numeric Loop counter 1090, 1100, 1130,

1160

N String Converted entry 1080

S Numeric Keyboard status 325, 330

Notice that this program is written with the names in DATA statements.
It could just as easily have been written to get information from a disk or
cassette file. To experiment with the program, simply change the infor
mation contained in the DATA statements (lines 1200 through 1240) to the
information that you want to search.

Character Cases 85

UPPER TO LOWER CASE

To convert everything to lower case, only two lines need to be changed.
Here is the same routine, modified to convert to lower case.

Listing 8-3

1 REM LISTING 8-3

100 B$=M"
105 IF LEN(A$)=0 THEN 140
110 FOR J=l TO LEN(A$)
115 A=ASC(SEG$(A$,J,1))
120 IF (A<65)+(A>90)THEN 130
125 A=A+32

130 B$=B$&CHR$(A)
135 NEXT J

140 RETURN

Table 8-4. Entry and Exit Variables
for Lower Case Converter Routine

On entry: On exit:

A$—String to convert A$ —Original string

B$ —Lower case string

Table 8-5. Variable Table

for Lower Case Converter Routine

Variable Type Purpose Used in lines

A String Input string 105, 110, 115

A Numeric ASCII values 115, 120, 125,

130

B String Return string 100, 130

J Numeric Loop counter 110, 115, 135

By changing lines 120 and 125, we can check to see if the character
being examined is upper case. If it is, then we add 32 to the decimal ASCII
value to make it lower case.

Converting to lower case will work just as well for comparison pur
poses. As stated before, the only prerequisite is that both strings being
compared are the same case, either upper or lower.

86 BASIC Tricksfor the TI-99I4A

CASE CONCLUSIONS

This type of a routine will work well on the TI-99/4A, and becomes
more important as the user has increased interaction with your program. If
you do not have a routine such as this built in, searching for information
may be more difficult than it should be.

While it is not impossible to correctly search or sort without using one
of these routines, their use makes a program more professional and user-
friendly.

Chapter 9

Sorting

Sorting is a field unto itself. Entire volumes have been written about
various sorting algorithms. There are specialists who do nothing except
work with sort programs. This is not one of those books, nor am I one of
those people. I figure that this is all right, though, because I doubt if you
are one of those people either. Neither of us has to be unless we are
planning a future in Systems Design and Sort Technique.

If you are like me, all you need to do is periodically sort a short- to
medium-length list of information. BASIC implementations of popular
sorting algorithms will do fine for such applications. It should be noted,
however, that under various conditions, BASIC sorting is rather slow when
compared to machine language sorting. If speed is not one of your major
concerns, however, BASIC routines will work just fine.

There are two general approaches to sorting—the in-memory (internal)
sort and the disk (external) sort. In-memory sorting is well-suited for most
BASIC applications of short- to medium- length lists. Longer lists require
a sectional sorting technique with intermediate data saves to disk. Notice
that I mention disks, and not cassettes. External sorts rarely, if ever, are
written to use cassette tape. The sequential nature of tape and its slow
access speed make tape a totally unsuitable media for sorting purposes.

External sorting, because it is an advanced technique, will not be dis
cussed in this book. For a discussion of more advanced sorting applica-

87

88 BASIC Tricksfor the TI-99I4A

tions, I suggest you visit your local computer store or library. Sorting
techniques have not changed much over the last several years. You should
be able to find a suitable book on the subject in either of these places.

SORTING FUNDAMENTALS

The main idea in sorting is to place items in a pre-determined order
based on a common quality. For example, a gym teacher has a class of 30
students, and he wants them to line up in alphabetical order according to
their last name. Or he may want to line them up according to height or
age. Name, height, and age are called keys, because they determine what
order the resulting line-up, or list, will be in.

Once you determine a key, you also need to know if the list will be in
ascending or descending order—ordered from least to greatest value, or
vice versa. In the case of the gym teacher, ascending order is from A to Z,
shortest to tallest, or youngest to oldest, depending on the selected key. If
he arranged the line in descending order, it would be the reverse of the
ascending ordered line.

The sorting process is nothing more than comparing items of an original
unordered list and exchanging them with other items, to get the list closer
to its final sorted position. The number of elements to be sorted is usually
expressed with the variable N, and all our routines will use N to denote
the number of elements in the arrays to be sorted.

There have been many sorting algorithms designed, each supposedly
more efficient than preceding methods. Each sorting method is adept at
general list sorting, and each sorting algorithm is outstanding in sorting an
unordered list that meets certain requirements. Some algorithms, for ex
ample, are great at sorting partially ordered lists, or changing ascending
ordered lists to descending order. However, these same algorithms do
poorly when used to sort randomly distributed lists. The actual sorting
method you choose should depend, in large part, on the type and order of
data you need to sort.

There are minor differences when sorting lists of numbers and lists of
alphanumeric data. All of the examples in this chapter will only deal with
sorting strings. To apply the same techniques to numeric data, use numeric
variables in place of the string variables.

As you are deciding on a sort routine to use, you must determine what
best fits your needs. Certain "specialty" sorts may work better for your
needs. In this chapter, however, we will only be discussing a few of the
many algorithms available. Each of these will be general-purpose sorting
algorithms. The first to be discussed will be the Substitution Sort.

Sorting 89

SUBSTITUTION SORTING
The most simple sorting technique is the Substitution Sort, sometimes

called a "Bubble Sort". This technique works by comparing each string to
every other string in the list to find which one belongs where. As each
comparison is made, it is determined whether a "switch" of the data at the
two locations should occur or not. If so, then the values are exchanged and
the process continues. Each time a complete pass is made through the
unsorted list, one more element is positioned in its correct sorted position.
Therefore, we would assume that one pass of the list is required for each
element in the original list. Thus, if the original list contains eight ele
ments, then eight passes will be required to correctly sort the list.

In fact, that many passes are not required. For a list of eight elements,
only seven passes are required, because the last pass actually places the
final two elements in their correct positions. An eighth pass would be
redundant. Fig. 9-1 demonstrates the way a Substitution Sort would work
with a list of eight elements.

BEGINNING

1st PASS

2nd PASS

3rd PASS

4th PASS

5th PASS

6th PASS

7th PASS

PHYSICAL ARRAY LOCATIONS

3 4 5 6 7 8 SWITCHES

8 9

j1 9

1 J 9 j 8

1 3 5 9

1 3 5 6

1 3 5 6

1 3 5 6

1 3 5 6

5 19 3 12

5 19 3

E
6

12

6 19 12

8 19 12

9 19 I8 12

8 10 9 12

8 9 . 19 12

8 9 [12; 19

TOTAL SWITCHES: 14

Fig. 9-1. Sorting Sequence for Substitution Sort.
Switches have been highlighted.

90 BASIC Tricksfor the TI-99/4A

Notice that each time through the list, an element at the front of the list
is placed in correct position. We can then ignore these elements, because
we know that they are positioned correctly and need no more comparisons.
This means that the first time through the list there are seven comparisons
required, six the second time, five the third, and so on until all passes have
been completed. The number of comparisons for a Substitution Sort, then,
is (N-1)! (called N-1 factorial). This is a mathematical way of saying what
was expressed earlier. This concept of the number of comparisons required
is displayed in Fig. 9-2.

(N-1)! = 7 + 6 + 5 + 4 + 3 + 2 + 1 = 28

Fig. 9-2. Method for Figuring Factorials
for Numbers. This represents the number

of comparisons required by the
Substitution Sort algorithm.

Implementing the Substitution Sort is simple when using FOR NEXT
loops. The following routine will sort an alphanumeric array in ascending
order:

Listing 9-1

1 REM LISTING 9-1

100 FOR J=l TO N-1

105 FOR K=J+1 TO N

110 IF (S$(J)<=S§(K))THEN 130
115 T$=S$(J)
120 S$(J)=S$(K)
125 S$(K)=T$
130 NEXT K

135 NEXT J

140 RETURN

This routine is not very long. It is the "quick and dirty" type of sort that
will work best on short lists. Notice that there is no wasted time in the

routine, because there are no instances of a string being compared to itself.
The two loops are always offset by one array element. This allows for the
most efficient use of this algorithm.

Table 9-1. Entry and Exit Variables
for Substitution Sort Routine

On entry: On exit:

N —Highest element of array

S$(*)—Array to be sorted

S$(*)—Sorted array

Table 9-2. Variable Table

for Substitution Sort Routine

Sorting 91

Variable Type Purpose Used in lines

J Numeric Loop counter 100, 105, 110, 115,
120, 135

K Numeric Loop counter 105, 110, 120, 125,

130

N Numeric Highest element of
array

100, 105

S(*) String Array to sort 110, 115, 120, 125

T String Temporary string 115, 125

There is no need to compare those elements of the array that we know
to have been correctly placed. Thus, the K loop (which does the actual
comparisons) uses J-I-1 as a bottom boundary on each iteration.

The drawback of this routine is that it tends to be rather slow, mainly
because there is quite a bit of "switching" that goes on. If you had an
array of 100 elements, only one element can be put in order with each pass
through the array. However, it is highly possible that there were 5, 10, 20,
or more switches in order to place that one string. This slows things down
because when that much string manipulation is done, BASIC has more
overhead work, such as "garbage collection." This is the process of
freeing up string storage space periodically.

SPEEDING UP SUBSTITUTION

As the list of elements to be sorted becomes longer, it proves increas
ingly critical to speed up the sorting process. This can be done in any of
three ways. You can decrease the number of comparisons, decrease the
number of exchanges, or use different variables. The best way to speed up
the Substitution Sort is to use different variables (which in effect reduces

the number of exchanges necessary).
BASIC works quite a bit faster with numeric variables, because there is

no garbage collection, and there are fewer bytes to move. If the sorting
routine were to be modified to allow for the switching of numeric pointers
instead of the actual strings, then it would theoretically be faster. It would
be possible to improve the efficiency to only one switch per pass, maxi
mum. This is done by using pointers, and by only switching strings at the
end of the K loop.

This is how the Substitution Sort would appear if we were to introduce
these modifications:

92 BASIC Tricksfor the TI-99I4A

Listing 9-2

1 REM LISTING 9-2

100 FOR J=l TO N-1

105 J1=J

110 FOR K=J+1 TO N

115 IF (S$(J1)<=S$(K))THEN 125
120 J1=K

125 NEXT K

130 IF J1=J THEN 150

135 T$=S$(J)
140 S$(J)=S$(J1)
145 S$(J1)=T$
150 NEXT J

155 RETURN

Table 9-3. Entry and Exit Variables
for Modified Substitution Sort Routine

On entry: On exit:

N —Highest element of array

S$(*)—Array to be sorted

S$(*)—Sorted array

Table 9-4. Variable Table

for Modified Substitution Sort Routine

Variable Type Purpose Used in lines

J Numeric Loop counter 100, 105, 110, 130,

135, 140, 150

J1 Numeric Low string 105, 115, 120, 130,

pointer 140, 145

K Numeric Loop counter 110, 115, 120, 125

N Numeric Highest element
of array

100, 110

S(*) String Array to sort 115, 135, 140,145

T String Temporary string 135, 145

The biggest change here is the addition of Jl as a string pointer. It starts
in line 100 as being equal to J, and then is reset equal to K each time a
string is encountered that is of lesser value than the one to which it previ
ously pointed. This is continued until the "K loop" is finished, and then
the actual string switching takes place in lines 135 through 145. To save
time, the switching only takes place if a switch is needed. In other words,
there is only a switch if Jl does not equal J. If this check was not done, it
would be possible to switch in place. This is wasteful of time and string
space.

Sorting 93

Functionally, this routine is the same as the straight Substitution Sort.
Successive array elements are compared to find the lowest valued ele
ments. Then they are placed in their correct sorted order. The difference is
that they are not placed in that order until each pass is completed. Thus,
where it was possible (with a list of 100 items) to have 10, 20, or 30
exchanges per pass, we will only have 1 exchange per pass with this
modified version of the algorithm.

This routine is faster than the unmodified Substitution Sort. The follow

ing program illustrates this. The first part of the program creates an array
of 100 random string elements. The second part makes a second array
equal to the first. Finally, each of the duplicate arrays is sorted. One is
sorted by the regular Substitution Sort, and the other is sorted by the
modified version. As each section of the program is completed, a notice is
displayed, and the bell is sounded. This way you can use your watch to
time each sorting method.

Listing 9-3

1 REM LISTING 9-3

100 DIM S$(100),S1$(100)
110 N=100

120 CALL CLEAR

130 FOR J=l TO N

140 PRINT "WORKING ON";J
150 J1=INT(RND*15)
160 IF Jl<2 THEN 150

170 FOR K=l TO Jl

180 K1=RND*91

190 IF (KK32) + (K1>90)THEN 180
200 S$(J)=S$(J)&CHR$(K1)
210 NEXT K

220 S1$(J)=S$(J)
230 NEXT J

240 CALL CLEAR

250 CALL SOUND(100,1000,10)
260 PRINT "STARTING SUBSTITUTION SORT"

270 FOR J=l TO N-1

280 FOR K=J+1 TO N

290 IF S$(J)<=S$(K)THEN 330
300 T$=S$(J)
310 S$(J)=S$(K)
320 S$(K)=T$
330 NEXT K

340 NEXT J

350 CALL SOUND(100,1000,10)
360 PRINT "DONE WITH SUBSTITUTION SORT"

370 CALL SOUND(100,1000,10)
380 PRINT ::"STARTING MODIFIED":"SUBSTITUTION SORT"
390 FOR J=l TO N-1

400 J1=J

410 FOR K=J+1 TO N

cont. on next page

94 BASIC Tricksfor the TI-99/4A

Listing 9-3—cont.

420 IF (S1$(J1)<=S1$(K))THEN 440
430 J1=K

440 NEXT K

450 IF J1=J THEN 490

460 T$=S1$(J)
470 S1$(J)=S1$(J1)
480 S1$(J1)=T§
490 NEXT J

500 CALL SOUND(100,1000/10)
510 PRINT "DONE WITH MODIFIED":"SUBSTITUTION SORT"

Table 9-5. Variable Table

for Substitution Sort Test Program

Variable Type Purpose Used in lines

J Numeric Loop counter 130, 140,200,230,

270, 280, 290, 300,

310,340,390,400,

410,450,460,470,

490

J1 Numeric Low element pointer 150, 160, 170,400,

420, 430, 450, 470,

480

K Numeric Loop counter 170,210,280,290,

310,320,330,410,

420, 430, 440

K1 Numeric ASCII character 180, 190,200

N Numeric Upper array limit 110, 130,270,280,

390,410

S(*) String Array to sort 100,200,220,290,

300,310,320

S1(*) String Array to sort 100,220,420,460,

470, 480

T String Temporary string 300, 320, 460

In case you didn't have a watch handy, I'll tell you what mine told me.
By timing both methods, using duplicate arrays to sort, and under the same
conditions, there was almost a 50% increase in speed by using the second
modified routine.

Obviously, if these routines are implemented in another program, the
speed of the routines may differ dramatically. The speed is dependent on
many things, including the size of the program, the number of string
variables in memory, the number of items to sort, the ordering of the

Sorting 95

original list, and whether the routine is "straight-line" or a subroutine. In
this example, we made the sorting algorithms straight-line in order to make
them as fast as possible.

SHELL SORT

This algorithm, introduced by D. L. Shell (thus the name) in July of
1959, is different than the Substitution Sort. It differs in that it relies on

comparisons and exchanges of array elements that are not immediate
neighbors. Comparisons are done at a pre-determined distance between
elements. As an example, if the distance between elements was 4, then
element 1 is compared with element 5, 2 with 6, 3 with 7, and so on.

Much has been said and written about Shell Sort, and I will not go into
detail here. The greatest debate has been over the determination of an
appropriate starting distance between items to be compared. Shell, in his
original algorithm, used an interval equal to one-half of the total number
of elements in the array. Each successive pass cut the distance in half, until
an interval of only one element was reached. This required only a small
number of passes to sort a relatively large array. As an example, it only
takes one more pass to sort 200 items than it does to sort 100 items.

In our example, we will use the distance proposed by Shell. The follow
ing subroutine is the implementation of Shell Sort:

Listing 9-4

1 REM LISTING 9-4

100 I=N

105 I=INT(l/2)
110 IF 1=0 THEN 160

115 FOR J=I TO N

120 T$=S2$(J)
125 FOR K=J-I TO 1 STEP -I

130 IF T$>S2$(K)THEN 145
135 S2$(K+I)=S2$(K)
140 NEXT K'

145 S2$(K+I)=T$
150 NEXT J

155 GOTO 105

160 RETURN

Table 9-6. Entry and Exit Variables
for Shell Sort Algorithm

On entry: On exit:

N —Highest element of array

S2$(*) —Array to be sorted

S2$(*)—Sorted array

96 BASIC Tricksfor the TI-99I4A

Table 9-7. Variable Table

for Shell Sort Algorithm

Variable Type Purpose Used in lines

1 Numeric Distance pointer 100, 105# 110, 115,

125, 135,145

J Numeric Loop counter 115, 120, 125, 150

K Numeric Loop counter 125, 130, 135, 140,

145

N Numeric Highest array element 100, 115

S2(*) String Sort array 120, 130, 135,145

T String Temporary 120, 130, 145

The distance between comparisons for each pass of the array is set in
line 105. Initially, this distance is equal to one-half of the total number of
elements in the array. In lines 115 through 150, we execute a loop that
runs the actual comparisons and exchanges string values if necessary.

Shell Sort is relatively simple, yet it offers a significant speed advantage
over the earlier sorts that were introduced. It is best used on short- to

medium-length lists of data.

SHELL SORT COMPARISON

Next we will compare the performance of Shell Sort with the Substitu
tion Sorts under similar conditions. The following program has the Shell
Sort algorithm appended, and gives the same type of output as the earlier
comparison program. Get your watch ready.

Listing 9-5

1 REM LISTING 9-5

100 DIM S$(100),S1$(100),S2$(100)
110 N=100

120 CALL CLEAR

130 FOR J=l TO N

140 PRINT "WORKING ON";J
150 J1=INT(RND*15)
160 IF JK2 THEN 150

170 FOR K=l TO Jl

180 K1=RND*91

190 IF (KK32)+ (K1>90)THEN 180
200 S$(J)=S$(J)&CHR$(K1)
210 NEXT K

220 S1$(J)=S$(J)
230 S2$(J)=S$(J)
240 NEXT J

Sorting 97

250 CALL CLEAR

260 CALL SOUND(100,1000,10)
270 PRINT "STARTING SUBSTITUTION SORT"
280 FOR J=l TO N-1

290 FOR K=J+1 TO N

300 IF S$(J)<=S$(K)THEN 340
310 T$=S$(J)
320 S$(J)=S$(K)
330 S$(K)=T$
340 NEXT K

350 NEXT J

360 CALL SOUND(100,1000,10)
370 PRINT "DONE WITH SUBSTITUTION SORT"
380 CALL SOUND(100,1000,10)
390 PRINT ::"STARTING MODIFIED":"SUBSTITUTION SORT"
400 FOR J=l TO N-1

410 J1=J

420 FOR K=J+1 TO N

430 IF (S1$(J1)<=S1$(K))THEN 450
440 J1=K

450 NEXT K

460 IF J1=J THEN 500

470 T$=S1$(J)
480 S1$(J)=S1$(J1)
490 S1$(J1)=T$
500 NEXT J

510 CALL SOUND(100,1000,10)
520 PRINT "DONE WITH MODIFIED":"SUBSTITUTION SORT"
530 CALL SOUND(100,1000,10)
540 PRINT ::"STARTING SHELL SORT"
550 I=N

560 I=INT(l/2)
570 IF 1=0 THEN 670

580 FOR J=I TO N

590 T$=S2$(J)
600 FOR K=J-I TO 1 STEP -I

610 IF T$>S2$(K)THEN 640
620 S2$(K+I)=S2$(K)
630 NEXT K

640 S2$(K+I)=T$
650 NEXT J

660 GOTO 560

670 CALL SOUND(100,1000,10)
680 PRINT "DONE WITH SHELL SORT"

The execution of the Substitution Sorts has slowed down somewhat in

this comparison. The coding was not changed, but the memory of the
computer has more variables to contend with. This added overhead, as
noted earlier, can slow down performance of sorting routines.

Table 9-9 shows the comparative times for a sample run of this program.
Because the random strings may be generated differently on each run, your
times may be different than those noted.

So far, we have looked at how to speedup a sortby reducing the number
of actual switches. The next step would be to speed it up by reducing the
total number of comparisons required. This would take a completely dif
ferent type of sorting algorithm, however. The onethat shall be introduced
here is called Quicksort.

98 BASICTricksfor theTI-99I4A

Table 9-8. Variable Table for

Sort Comparison Program

Variable Type Purpose Used in lines

1 Numeric Distance pointer 550, 560, 570, 580,
600, 620

J Numeric Loop counter 130, 140,200,240,
280,290,300,310,
320,350,400,410,

420, 460, 470, 480,

500, 580, 590, 600,
650

J1 Numeric Low element pointer 150,160, 170,410,
430, 440, 460, 480,

490

K Numeric Loop counter 170,210,290,300,
320, 330, 340, 420,

430, 440, 450, 600,

610,620,630,640

K1 Numeric ASCII character 180, 190,200

N Numeric Upper array limit 110, 130,280,290,
400, 420, 550, 580

S(*) String Array to sort 100,200,220,230,

300,310,320,330

S1(*) String Array to sort 100,220,430,470,
480, 490

S2(*) String Sort array 100,230, 590,610,
620, 640

T String Temporary string 310,330,470,590,
610,640

Table 9-9. Sorting limes for Comparison.
All Tests Done with 100 Randomly

Generated Elements

Sort Type Sample Time Improvement

Substitution Sort

Modified Substitution Sort

Shell Sort

217 seconds

91 seconds

58 seconds

—%

58.06%

36.26%

Sorting 99

QUICKSORT

This sorting algorithm, devised by C.A.R. Hoare in 1962, is quite
elegant. The idea behind Quicksort is to exchange non-adjacent elements
of an array to achieve a more nearly sorted array. Partitioning is used to
accomplish this sorting. This may sound confusing, but it actually works
as implemented.

For example, suppose that you have the same gymclass that was intro
duced earlier in the chapter. Class members were lined up in no specific
order, and the gym teacher wanted to have them lined up according to
height.Well, if he were trying to do this in thesame method thatQuicksort
does, he would divide (partition) the class in half, and compare members
from each half of the class. A member of the bottom half is compared to a
member of the top half. The gym teacher knows that the bottom half of
the class will contain all of the shorter members. If comparison of two
members shows the taller member in the bottom half of the class, then a
trade is made in order to at least get the members in the right half of the
class. This process continues until theentire class is in correct order.

This example has been greatly generalized and over-simplified. When
using arrays, Quicksort is more complex. It continues to partition the list
until there is only one element per partitioned sublist. Then it works its
way back up the partitions until they are all done. If each partition is in
order, then the entire array will be in order.

Toaccomplish the sort, we mustchoose some element of the array to be
placed in its correct final position. Then the remaining elements are ar
ranged so that they are either less than or greater than the original chosen
element.

This chosen element is called a pivot, and there are many theories on
the best way to choose it for the optimal performance of Quicksort. The
best performance will occur when the value of the pivot is the median
value of the partition being sorted. In practice, however, there is no way
to ensure this without extensive testing. Such testing can slow down the
overall performance of the sort, particularly with a medium-length list. For
our purposes, we shall use the first sequential element of the partition as
the pivot.

Once the pivot is selected, the next step is to scan forward from there
until we find a valuegreater than the pivotvalue. Then we scan backwards
from the end of the partition until a value is found that is less than the
value of the pivot. Then we exchange the lower and higher values, since
they are both in the theoretical "wrong half" of the partition.This process
is continued until the forwards and backwards comparison pointers pass

100 BASICTricksfor the TI-99I4A

each other. At this point, the pivot value and the final forward value are
exchanged, and it is assumed that the pivot value is now in its final sorted
position. Thenthe whole process of selecting a pivot is repeated again and
again until the whole array is completely sorted.

For those of you who are mathematically inclined, perhaps an explana
tion using variables would be helpful. Assume that the upper and lower
bounds of our alphanumeric array are P and Q, such that it appears as
S3$(P) . . . S3$(Q). On the first pass through the array with Quicksort,

PHYSICAL ARRAY LOCATIONS SWITCHES

BEGINNING 8 9 6 1 5 19 3 12

PARTITION

1st PASS 5 3 6 1 8 19 9 12

PARTITION

2nd PASS

3rd PASS

PARTITION

9 |19|

PARTITION

PI Pi—I
1 9 | |12f

4th PASS | 1 l 3 I 51 | 6|

PARTITION

LAST PASS j 1 | 3

ENDING 1 3 5 6

JUU

8 9 12 19

TOTAL SWITCHES: 7

Fig. 9-3. Sorting Sequence for Quicksort.
Switches have been highlighted.

Sorting 101

the pivotpoint string, denoted as X$, will be equal to S3$(P). Wewilluse
I and J as our scanning variables. These are respectively set as equal to
P +1 and Q. Then we start a process of incrementing I to look for an array
element whose value is greater than or equal to X$. When we find one,
we start decrementing J until we find an array element whose value is less
than or equal to X$. When that is found, we switch S3$(I) and S3$(J). If
J is still greater than I, we go back to the point where I was being incre
mented to look for the next array value higher than or equal to X$. The
process is repeated until J is less than I, at which point X$ and S3$(I) are
switched in position.

This may all sound more confusing than it actually is. Fig. 9-3 graphs
this process with an array of 8 elements. If you keep studying the process,
it will become clearer and clearer.

The following subroutineshowsthe BASICimplementation of a Quick
sort variation:

Listing 9-6

1 REM LISTING 9-6

100 P=l

105 Q=N

110 T0=0

115 IF P>=Q THEN 240
120 V$=S3$(P)
125 I=P

130 J=Q+1

135 J=J-1

140 IF S3$(J)>V$ THEN 135
145 1=1+1

150 IF (S3$(I)<V$)*(KN)THEN 145
155 IF J<=I THEN 180

160 T$=S3$(I)
165 S3$(I)=S3$(J)
170 S3$(J)=T$
175 GOTO 135

180 S3$(P)=S3$(J)
185 S3$(J)=V$
190 IF (J-P)>=(Q-J)THEN 215
195 ST(T0+1)=J+1
200 ST(T0+2)=Q
205 Q=J-1

210 GOTO 230

215 ST(T0+1)=P
220 ST(T0+2)=J-1
225 P=J+1

230 T0=T0+2

235 GOTO 115

240 IF T0=0 THEN 265

245 Q=ST(T0)
250 P=ST(T0-1)
255 TO =T0-2

260 GOTO 115

265 RETURN

102 BASICTricksfor the T1-99/4A

Table 9-10. Entry and Exit Variables
for Quicksort Algorithm

On entry: On exit:

N —Highest element of array

ST(*) —Stack array (empty, but
dimensioned to proper size)

S3$(*) —Array to be sorted

S3$(*)—Sorted array

Table 9-11. Variable Table

for Quicksort Algorithm

Variable Type Purpose Used in lines

1 Numeric Forward counter 125, 145, 150, 155,

160, 165

J Numeric Backward counter 130, 135, 140, 155,

165, 170, 180, 185,

190, 195,205,220,
225

N Numeric Total array elements 105, 150

P Numeric Lower partition pointer 100, 115, 120, 125,

180, 190,215,225,
250

Q Numeric Upper partition pointer 105, 115, 130, 190,
200, 205, 245

S3(*) String Sort array 120, 140, 150, 160,
165, 180, 185

ST(*) Numeric Stack 195,200,215,220,
245, 250

T String Temporary 160, 170

T0 Numeric Stack pointer 110, 195,200,215,
220, 230, 240, 245,
250, 255

V String Temporary 120, 140, 150, 185

While this routine takes more code than the Substitution and Shell Sorts,
it is still compact. By studying this listing, it should be fairly clear as to
how Quicksort is implemented. Take particular care to apply this listing to
the process shown in Fig 9-4. This will help clear away some of the fog,
if it is still there.

Lines 100 through 110 do nothing more than set the entry variables for

Sorting 103

the routine. P is set equal to the lowest element of the array, and Q is set
equal to the highest. T0 is a stack pointer, and is initially set to zero. The
stack is used to save the beginning and ending pointers of the partitions
that still need to be sorted.

Line 115 checks to see if the current partition has been sorted. If it is (P
> = Q) then execution skips to line 240 where the routine checks to see
if another unfinished partition is waiting in the wings.

Lines 120 through 155 are the heart of the actual sort. These lines carry
out the process of selecting a pivot (V$) and then scanning forwards from
the front of the partition for elements that are less than or equal to the
pivot, and backwards from the back of the partition for elements that are
greater than or equal to the pivot.

When both of these are found, the elements are switched in lines 160
through 170, and the process continues until the pointers (I and J) "pass"
each other. When they do, then the values of the pivot and S3$(J) are
exchanged.

Next, a new partition is determined, and the process repeated. The
partition currently not being sorted is saved on the stack for future
reference.

QUICKSORT COMPARISON

This routine works quickly for most sorting needs. It is interesting,
however, to compare it against the earlier sorting methods. By using the
same comparison program that was introduced earlier, and appending
Quicksort, we can get an idea of how the routine fares. The following
program will illustrate the comparison:

Listing 9-7

1 REM LISTING 9-7
100 DIM S$(100),S1$(100),S2$(100),S3$(100)
110 N=100

120 CALL CLEAR

130 FOR J=l TO N

140 PRINT "WORKING ON";J
150 J1=INT(RND*15)
160 IF JK2 THEN 150

170 FOR K=l TO Jl

180 K1=*RND*91
190 IF (KK32) + (K1>90)THEN 180
200 S$(J)=S$(J)&CHR$(K1)
210 NEXT K

220 S1$(J)=S$(J)
230 S2$(J)=S$(J)

cont. on next page

104 BASIC Tricksfor the TI-99I4A

Listing 9-7—cont.

240 S3$(J)=S$(J)
250 NEXT J

260 CALL CLEAR

270 CALL SOUND(100,1000,10)
280 PRINT "STARTING SUBSTITUTION SORT"
290 FOR J=l TO N-l

300 FOR K=J+1 TO N

310 IF S$(J)<=S$(K)THEN 350
320 T$=S$(J)
330 S$(J)=S$(K)
340 S$(K)=T$
350 NEXT K

360 NEXT J

370 CALL SOUND(100,1000,10)
380 PRINT "DONE WITH SUBSTITUTION SORT"
390 CALL SOUND(100,1000,10)
400 PRINT ::"STARTING MODIFIED":"SUBSTITUTION SORT"
410 FOR J=l TO N-l

420 J1=J

430 FOR K=J+1 TO N

440 IF (S1$(J1)<=S1$(K))THEN 460
450 J1=K

460 NEXT K

470 IF J1=J THEN 510

480 T$=S1$(J)
490 S1$(J)=S1$(J1)
500 S1$(J1)=T$
510 NEXT J

520 CALL SOUND(100,1000,10)
530 PRINT "DONE WITH MODIFIED":"SUBSTITUTION SORT"
540 CALL SOUND(100,1000,10)
550 PRINT ::"STARTING SHELL SORT"
560 I=N

570 I=INT(l/2)
580 IF 1=0 THEN 680

590 FOR J=I TO N

600 T$=S2$(J)
610 FOR K=J-I TO 1 STEP -I

620 IF T$>S2$(K)THEN 650
630 S2$(K+I)=S2$(K)
640 NEXT K

650 S2$(K+I)=T$
660 NEXT J

670 GOTO 570

680 CALL SOUND(100,1000,10)
690 PRINT "DONE WITH SHELL SORT"

700 CALL SOUND(100,1000,10)
710 PRINT "STARTING QUICKSORT"
720 P=l

730 Q=N

740 T0=0

750 IF P>=Q THEN 1000

760 V$=S3$(P)
770 I=P

780 J=Q+1

790 J=J-1

800 IF S3$(J)>V$ THEN 790
810 1=1+1

820 IF (S3$(I)<V$)*(KN)THEN 810
830 IF J<=I THEN 880

840 T$=S3$(I)
850 S3§(I)=S3$(J)
860 S3$(J)=T$
870 GOTO 790

880 S3$(P)=S3$(J)
890 S3$(J)=V$
900 IF (J-P)>=(Q-J)THEN 950
910 ST(T0+1)=J+1
920 ST(T0+2)=Q
930 Q=J-1

940 GOTO 980

950 ST(T0+1)=P
960 ST(T0+2)=J-1
970 P=J+1

980 T0=T0+2

990 GOTO 750

1000 IF T0=0 THEN 1050

1010 Q=ST(T0)
1020 P=ST(T0-1)
1030 T0=T0-2

1040 GOTO 750

1050 CALL SOUND(100,1000,10)
1060 PRINT "FINISHED WITH QUICKSORT"

Table 9-12. Variable Table

for Sort Comparison Program

Sorting 105

Variable Type Purpose Used in lines

1 Numeric Distance pointer 560f 570, 580, 590,
610,630,770,810,

820, 830, 840, 850

J Numeric Loop counter 130, 140,200,250,

290,300,310,320,

330,360,410,420,

430, 470, 480, 490,

510,590,600,610,

660, 780, 790, 800,

830, 850, 860, 880,

890,900,910,930,

960, 970

J1 Numeric Low element pointer 150, 160, 170,420,

440, 450, 470, 490,

500

K Numeric Loop counter 170,210,300,310,

330, 340, 350, 430,

440,450,460,610,

620, 630, 640, 650

K1 Numeric ASCII character 180, 190,200

N Numeric Upper array limit 110, 130,290,300,

410,430, 560, 590,

730, 820

106 BASIC Tricksfor the TI-99I4A

Table 9-12—cont. Variable Table

for Sort Comparison Program

Variable Type Purpose Used in lines

P Numeric Lower partition 720, 750, 760, 770,

pointer 880, 900, 950, 970,

1020

Q Numeric Upper partition 730, 750, 780, 900,
pointer 920,930, 1010

S(*) String Array to sort 100,200,220,230

240,310,320,330,

340

S1(*) String Array to sort 100,220,440,480,

490, 500

S2(*) String Sort array 100,230,600,620,

630, 650

S3(*) String Sort array 760, 800, 820, 840,

850, 860, 880, 890

ST(*) Numeric Stack array 910,920,950,960,

1010, 1020

T String Temporary string 320, 340, 480, 600,

620, 650, 840, 860

T0 Numeric Stack pointer 740,910,920,950,

960,980, 1000,

1010, 1020, 1030

V String Temporary string 760, 800, 820, 890

The approximate results of the program run are shown in Table 9-13.
These times were derived using my handy-dandy wristwatch, so those of
you with deluxe chronographs may get more accurate times. The point is,
however, that we have developed several sorting techniques that fare quite
well.

Table 9-13. Sorting Times for Comparison.
All Tests Done with 100 Randomly

Generated Elements

Sort Type Sample Time Improvement

Substitution Sort

Modified Substitution Sort

Shell Sort

Quicksort

282 seconds

115 seconds

70 seconds

33 seconds

—%

59.22%

39.13%

52.86%

Sorting 107

Your program results may vary depending on other program factors.
When you run the program, you may notice a decrease in time efficiency
for all of the earlier algorithms. Such is the price of added overhead! This
points out that the Quicksort algorithm is more efficient, even with greater
memory overhead, and shows a significant performance increase over ear
lier methods. Also, as the size of the array to be sorted increases, using an
algorithm like Quicksort becomes more critical.

SORTING CONCLUSIONS

The Quicksort algorithm works very well on medium to long lists. For
shorter lists, the modified Substitution Sort or the Shell Sort may work
better. You may want to experiment to find out which type of algorithm
will work best for you.

If you enjoy working with sorting techniques, and sorting intrigues you,
then you may want to search out some additional material on the subject.
Your local library is a good place to start. Many computer magazines often
carry articles on sorting—it seems to be a favorite topic of computerists.

Chapter 10

Program Menus

If you walk into a restaurant (and the hostess doesn't ignore you), you
will be seated and handed a menu. Without a menu, you may find it
extremely difficult to find out what the restaurant has to offer so you can
order.

It is just the same with program menus. If you write a program without
a menu, it is difficult (at best) for a user to discover how to use the
program. Without a menu, you can generate a negative feeling about your
program.

MENU COMPONENTS

Menus consist of several items. Ordinarily, there is a series of choices
(that's one item) that are displayed on the screen (that's two). Then, there
is a way for the user to enter his choice for which option to initiate (that's
three). Other than that, there isn't much more to a menu.

In this chapter, we will be going over each section of a menu, and then
present a menu routine that will handle all aspects of menu display and
selection. This will be a full-screen menu. There are many programs on
the market today that have partial-screen menus, but these are not often as
clear as those with full screens.

109

110 BASIC Tricksfor the TI-99I4A

Fig. 10-1 shows a sample menu from the TI-99/4A. You will probably
notice it as the menu that appears when you first turn your computer on.
This is somewhat similar, in function, to the type of menu that will be
developed at the end of this chapter. The actual design, however, will be
different.

Fig. 10-1. Sample Menu.

MENU CHOICES

The choices in your menu should be clear, concise, and to the point.
They should represent all the main functions and operations of your pro
gram. For instance, you may have developed a program that files names
of individuals. In a menu for such a program, you decide on what choices
to offer. They may be basic operations, such as:

1. Enter Names

2. Change Names
3. Delete Names

4. Exit Program

All the basic functions are covered here. Notice that this menu offers a

way to quit the program. Menus that do not offer a way to exit the program
can be confusing, not to mention frustrating, for the user.

This menu can be expanded to include additional operations. For ex-

Program Menus 111

ample, if you want to add a print and display routine, expand the menu to
signify the new choice.

It is not necessary to outline on one menu the program's every function.
It is logical to have sub-menus from a main menu. This allows your
program to be broken up into distinct units.

As an example, we may have several operations that do routine chores,
such as purging files, backing up disks, creating new disks, displaying
system parameters, etc. Instead of putting each of these on the main menu,
why not allocate a menu just for these items, and access it from a main
menu choice called "System Operations"? This is logical, and it gives the
user the idea that although these are important system functions, they are
not in the "mainstream" of program activity.

MENU DISPLAY

This area of menu development is just as important, and in many in
stances more difficult, than deciding on the choices to be offered on the
menu.

Most menus are displayed on one screen. It is cumbersome to have a
menu occupy more than one screen. The first item on a menu is the title,
or heading. It lets the user know what the choices represent. This heading
can be nothing more than the title of the program, or it can be the heading
for the section of the program currently executing.

At a minimum, the heading should contain this title. It serves as a road
sign for the novice user, and it also reassures the experienced operator.
Other items, such as underlines and the date, can also be included in a
heading. To a large degree, it depends on the needs of the users.

The next portion of the display is the choices. They should be displayed
in a clear, readable fashion, but your ability to do this may vary from
program to program. It depends (largely) on the menu choices being dis
played. For instance, there may be five choices for the menu, but each
choice could be rather long. There is a difference between how EXIT
would be displayed, and how TRANSVERSE POLYNOMIAL COMPU
TATION would be displayed. If you horizontally center one, then the other
might look awkward. You have to try to strike a happy medium.

The choices should be set off from the left margin of the screen by at
least a few spaces. This distinguishes them from the heading, and gives
the screen a more balanced appearance. The routine presented later in this
chapter begins all choices at the seventh print position on each line.

Try to keep the screen neat and uncluttered. Having 40 possible com-

112 BASIC Tricksfor the TI-99I4A

Fig. 10-2. Striking a happy medium.

mands listed on the screen can get confusing, particularly to the first-time
user. Well-planned displays are inviting and don't scare people off.

Actually, this is where our happy medium makes another appearance.
One of the reasons for computer phobia is a screen that jumps out at you,
instead of one that invites you in. If there are too many choices on the
screen the user may feel intimidated. Conversely, if the choices do not
include all of the operations available from the menu, the user may feel
lost.

CHOICE SELECTION

Selecting an option from a menu should be as easy as pressing one or
two keys, if possible. Single-key input is easy enough for the programmer
to do, and it is a nice touch.

Single-key choice selection is no real problem as long as you remember
to limit the number of choices on a menu. For instance, it is a good idea
to limit the number of choices to 9. If you go over 9, group several choices
into sub-menus. Then all a user needs to do is press a number between 1
and 9 to initiate a selection.

Program Menus 113

The prompt for a choice should be short and to the point. FUNCTION
CHOICE: or ENTER SELECTION: may sound unimaginative, but they do
communicate what is desired of the user. These are excellent prompts, as
long as no other action than pressing a key is required of the user. If your
routine requires that the user press ENTER to initiate the option, then you
may need to include that information as part of your prompt or general
display. It is best to clarify the choices available. The routine at the end of
this chapter requires that the user press ENTER. All necessary information
is displayed on the menu.

The actual placement of the prompt line depends on how the rest of the
menu is structured. The standard place is near the bottom of the screen.
This lets a user's eyes follow from the choices to the prompt in a linear
fashion, instead of bouncing around the screen looking for what's next.

THE MENU ROUTINE

This routine is structured to present a series of up to nine choices to a
user, and then request a response. It allows a number from the screen to
be entered to select your choice; when you press ENTER your choice is
executed. You may have seen similar menus on commercial products.

Listing 10-1

1 REM LISTING 10-1

100 CALL CLEAR

102 R=l

104 C=5

106 A$="MAIN PROGRAM MENU"
108 GOSUB 186

110 R=2

112 C=6

114 A$=" "
116 GOSUB 186

118 R=22

120 C=6

122 A$="PRESS SELECTION"
124 GOSUB 186

126 R=23

128 C=6

130 A$="RETURN TO ACCEPT"
132 GOSUB 186

134 FOR K=0 TO NP

136 R=6+K

138 C=6

140 A$=" "&STR$(K)&") "&M$(K)
142 GOSUB 186

144 NEXT K

146 R=6+CH

cont. on next page

114 BASIC Tricksfor the T1-99I4A

Listing 10-1—cont.

148 C=6

150 A§=">"
152 GOSUB 186

154 TD=CH

156 CALL KEY(0,A,S)
158 IF S<>1 THEN 156

160 IF A=13 THEN 180

162 A=A-48

164 IF (A<0)+(A>NP)THEN 182
166 CH=A

168 IF A=TD THEN 156

170 R=6+TD

172 C=6

174 A$=" "
176 GOSUB 186

178 GOTO 146

180 RETURN

182 CALL SOUND(100,1000,10)
184 GOTO 156

186 FOR J=l TO LEN(A$)
188 CALL HCHAR(R,C+J-1,ASC(SEG$(A$,J,1)))
190 NEXT J

192 RETURN

Table 10-1. Entry and Exit Variables
for Menu Generator Subroutine

On entry: On exit:

M$(*)—Array containing menu choices
NP —Number of menu choices

CH—Menu choice desired

There are several requirements before entering this routine. You must
set up the actual wording of the menu choices in an array, M$(*). For
example, if "ENTER NAMES" is your first menu choice, you would
assign M$(l) equal to "ENTER NAMES". This would be done for each
of your menu choices. Also, you need to set the upper limit pointer, NP,
equal to the number of choices on the menu. This is used in error and
boundary checking.

When the routine returns to the caller, the value of the chosen function

will be assigned to CH. This will be a number between 1 and whatever
upper limit you have assigned to NR At this point, you can use a statement
such as ON CH GOTO X, Y, Z to branch to the various function handlers.
Of course, X, Y, and Z should all be replaced with appropriate line
numbers.

In the next chapter, we will deal with error routines in a program.

Program Menus 115

Table 10-2. Variable Table

for Menu Generator Subroutine

Variable Type Purpose Used in lines

A Numeric Keypress 156, 160, 162, 164,

166, 168

A String Temporary 106, 114, 122, 130,

140, 150, 174, 186,

188

C Numeric Column 104, 112, 120, 128,

138, 148, 172, 188

CH Numeric Menu choice

desired

146, 154, 166

J Numeric Loop counter 186, 188, 190

K Numeric Loop counter 134, 136, 140, 144

M(*) String Menu text 140

NP Numeric Number of menu

choices

134, 164

R Numeric Row 102, 110, 118, 126,

136, 146, 170, 188

TD Numeric Last choice 154, 168, 170

Chapter 11

Error Handling

All things in life hold the opportunity for mistakes. That is why there
are erasers on pencils and error messages on computers. Knowing how to
handle an eraser is one thing, but knowing how to handle an error on the
computer is another. In this chapter we will discuss specific errors and
what you can do about them.

Many types of computers only generate errors when you actually exe
cute your program. The TI-99/4A, however, generates errors at three dis
tinct times—during program entry, program initialization, and program
execution. These are known as different error types, and we will discuss
each of these shortly.

A big difference between the TI-99/4A and other computers is that the
TI-99/4A does not allow you to trap errors while the program is executing.
Some may view this as a disadvantage, but it does have one advantage, in
that it forces you to make sure that your program is completely debugged.
This chapter has been written to give you a better understanding of the
possible errors on the TI-99/4A, so you can then make the appropriate
corrections in your programming.

TYPE I ERROR MESSAGES

The first error level, or Type I errors, are syntactical input errors, or
errors that were generated as you input program lines into the computer.

117

118 BASIC Tricksfor the T1-99I4A

As each line is typed, and you press ENTER, BASIC does a quick check
to make sure that what you typed makes sense. This saves you time and
effort later on when running the program, because the earlier an error is
detected, the greater the chance that it won't be compounded.

If, after pressing ENTER, you find that a Type I error message has been
generated, it means that the computer did not accept what you typed. In
other words, if you were entering a new line, you will have to retype it
because the computer ignored it. If you were retyping a line that already
existed, then the old line stays intact. The line you are trying to replace is
only changed when the TI-99/4A does not detect any syntactical errors.

There are six different Type I error messages, and each will be reviewed
shortly. The best way to avoid these types of errors is to learn the capabil
ities of BASIC, and then not enter information that you know will generate
the errors.

Each of the following error types shows the actual message in boldface
type; when the message is displayed on the screen it is preceded by an
asterisk (*) and a beep is sounded. There is no line number given with the
message, because the number only applies to the line that you tried to
enter.

BAD LINE NUMBER happens if you enter an illegal line number,
such as one less than 0 or greater than 32767.

BAD NAME occurs if you enter a variable name that is over 15 char
acters long.

CAN'T DO THAT happens when you try to have the computer do
something it figures that it can't (makes perfect sense, right?). It occurs if
you try to use a command in immediate mode (without a line number) that
can only be used under program control, or if you try to use a command
within a program line that can only be used in immediate mode.

INCORRECT STATEMENT simply means the syntax of what you
entered is incorrect. For instance, you did not put quote marks around a
literal.

LINE TOO LONG is supposedly an error that comes up if you try to
enter a line that is too long. I don't think I have ever seen it, because the
TI-99/4A beeps at you and refuses to accept any input past 112 characters.

MEMORY FULL means you have entered a program that is too big for
the computer. The best solution is to optimize your coding or break the
program down into smaller portions.

Notice that the error messages presented here indicate that the actual
checking that is done is very rudimentary and cursory. That is why, after
entering a line and pressing ENTER, the computer can give you a deter-

Error Handling 119

mination very quickly as to whether the line is acceptable or not. If the
error checking at this stage was more complex, it would make entering
program lines very unwieldy because of the time involved.

TYPE II ERROR MESSAGES

When you have entered your program, and then type RUN, the com
puter goes through some internal routines to set up the addresses and
allocate the space it needs to execute your program. During this time, it is
possible for errors to be generated. These are termed Type II errors.

The errors that are generated at this point are the ones that were not so
obvious during program entry. Naturally, this type of error checking, along
with the necessary program setup, takes a noticable amount of time. That
is why there is a delay between giving the command RUN and the begin
ning of program execution.

There are six different Type II error messages, and they are printed on
the screen with a preceding asterisk (*) and a beep is heard. Some Type II
error messages give line numbers, and some don't. On those that don't,
you, as the programmer, will need to try to find where the actual error
occurred. This may be rather difficult and time consuming when working
with a large program.

BAD VALUE means you have dimensioned an array too large or too
small. The maximum array dimension is 32769 elements, and the mini
mum is either 0 or 1, depending on what you have previously set the
OPTION BASE equal to.

CAN'T DO THAT has to do with the OPTION BASE statement and

where it is placed in the program. If it is placed after an array it either
explicitly or implicitly dimensioned, or if there are two OPTION BASE
statements, this error will occur.

FOR-NEXT ERROR means that you have a FOR without a NEXT, or
a NEXT without a FOR. This error gives a line number if there is a NEXT
without a FOR, but does not give a line number if there is a FOR without
a NEXT.

INCORRECT STATEMENT means a latent syntax error has been
detected. These are usually ones that cannot be detected upon program
entry, and include things like NEXT statements without variables, or im
proper use of a DIM statement.

MEMORY FULL Guess what? Your program is trying to use more data
space than is available in the computer. As with the Type I error, you are
going to have to optimize your code and reduce the data storage
requirements.

120 BASIC Tricksfor the TI-99/4A

NAME CONFLICT simply means that you are trying to use a variable
one way, when it has already been defined another way. For example, you
are trying to dimension the same variable twice, or a variable that has been
dimensioned as an array is later referenced as a simple variable (or vice-
versa).

Virtually every one of these errors is generated if something is wrong
with the way your program allocates memory, or the way it uses FOR
NEXT loops. By paying special attention to these program areas, you can
eliminate a large portion of Type II errors.

TYPE III ERROR MESSAGES

Type II errors are generated immediately after giving the RUN com
mand, but before actual program execution begins. Type III errors are
generated after the actual program execution has commenced. They cause
the program to stop working (usually called "crash" and "burn") and can
cause a grown programmer to cry.

Many versions of BASIC offer ways to trap errors so that they can be
compensated for under program control. In fact, TI Extended BASIC has
this capability. However, this is not the case with straight TI BASIC.

If an error occurs during program execution, the error message is printed
on the screen preceded by an asterisk (*), a beep is heard, and the program
stops running. In most of these error messages a line number indicating
where the error occurred is specified.

Several of these errors issue only a "soft error". This means that a
warning is issued, and program execution continues. As these may make
further problems with the program you are running, they will still need
programmer attention.

BAD ARGUMENT occurs when you try to execute a statement that
requires an argument, and the argument is not acceptable to the computer.
For instance, trying to execute PRINT VAL(" 123ABC") will generate this
error.

BAD LINE NUMBER is generated when you try to branch to a non
existent line number.

BAD NAME is generated when you try to CALL a non-existent subpro
gram. For instance, while CALL CLEAR will work, CALL LCEAR will
not.

BAD SUBSCRIPT happens if you try to access a subscript that is
outside the dimensioned range of an array. Also, if you type a statement
like DIMA(5) you will get this error because there is no space between the
M and the A. All arrays, unless explicitly defined, have an implied dimen-

ErrorHandling 121

sion of 10 elements. If you try to access anything outside of this range,
without an explicit dimension statement, then this error will occur.

BAD VALUE happens when a value in your program statement is
outside the acceptable bounds for that value; for instance, using a color
value that is out of bounds, or using a statement similar to CHR$(-5).

CAN'T DO THAT is caused by trying to execute something beyond the
limits of the computer; for example, trying to execute a RETURN when
no GOSUB was encountered.

DATA ERROR simply means that you ran out of data. There must be
at least one DATA element for each READ statement. It could also mean
that you simply forgot to put commas between each DATA element, in
which case the computerwouldthinkyou had one long element.

FILE ERROR occurs when you are trying to do something improper
in regards to a file (makes sense, doesn't it?). Usually this occurs when
you are trying to do a file operation on a file thathas not been opened, or
was not opened for that operation.

INCORRECT STATEMENT is a latent syntax errorthatescaped ear
lier detection, as with the Type II errors. It is usually caused by missing
necessary parameters or reserved wording that is out of order.

INPUT ERROR is caused by input thatis notwithin acceptable bounds
for the variable type it is to be assigned to, or by input that is too long.
This is only a warning error if input is to come from the keyboard. If input
comes from any other source, a hard error is generated and program
execution stops.

I/O ERROR is generated when something goes wrong when saving or
retrieving information from disk or tape. Actually, when this error is gen
erated, you are given quite a bit of information to work with. This is
because a two-digit error number is also printed that tells which specific
operation caused the problem (first digit) and what type of error occurred
(second digit).

The possible first digit values and theirmeanings are shown in Fig. 11-
1, and those for the second digit are shown in Fig. 11-2.

MEMORY FULL occurs when your program has defined too much
data storage area. You need to split the program, or cut down on your
variable requirements.

NUMBER TOO BIG is a soft (warning) error only, and is generated
when the program is trying to assign a numberthat is too big or too small
to a numeric variable. Program execution will continue with the variable
set to the machine's numeric limit.

STRING-NUMBER MISMATCH is caused by using a number to
perform a function that requires strings, or vice versa.

122 BASIC Tricksfor the TI-99I4A

Code Operation Causing Error

0 OPEN

1 CLOSE

2 INPUT

3 PRINT

4 RESTORE

5 OLD

6 SAVE

7 DELETE

Fig. 11-1. I/O Error Codes

(First Digit).

Code Operation Causing Error

0 Device name not found

1 Device write protected
2 Bad OPEN attribute

3 Illegal operation
4 Out of space
5 End of file

6 Device error

7 File error

Fig. 11-2. I/O Error Codes
(Second Digit).

ERROR CONCLUSIONS

I hope these insights into how and why the TI-99/4A generates errors
will be helpful. It is good to know that there may be reasons why the
computer stopped. It sure beats feeling that the computer doesnot like you
personally.

Glossary

If you are looking for highly technical definitions of computer terms
you should probably invest in a computer dictionary. But then, that is not
the main reason you bought this book, is it?

Seriously, though, this glossary should give you enough information to
at least enlighten you as to the meaning of some words and terms that may
seem foreign at first.

ADDRESS is a unique number associated with a specific computer memory location.
ALGORITHM is a set of instructions to do a set task. Aexample frommathematics is to

define the task, such as finding the areaof a square; the algorithm to do this would
be height multiplied by width.

ALPHAMERIC is a seldom-used termthatdenotes a string composed of lettercharacters
only.

ALPHANUMERIC is a term used to describe a series of characters that may be either
alphabetic (letters), numeric (numbers), or symbolic (such as control characters).

ARGUMENT is whatusers of competing personal computers usually endup in. It is also
the data entered into a programthat is used in a calculationor procedureto formulate
an output.

ARRAY is an organized arrangement of data items. For instance, the letters FI may
represent a single variable, but FI(9) represents the ninth element of a data array.
Each element is addressable by changing the subscript within the parentheses.

ASCEND means to rise, or go up. In sorting, ascending order indicates that the sorted
items will be ordered from lowest value to highest value.

ASCII is the American Standard Code for Information Interchange. It is a method used
by the vast majority of mini-and microcomputers to encode characters through the
arrangement of the individual bits of a byte.

ASSEMBLER is a program used to translate a series of commands and directives into the
actual machine language codes neededto run directly on a computerprocessor.

BACKUP is a term that refers to the process of making a copy of valuable information in
case the original copy is damaged or destroyed.

123

124 BASIC Tricksfor the TI-99I4A

BASE usually refers to a mathematical numbering system. For instance, base 10 (or
decimal), allows 10 different digits (0 through 9) in each number position. In
contrast, base 16 (hexadecimal) allows 16digits (0 through F) per number position.

BASIC stands for Beginner's All-purpose Symbolic Instruction Code. The most widely
used computer language in the mini- and microcomputermarkets.

BINARY is a number system based on powers of 2. The only digits in binary are 0 and 1.
It is of practical use in computers where electronic circuits can only be off (0) or on

(1).
BIT is a single binary digit. It is also the smallest indivisible unit of information that is

understood by a computer.
BRANCH means to change the programexecution from the normalcontiguous series of

steps to another predetermined step. Branching is usually achieved by use of a
GOTO or GOSUB instruction from BASIC.

BUG is an undesirable pest that sometimes sneaks into the best of programs. Upon
detection, bugs can sometimes hideagainand should be documented thoroughly.

BYTE is a group of bits that collectively representeither a letter (on 8-bit computers)or
a word (on larger processors).

CARRIAGE RETURN is the term given to the ASCII code that causes the computer to
return to the leftmost column. It is also used to signify an end of input. Usually this
is the ASCII code 13 ($D). It is generated from a keyboard by pressing the key
marked ENTER (RETURN on some computers).

CASE is a term used to describe whether capital letters are used or not. Upper case means
a capital letter, and is the opposite of lower case letters.

CHARACTER is either a letter, space, number or special symbol. Each character re
quires one byte of computer memory.

CHIP is short for "microchip" and refers to a collection of solid state circuits in one
device. Each chip is generally designed andcreated to perform a specific task.

COMPILE means taking source code and converting it to object code. Translating from
a higher-level language (such as Assembler) to instructions that the computer can
understand directly (such as machine code).

COMPILER is the program that compiles, or translates, source code to object code. See
COMPILE.

COMPUTER is an electronic device that performs calculations and pre-determined in
structions at a very fast rate. Depending on the way the computer is programmed,
this may or may not be of use to humans. Computers generally fall intoone of three
classifications. These are micros, minis, and mainframes.

CONCATENATION is the process of joining two or more alphanumeric strings to make
one string.

CONTROL CHARACTER is a special two-key combination of keystrokes that directs
the computer to do something special. On the TI-99/4A, control characters are
generated by holding down the key marked CTRL and pressing any other alpha
meric key at the same time. Some control characters are used so frequently that
they have been assigned to one specific key, for example, ENTER and LEFT
ARROW.

CPU stands for Central Processing Unit, the heart of any computer system.
CROSS-ASSEMBLER is a program that executes under the control of one type of

microprocessor to create program code that will ultimately be executed under the
control of a different microprocesser.

Glossary 125

CRT stands forCathode Ray Tube, and is "computerese" for a video terminal orcomputer
monitor.

CURSOR is a video marker appearing on the computer monitor that lets the user know
where the next inputor output is to occur. Thecursor is generally a small blinking
block or underline character.

DATA is nothing more than information. Theword "data" is used to save space andink.
DATA FORMAT are the guidelines and rules thatdictate the order, style, and condition

of information thatmust beadhered towhen supplying data fora computer program.
DEFAULT is a term used to describe the assumed value that is accepted when none is

offered in its place.

DEMODULATE is the process of converting signal tones to electrical impulses. Used
primarily over phone lines. See MODEM.

DESCEND means to fall, or go down. In sorting, it means ordering the elements to be
sorted from greatest to least value.

DISKETTE is a semi-permanent storage device for electronic information. Disks come
in many different sizes, butmost allareround, hence thename disks. Early attempts
by thegovernment to create a square-disk standard failed after wasting anappropri
ate amount of taxpayer money on feasibility studies. Subsequent efforts in this area
led to the removal of the center hole and marketing them as Mag-cards for word
processors. The most popular sizes today for disks are 8 inch, 5lA inch, and 3lA
inch.

DOCUMENTATION is a classy word used to describe the set of written or printed
instructions that accompany a program to explain how to use it. There has been no
successful approach to teach how to use documentation.

DOS is short for Disk Operating System. This is thecomputer program that regulates all
interaction with the disk drives and the information stored therein.

DP is the computerese term for Data Processing which is the computerese term for
Information Juggling.

ELEMENT, when used inrelation toprogramming, isa single item ofa larger data array.
For instance, FI(9) is a singleelementvariable of a larger array of data.

ENTRY refers to the answers that you give to questions within a program. Most entries
are completed (ended) with a carriage return. This is accomplished by pressingthe
ENTER key.

FIELD is a term used to describe a single piece of information. Names and dates are
examples of possible fields.

FILE is a collection of related records. These comprise a logical block of information
that has a specific name that can be accessed by a user.

FLAG is a marker that is set within a program to indicate the presence or absence of a
condition. Most often used to signal that some other event or process is to take
place.

FLOWCHART is a graphic depiction of the logical process that takes place within a
computer program. Primarily used by programmers and systems analysts. Good
programming theory dictates that flowcharting be used as a step to completely
document a program. The flowchart should be developed before a program is ac
tually coded so that any logic errors may be uncovered and corrected with a mini
mum of effort.

FORMAT is the form or condition that an item should be patterned after. See DATA
FORMAT.

126 BASIC Tricksfor the TI-99I4A

FORMATTING is a process whereby a blank disk is organized to allow the orderly
storing of information for future retrieval and use.

HACKERs are sometimes viewed as social mutants. They are fanatic programmers (see
PROGRAMMER) who use computers to the exclusion of all else.

HARD COPY is printed output from a computer.
HARDWARE is the term that describes the physical circuits, chips, cards, and other

items that make up a computer system.
HEADING is that portion of a report that identifies the contents of the report. It may

include any information that would be of use to the user. This can include items
such as titles, date, page numbers, column headings, etc.

HEXADECIMAL is the numbering system most often used in computers to represent
equivalent binary data in a human-readable fashion. It is based on powers of 16,
with each number position able to contain one of 16digits, 0 through F.

INPUT is data that the computer receives from an outside source such as a keyboard,
modem, or disk controller.

INTERFACE is the process of connecting or communicating between computer peri
pherals or between computers and humans. Interfacing may require special hard
ware (such as cables or modems) or software.

INTERPRETER is a program that translates each executable program step to machine
code at execution time. Most versions of BASIC used on microcomputers are inter

preter BASIC.
JUSTIFY means to line up all text to a certain column. It is usually used in connection

withwordprocessing. Leftjustifymeans all lines of textbegin at a specific column.
Right justify means to force each line of text toend ata specific column. Fill justify
means to insert spaces in individual lines of text to make sure that the lines begin
and end at the same columns as other lines of text in the paragraph.

KEYBOUNCE is the rapid opening and closing of a keyboard relay after the original
opening and closing. Many times this results in the appearance of two of the same
characters when only one was pressed.

MAINFRAME is a real big computer.
MENU is a series of choices. The choices represent the sum of all possible functions at

the time the menu is presented.
MICRO means real small. In the world of computers, micro generally refers to the

smallest member of the computer threesome. As a rule of thumb, if the computer
can fit on a desk, it is usually a micro.

MINI means small. The middle member of the computer trilogy. Minis traditionally have
less computing power than mainframes, but slightly more than micros. Buying a
mini may require mortgaging your kidsand subletting yourhouse, so many people
have turned to micros to do more and more.

MODEM is a device most often used to connect your computer to the phone lines so that
you can call other computers and run up your phone bill. Modem is a term that
means MODulate - DEModulate. Many people think that modems were created by
the phone company to "hook" computerists and thus generate another source of
revenue.

MODULATE means to convert electrical impulses to signal tones. These tones are used
to transfer information over telephone lines. See MODEM.

MOTHER BOARD is the term given to the main circuit board of a microcomputer. It
contains most, if not all, of the circuits and chips required to make the computer
work.

Glossary 127

NULL means nothing. Literally, that is what it means. When a string is equal to null, it
has no length or no assignment.

PARSE means to interpret an instruction for syntactical format.
PERIPHERALS are pieces of equipment attached to a computer to help it doa specific

task. Printers, disk drives, video monitors, and modems are all examples of
peripherals.

POINTERS are markers used bya computer program to specify certain important limits
or parameters.

PRINTER is a device used to translate electronically stored information to a permanent,
printed state.

PROGRAM is a series of instructions designed to make a computer perform a specific
task.

PROGRAMMER is that breed of person who enters a program into a computer for
hopefully error-free execution.

RAM is Random Access Memory—it is used by the computer to store information and
programs. Alldatastored inRAM will disappear when thecomputer power is turned
off.

RECORD is a collection ofrelated fields. Agroup ofrecords makes upa file.
REPORT isan organized group ofinformation used as functional output from a program.
ROM is Read Only Memory. It is computer memory used to store information perma

nently. It does not go away when the power is turned off.
RUN TIME signifies thatperiod of time during which a program is being executed. In a

BASIC program, it is the time after the RUNstatementhas been issued, and before
control has been returned to the user.

SOFTWARE refers to the programs (see PROGRAM) used on a computer. Basically,
this is an interchangeable term for program.

STATIC is thegreat nemesis ofcomputers. Static is that little bitofelectricity that causes
a spark when touching a conductive surface aftercrossing a dry, carpeted room. It
also has an untoward effect on computer data. The voltage spikes from static can
erase data on disks, or in computer chips.

STRING is a collection of characters. The notation A$ is usually pronounced Astring.
String is short for alphanumeric string, which signifies whatwejust said.

SUBROUTINE is a group ofcomputer instructions designed tocollectively perform a set
task. The subroutine may be "called" from any place necessary within a program,
usually by a GOSUB command, and is terminated by the RETURN statement.

SYNTAX refers to the rules that govern the specific format that computer commands
must follow.

TEXT FILE is a file (see FILE) saved to a disk as a series of ASCII characters, as
opposed to saving it as a series of compressed coded characters. Also called a data
file or an ASCII file.

TIME SHARING means to concurrently share CPU time between several different ter
minals. Usually accomplished on larger computers.

USER FRIENDLY means that the hardware or software interfaces well with a user. All
this means is the degree of ease with which the system can be used. If a piece of
software is described as being user friendly, it is easy to learn anduse. Usually user
friendliness cannot beadded after a system has been started. It needs tobedesigned
in from the beginning.

128 BASIC Tricksfor the TI-99I4A

UTILITY is a multi-meaning word. When used asa noun, it describes aclassof program
ming tools used to help a programmer become more productive. Generally this is
accomplished through simplifing some taskor helping the programmer keep track
of complex areas suchas variables, line referencing, and program editing. If used
as a verb, "utility" is a term describing the functional use that a program has to a
user. If a program has a utilitarian value, then it is of great use to the user.

	front-cover
	Binder1
	content001
	content002
	content003
	content004
	content005
	content006
	content007

	back-cover

