!HF!E!EEE&Q!!HQHQ

FOR THE BEGINNING
BEGINNER

EN...R.,,.I.Q....,H

ANOTHER @9@&) [DQQ Jm FROM B2 [AUS?

BASIC STATEMENTS & COMMANDS

CALL-Calls a built-in
subprogram.

END-Marks the end of a
program.
FOR-TO-STEP-NEXT-Marks
beginning and end of a
program loop.
GOTO-Causes the computer
to jump to another place in
the program.
IF-THEN-ELSE-Tests a
conditional expression.
INPUT-Inputs information
from the keyboard.

LET-Assigns a value to a
variable.

LIST-Shows program in
memory.

NEW-Erases program from
memory.

OLD-Loads a stored
program from tape or
diskette.

PRINT-Prints an item or list
of items on the display.
REM-A REMark inserted in a
program listing.

RUN-Starts execution of the
program in memory.

SAVE-Stores current
program on cassette tape or
diskette.

SUBPROGRAMS

(used with CALL)

CHAR-Allows the user to
define special graphics
shapes.

CLEAR-Clears the TV
screen.

COLOR-Sets the colors of
the next characters to be
printed. The color of the
characters (foreground) and
of their background are both
set.

HCHAR-Places a character
in any position on the
screen, and repeats it
horizontally.

JOYST-Reads the positions
of the joysticks.
KEY-Reads a single
keypress from the keyboard.
Also reads the joysticks’
firing buttons.
SCREEN-Sets the color of
the TV screen.
VCHAR-Places a character
in any position on the
screen, and repeats it
vertically.

|

This book’s unique binding
enables the user to prop it
up by the computer when
in use. Note illustration.

””WWHWWWW{

THE TI 99/4A
FOR THE
BEGINNING BEGINNER

An easy and helpful introduction
to computers and programming

Les Cowan

ENRICH/OHAUS
San Jose, California

Graphic Design by Kaye Graphics

Cover Design by Kaye Quinn

Edited by Matt Foley, John Deubert, Jim Haugaard, and Eldon Kerr
Typography by KGN Graphics

Published by
ENRICH/OHAUS
2325 Paragon Drive
San Jose, CA 95131

For information on rights and distribution outside the U.S.A., please write
ENRICH/OHAUS at the above address.

Copyright © 1984, ENRICH DIV./OHAUS. All rights reserved under interna-
tional Convention. No part of this publication may be reproduced or
distributed in any form or by any means, or stored in a data base or retrieval
system, without the prior written permission of the publisher, with the excep-
tion that the program listings may be entered, stored, and executed in a
computer system, but they may not be reproduced for publication.

TI, T1 99/4 and Tl 99/4A are trademarks of Texas Instruments, Inc.

ISBN: 0-86582-132-1

Catalog No. EN79225

Printed in the United States of America
10 9 8 7 6 5 4 3 2 1

ABOUT THE AUTHOR

Les Cowan is a well-known author of books and articles in the
computer field. He has been writing about technical subjects
since the seventies. As a journalist (Masters of Journalism,
U.C. Berkeley) he had a natural interest in all communications
media, which involved him first in a number of video projects
and then, via his first word processor, the world of computers.
Since then he has written technical documents for a number of
Silicon Valley corporations and has pursued an active parallel
career in the trade and general press.

Mr. Cowan is also one of the few hardy souls who have forayed
successfully into the world of software engineering without
formal training. Having taught himself BASIC, Mr. Cowan
accepted a position with a leading producer of educational
software, for whom he designed and implemented a number of
programs for teaching computer literacy at the junior high and
high school level.

Mr. Cowan is presently a contributing editor of Air-Cal
Magazine, for which he writes a monthly column on develop-
ments in high technology. He also is a regular contributor to
PC World, Popular Computing, Home Electronics and Enter-
tainment and has written occasionally for other computer-
related periodicals. His last book for ENRICH/OHAUS was
“The lllustrated Computer Dictionary and Handbook.”

TABLE OF CONTENTS

Page
INTRODUCTION ...ttt ittt i ieieinaeans 5
CHAPTER1—FIRINGUPTHETIQOMA 7

Plugging in, turning on and using the keyboard.

CHAPTER 2—HISTORY AND ANATOMY
OFTHECOMPUTERottt 45
What are these computer things, anyway?

CHAPTER 3—SIMPLE THINGS YOU CAN DO
WITHTIBASIC it i e 62
Type a sentence, draw a picture, compose a tune

CHAPTER 4—PUTTING COMMANDS TOGETHER. 97
You write some simple programs and the
computer does your bidding.

CHAPTER5—WRITING PROGRAMS 127
Programs to draw a pyramid, write a story,
compose a tune, and more.

APPENDICES ittt i ittt i e nas 163

GLOSSARY ... ittt i e i i e 170

&&b&hﬂbmnwwmﬁwmdawﬂ

INTRODUCTION

If you are reading this, you are probably interested in learning
more about the Texas Instruments home computer, the TI
99/4A. You may already own one, or you may be thinking about
getting one. If you have already looked at other books or
manuals on ‘“computer literacy”, you may be a little bit
confused by the swarm of new words and unfamiliar ideas.
You are not alone.

A computer cannot do anything unless someone tells it what
to do. To tell a computer what to do you must use a
“language’” that the computer understands. Like any
language, computer language has certain rules. These rules
may seem overwhelming at first, but once you learn them,
talking to the computer will be easy.

This book will guide you through everything you need to know,
to start telling your computer what to do. The first chapter
helps you get started by taking you step by step through the
process of getting your Tl 99/4A properly connected and turned
on. Chapter two gives you a quick rundown of the history of
computers and of how they work. This information is organized
from a practical standpoint. If you understand how a computer
works, then the things you must do to communicate with it will
make more sense. If something makes more sense, it is easier
to learn.

Some readers may not wish to spend time on the first two
chapters. Some of us like to dive right in. f you are among this
group you could start at chapter three. Here we begin learning
the building blocks of a computer language called BASIC. We
start with the easiest blocks and gradually build up, one step
at a time. You are encouraged to try everything out on the
keyboard. Experiment; learn by doing!

In chapters four and five we learn the tricks of programming,
5

and we finish by putting together a long program that demon-
strates all the important abilities of the Tl 99/4A. If you follow
each step along the way, you will soon be ready to start
designing your own programs with confidence.

This book was written for the beginner who knows nothing
about computers. It uses simple language, and avoids jargon
and buzzwords. In this book you will learn gradually, starting at
the simplest possible level, and proceeding at whatever pace
is most comfortable for you. We have done everything possible
to make this book an effective learning tool that is easy to use
and, most importantly, fun.

Two very important aids, a glossary and an appendix, are
provided for quick reference at the end of this book.

The author wishes to thank the Texas Instruments San
Francisco Learning Center and Mr. David Loennig of Texas
Instruments’ Lubbock, Texas office for their friendliness and
cooperation.

STARTING UP THE TI 99/4A

Turning on a computer can be a little more complicated than
turning on a television set, but with a little practice, the
procedure will become second nature. If you carefully follow
the steps explained below, you will be “up and running” in no
time.

Refer to the illustration below of a Texas Instruments 99/4A
home computer.

CASSETTE
CONNECTS

JOYSTICK

T.V.
PLUG CONNECTOR PLUGS

COMMAND
MODULES
INSERT HERE

DISK DRIVE
CONNECTION

ON/OFF
SWITCH

Place your computer in a convenient, well-ventilated spot
where it will be safe from static electricity and the screen will
not be exposed to glare.

To start, let’'s attach the computer to a television set or a Tl
monitor.

If you are using a monitor other than the Tl monitor, it must
have an audio connection (not all monitors do) or you will not
be able to use the 99/4A’'s musical capabilities. You will also
probably need a special adaptor, since the monitor socket on
the Tl is not standard.

If you are using a Tl monitor, it will come with a connecting
cable. The round plug at one end of the cable goes in a socket
at the left rear of the computer. At the other end of the cable
are a small audio (sound) plug and a slightly larger video
(picture) plug. These go in the corresponding sockets in the
monitor.

If you are using a television set, use the video modulator box
that comes with your computer. A long, round cable is
attached to one end of the modulator and a very short, flat
antenna cable is attached to the other. At the end of the round
cable is a round plug which goes in the socket at the left rear
of the computer. If you want to use the television for normal
watching as well as for computing, attach your normal
antenna to the two screws on the side of the modulator. On the
largest side of the modulator is a switch. In one position,
marked ‘TV antenna’, this switch lets you watch television. In
the other position, marked ‘modulator’, it lets you use the
computer. On the bottom side of the modulator, next to the
long, black cable is another switch. In one position it uses
channel three on your television, and in the other position it
uses channel four. Set this switch to the channel which does
not broadcast in your area, and select that channel on your
television dial.

Without turning anything on yet, plug the monitor or television
into an electrical wall outlet.

The computer takes much lower voltage than comes from a
wall outlet, so it uses a transformer. This is the rather heavy
black box that looks like an overgrown electric plug. Coming
out of the transformer is a long cable ending in a power plug
that has four holes in it. On the right rear of the computer are
two sockets. The one toward the center has four prongs in it.
Plug the power plug into this socket. Then plug the
transformer into a wall outlet.

TIP! It is a good idea to unplug the transformer when not in
use.

Face the computer, with its keyboard nearest you.
Sit comfortably.
Turn on the monitor or television.

On the far right of the narrow front of the computer, facing you,
is a sliding switch, and to the left of it a small, red light. Slide
the switch to the right. The light should come on and you
should hear a beep. An instant later you should hear another
beep as the display appears. If you did not hear a beep it is
probably bacause the volume control on your television or
monitor was turned down.

The display is bordered at top and bottom with bands of
colored squares. In the center is the Texas Instruments logo,
and below it the message, “PRESS ANY KEY TO CONTINUE”.

9

o N N N
3

TEXRS INSTRUNMENTS
HOME COHPUTER

REANY-PRESS ANY KEY TO BEGIN

©1981 TEXPS FNSTRUMENTS

You have “fired up the system” and are now ready to
command the computer to do your bidding.

Start by responding to the message. Press any key on the
keyboard except the keys marked ‘ALPHA LOCK’, ‘CTRL’,
‘FCTN’ or ‘SHIFT’. You will hear a beep and the display will
change to a solid background color with the Tl logo at the top,
and, near the top left, the word ‘PRESS’. Under that will be

1. FOR Tl BASIC
This is your first menu.

Right now the menu offers you only one choice: TI BASIC.
Later we will see how you may increase your choices by using
command modules or disks. For now, since we have only one
choice, let's take it. Press the number key marked ‘1’. The
computer will again beep, the display will go blank momentar-
ily and the message “Tl BASIC READY” will appear near the
bottom of the screen. Below that a right arrow head (>), called

10

a prompt*, and a blinking square, called a cursor, will appear.
On some televisions the prompt, the cursor and the ‘T’ in Tl
may be partially or completely hidden. These televisions cut
off the two leftmost and two rightmost columns, especially
near the bottom and top of the screen.

The message “Tl BASIC READY” tells you two things. One is
that you are using TI's version of the programming language
called BASIC. The other is that the computer is not doing
anything in particular at the moment and is waiting for you to
tell it something in the BASIC language.

The Keyboard

The keyboard of the TI99/4A is very similar to a typewriter
keyboard. What you type on the keyboard will be printed on
the television display. However, some keys have special
uses. To help you remember the special uses, Texas
Instruments has provided some special “overlay strips”
which can be added to your keyboard.

Before we go on, find the plastic keyboard overlay strips
which came with your Tl 99/4A. These are about a half inch
wide and about ten inches long. On the front, they are divided
into little squares. On one of the strips, some of these
squares contain words like DEL, INS, ERASE, and so on. Lay
this strip down at the top of the keyboard (on the little shelf
over the number keys) so that the word DEL is directly above
the 1 key and the word QUIT is directly over the key marked
with a + and an = sign.

Now if the blinking square is still on your screen, we will
proceed. If the square has disappeared, hit any key and it will

* Certain words, like “prompt”, have special meanings in the world of computers. A
prompt is a character displayed by a computer to tell the user that an action is
expected of him.

Other special words are defined in the glossary at the back of this book.

11

come back. When the Tl 99/4A has been left alone for about 9
minutes, the display goes blank to avoid leaving a permanent
image on your television screen.

The blinking square is called a cursor. The cursor is simply a
marker. It shows the point on the screen where your next
typed character will appear.

Go ahead and type a letter. Have no anxiety—absolutely
nothing you do at the keyboard can in any way damage the
computer. You see that the letter you typed appeared where
the cursor was, and the cursor moved over to the right.

This single letter does not mean anything to the computer, so
let’s erase it. Find the S key. Notice that on its front side is an
arrow pointing left. This is the backspace key. If you press it by
itself it prints the letter ‘s’, but if you hold down the key marked
FCTN and then press this key, the cursor will move one space
to the left. Try it.

Now you have learned one of the most important differences
between a typewriter keyboard and a computer keyboard. In
addition to the usual letters, numbers and punctuation keys,
computer keyboards have certain special duty keys. Let’s see
what these are on the Tl 99/4A. As we explain the keys below,
find each one on your keyboard. Try them!

Special Keys

FCTN FCTN stands for FUNCTION. We have aiready
met this key. It is always used together with a
letter key or a number key. If used with a letter
key it will move the cursor or print whatever
character is shown on the front of the key. If
used with a number key, it will perform certain
editing functions which we will learn about in
the section on editing.

12

FCTN 4 The FCTN key pressed at the same time as
the 4 key will do a number of things you
should know about. If the computer is doing
something, FCTN-4 will stop it in its tracks,
and the computer will display a message tell-
ing you where it stopped. If a program is being
listed, FCTN-4 will stop it too. (If you do not
understand some of this yet, don’t worry. We
have to start somewhere, and you will
understand shortly.)

FCTN + When the FCTN key is pressed along with the
key that is labelled with a plus sign , it will
stop everything. This is called a “reset” and
will send you back to the start-up display.

SHIFT These keys are just like shift keys on a type-
writer. While they are held down, any letter
key will produce an upper case letter. Any
number key will produce the mark shown
above the number on that key.

ALPHA LOCK This key is like a shift-lock key on a typewriter.
If it is pressed once it stays down until it is
pressed again. In the meantime, all letter keys
will produce upper case letters regardless of
the SHIFT keys. Number keys, however, will
be unaffected.

CTRL CTRL stands for CONTROL. Like the FCTN
key, this key is only used together with other
keys.

ENTER This key tells the computer to receive
information that you have typed. When you
type characters that appear on the screen, the
computer could not care less. Once you press
ENTER, however, the computer will try to do
something about those characters.

13

When you talk to the computer in BASIC, you talk in “state-
ments”. (We say talk, but of course you actually type on the
keyboard.) A statement usually consists of a command and
something called an argument. For example, take the PRINT
statement. The PRINT statement consists of the word PRINT
followed by whatever it is you want the computer to print,
which we call the “argument”.

Try this. First, press the ENTER key. The computer beeps and
displays the message: INCORRECT STATEMENT’. This is an
error message, and it means that something happened that
the computer could not understand. In this case, you typed in a
letter and then later hit ENTER. The computer was expecting a
BASIC statement. No BASIC statement consists of a single
letter, so the computer was confused.

Now type this:

PRINT "“SELL THE WINE."

Be sure to type it exactly as shown, with the quotation marks.
(You get the quotation marks by holding the FCTN key and
pressing P.) The quotation marks tell the computer to print
exactly what is inside them. You might remember their
importance by saying to yourself, “I want the computer to
quote me.”

Now press ENTER. The computer will display:

SELL THE WINE.

This will appear under your PRINT statement. The computer
has just obeyed your first command!

Let’s practice the PRINT statement a few more times. Type:

PRINT "“WHY DID THE CHICKEN CROSS THE ROAD?"
14

o o o b b o e e e o e e = = =

Now press ENTER. The computer will display:
WHY DID THE CHICKEN CROSS THE ROAD?

Nothing to it, right? Try a few more on your own.

Exploring The Keyboard

Now that we are familiar with the layout of the keyboard, let’s
see what it can do. Type as many characters as you can—
numbers, letters, punctuation marks, everything! Just don't
use the FCTN, CTRL or ENTER keys.

After you have typed four lines the cursor will not go any
further. Okay, let’s back up. Use the backspace (FCTN S). The
cursor moves to the left.

Hold the FCTN key down and hit the T, U, |, O and P keys.
These are keys that, in combination with the FCTN key, type a
right bracket, an underline, a question mark, an apostrophe
and a quotation mark.

Now hold the backspace down. The cursor continues to move
until it reaches the beginning of the first line you typed. The TI
99/4A has automatic repeat, which means that any key held
down for more than a second will repeat itself until you release
it. Try it with a few keys.

Let's play with the cursor control keys. Type a line of
characters and use the backspace to move the cursor to the
beginning of the line. Now hold down the FCTN key and the D
key. The cursor moves to the end of the line and keeps going.
But the line has not been erased. This is called non-destructive
cursor movement because no characters are destroyed. The
backspace is also non-destructive. Now backspace to the
beginning of the line and hold down the space bar. The line is
erased. This is destructive cursor movement.

15

Now press the ALPHA LOCK key so that it stays down. Type a
few letters and numbers. Release the ALPHA LOCK key and
repeat what you have typed. Notice the difference between
upper and lower case characters on the screen.

Using The Display

The display screen of the Tl 99/4A, whether it is a monitor or a
television set, has room for 768 characters. It is divided into
twenty-four horizontal rows of thirty-two columns each. When-
ever we refer to locations on the screen we use rows and
columns to describe the location.

You might think of the screen as a grid of little boxes, each one
big enough to hold one character. The Tl 99/4A lets you change
the color of the screen, clear it, and put characters in any of
the boxes.

Make sure the cursor is at the beginning of a line. (Press
ENTER. You may get the INCORRECT STATEMENT or some
other error message, but do not worry about that.) Type the
following and press ENTER. (We will show you where to press
ENTER by adding this sign: ENTER.)

CALL CLEAR ENTER

Once you press ENTER, the screen goes blank except for the
cursor at the bottom left corner.

The CALL CLEAR statement actually tells your computer to
run a small program that clears the screen. The Tl user's
manual refers to these as subprograms, which is just another
way of saying that, as programs go, they are pretty small. This
subprogram, and some others, are built into the computer’s
permanent memory. (This kind of memory is called ROM. It will

16

be explained in the next chapter.) When the computer is
commanded to run such a subprogram, we say that the
subprogram is ‘called’.

Let’s call another subprogram, whose name is HCHAR. (The H
stands for horizontal and CHAR stands for character.) Type:

CALL HCHAR (10,10,65) ENTER

Remember that when we show ENTER it means to press the
ENTER key. Also, in this book we will show zeros with a slash
through them, like this: @. This is to make it look different from
the letter “O”. However, on your TV screen the Tl computer
shows zeroes as plain circles: 0.

The letter A appears on the 10th row, in the 10th column (and
then hops up one line as the cursor moves down one line to
prepare for your next command). Sixty-five is a code for the
letter A, as we will see in the next chapter. The two tens and
the sixty-five are all arguments of the CALL HCHAR
statement.

These three arguments have to be there, inside parentheses,
for the computer to understand the CALL HCHAR statement.
You may add a fourth argument which is optional. Type:

CALL HCHAR (10,1@,65,6) ENTER

(By now you know to press ENTER after a statement, so
instead of mentioning it every time we will just use the sign
ENTER to remind you.)

Using ‘6’ as an extra argument causes the letter A to be
repeated 6 times. Try the same statement using a different
argument at the end. For example, try:

CALL HCHAR(1@,10,65,15) ENTER
17

fom fom b b bm o o mi mm Em e omd e e = = =

HCHAR has a sister subprogram called VCHAR. You guessed
it, the V stands for vertical. Type:

CALL VCHAR (10,10,65,6) ENTER
A vertical row of six A’s appear.

You might play with CALL HCHAR and CALL VCHAR using
different arguments. Try putting characters on the edges of
the display as well as various locations in the middie.
Remember that the display has rows numbered 1 to 24 and
columns numbered 1 to 32. If you use an argument that is
smaller or larger than these numbers you will get an error
message.

If you want to try other letters besides A, refer to the table of
ASCII codes in the appendixes. Each character on the key-
board has its own code number. Have you ever sent a coded
message in which every letter is replaced by a number—
maybe 1 stands for A, 2 stands for B, and so on? The codes in
the ASCII table are similar except that 65 is A, 66 is B, and so
on. (The next chapter will explain what ASCII is.)

(e [om ko ivw b e b wd bt E s md e e e o ond

What Is A Program

A computer cannot do anything by itself. It does things only in
response to your commands. You have already issued
commands to your computer in the form of BASIC statements.
You can also put a number of statements together, and the
computer will obey them, one after the other. Such a list of
statements is called a program. A computer obeying a
program (we say ‘“running’ a program) can do much more com-
plicated things than a computer obeying a single statement.

We will learn how to write programs in Chapter IV, but right
now let’s look at a simple program so that we can understand
how a program works.

Here is a program that uses statements with which you are
already familiar.

1@ CALL CLEAR ENTER

20 PRINT “HELLO PAL, WHAT'S THE GOOD WORD?" ENTER
30 PRINT “THE GOOD WORD IS CHERRY JELLO.” ENTER

40 END ENTER

Before typing this program, go through the start-up procedure
described earlier so that you are in TI BASIC and the prompt
and cursor are showing on the display. If the computer is
already on, use FCTN + to reset it to the start-up display, and
proceed from there as if the computer had just been turned on.

Type in the program exactly as shown, beginning each line
with its number and ending each line by pressing the ENTER
key. Make sure the ALPHA LOCK key is down so that all the
characters are in upper case. This is a good idea whenever you
are writing a program.

The numbers beginning each line are a feature of BASIC which
we will discuss more fully later. Line 40 is an END statement
which stops the program.

19

Once this program is entered, type:
RUN ENTER

The screen changes color momentarily, clears and displays:

HELLO PAL, WHAT'S THE GOOD WORD?
THE GOOD WORD IS CHERRY JELLO.
DONE

DONE is a message from the computer telling you that it has
finished running the program. Now type:

RUN ENTER

The same thing happens. The program is still in the computer,
waiting to be run. In fact, the program is stored in the
computer’s memory. Whenever you type RUN ENTER, it will
run. As long as a program is in memory you may examine it by
typing the LIST command. Type:

LIST ENTER
Beneath the LIST command the computer displays:

10 CALL CLEAR

20 PRINT ““HELLO PAL, WHAT'S THE GOOD WORD?"
30 PRINT ““THE GOOD WORD IS CHERRY JELLO."

40 END

You may,however, want to run a different program. To do that,
this program must be removed from memory and a new one
put in. You remove the current program by typing:

NEW ENTER
Try it. Now type:

LIST ENTER

again. The message, “CAN’'T DO THAT” appears, to tell you
that, since no program is in memory, the computer cannot
LIST one.

20

Now, if you wished, you could type in another program, or the
same one. But it becomes very tedious typing every program
you want to run, especially when some programs are hundreds
of lines long. You can put a program into the computer’s
memory much more easily by using a command module, a
cassette recorder or a disk drive. These are three methods of
storing a program. In each case the program can easily be put
into computer memory (we call it ‘loading’ a program)
whenever desired. Let's discuss each of these methods of
storage.

Command Module

A command module is a plastic box about four inches long and
three inches wide. On one edge it has an open slot. This end
slides into the opening (hidden by a hinged flap) on the right of
the Tl 99/4A keyboard.

21

A command module contains electronic circuits like those that
are used in the computer’s memory. This kind of memory is
called ROM, as we will explain in the next chapter. For now,
just remember that a program is stored permanently inside a
command module. As soon as that command module is
plugged into the computer, the program can be loaded into the
computer’s memory.

TIP! Sometimes, if you plug in or remove a command module
while the computer is turned on, the data displayed on the
screen will become garbled. If this happens try resetting the
computer by pressing FCTN +. If this does not fix things, turn
the computer off and on. This problem may be avoided by
always turning off the computer before plugging in or remov-
ing a command module. However, whenever you turn off the
computer or press FCTN +, make sure that any data in
memory which you want to keep is first saved to tape or disk,
as described later in this chapter.

If you have a command module, plug it in. If the computer is
already on, the start-up display will appear and the computer
will invite you to press any key. If the computer is not on, turn it
on and you’ll get the same display.

When you press any key, the start-up menu will appear, but in
addition to choice number one, Tl BASIC, another choice will
be offered to you. If you select it, the program in the command
module will be loaded and you will be ready to run it.

Using a Cassette Recorder

Another way to store a program is on a cassette tape.
Programs stored on cassettes can be purchased from many
stores, and some libraries will loan out cassette programs. On
page 28 we will show you how to load a program from a
cassette tape into your Tl. First, however, we’ll show you how
to store a program on a cassette. Then you’'ll have a cassette
to practice loading with!

22

o oo bey low bm b v by b w P o o md e = el

Most quality cassette recorders can be used to save or load a
program. Such a recorder should have these features:

¢ A volume control

¢ A tone control

* A microphone jack

¢ A remote jack

¢ An earphone or external speaker jack

It is also helpful if the recorder has a tape counter so that you
can keep track of where a program is on a tape.

The recorder must be connected to the computer by a cassette
interface cable which can be purchased wherever Texas
Instruments computers are sold.

One end of the interface cable has a plug with nine holes. This
plugs into a receptacle on the right rear of the computer. The
other end has two sets of plugs: one set of three plugs and one
of two. The two-plug set is for a second cassette recorder. The
other set has a red-wired plug, a white-wired plug and a black-
wired plug. The red-wired plug goes into the recorder’s micro-
phone jack. The black-wired plug goes into the recorder’s
remote jack (which is a smaller hole than the microphone jack.)
The white-wired plug goes into the earphone jack, which may
also be called the external speaker jack or the monitor jack.

The plug in the recorder’s remote socket will let the computer
start and stop the recorder. This will not work with all
recorders, but you will still be able to use the recorder by
starting and stopping it by hand. This is easy to do; just follow
the directions on the display. We will proceed as if the remote
function is not operative. (An adaptor is available for about $5
which will allow the remote function to work in some cases
where it will not work otherwise.)

TIP! If you have trouble using a cassette player with your T|
99/4A, one thing to do is try it leaving the remote wire
unplugged.

In order to store a program on cassette tape, the program must
already be in the memory of your Tl. Type a program into your
Tl by following these steps: Clear the computer’s memory by
typing NEW ENTER. Make sure no program is in memory by
typing LIST ENTER and getting the CAN'T DO THAT message.
Now type in the simple program we used earlier. (See page
19.)

Next, be sure that the recorder is correctly connected to the Tl
99/4A, and the volume on the recorder is set at about the
middle of its range, and the tone control is set to its highest
position, which is sometimes called treble. Put a blank
cassette in the recorder. The program will be “written” on the

24

tape as a series of special clicks and beeps, which the
computer can understand.

TIP! It is a good idea to use short-length cassette tapes.
Cassettes over 90 minutes (45 minutes on a side) should not be
used.

Now type:
SAVE CS1 ENTER

CS1is an argument of the SAVE statement. It means that you
are saving to cassette number one. Be sure that you type the
argument in upper case. If you don’t, the computer will not be
able to understand it and will display an error message. if that
happens, just press the ALPHA LOCK key and type the
statement over.

When you have typed in the SAVE CS1 statement correctly,
the computer will prompt you with the message:

REWIND CASSETTE TAPE CS1
THEN PRESS ENTER

Rewind the tape a little past where you want to record the
program. If the cassette is blank, you will normally rewind to
the beginning of the tape. Press ENTER. The computer will
prompt you with the message:

PRESS CASSETTE RECORD CS1
THEN PRESS ENTER

Push the RECORD and PLAY buttons on the recorder to start it
running. Then press ENTER on the computer keyboard. The
computer will display the message:

RECORDING
25

Wait while the recorder saves your program to tape. Unless
your television or monitor volume control is turned down, you
should hear a tone followed by garbled noise, as the program
is sent from the computer to the recorder. You will hear this
noise whenever you are recording or playing back data with
the recorder.

When this is done the computer will display the message:

PRESS CASSETTE STOP CS1
THEN PRESS ENTER

Stop the recorder and then press ENTER. The computer will
prompt you with the message:

CHECK TAPE (Y OR N)?

This is to ask you whether or not you wish to verify that the
program has been saved accurately.

IF YOU CHECK

If you wish to verify the recording, type Y. (You do not need to
press ENTER.) The computer will prompt you with the
message:

REWIND CASSETTE TAPE Cs1
THEN PRESS ENTER

Rewind the tape to a point just before the recording you just
made. Press ENTER. The computer will display the message:

PRESS CASSETTE PLAY CS1
THEN PRESS ENTER

Start the recorder playing and press ENTER. The computer will
display the message:

CHECKING
26

Now wait until the computer receives data from the tape and
compares it to the data in its memory. If they match, the
recording is good, and the computer will display the message:

DATA OK
The computer will then prompt you with the message:

PRESS CASSETTE STOP CS1
THEN PRESS ENTER

Stop the recorder and press ENTER. Your recording is
complete.

If the recording was not accurate, the computer will display
the message:

ERROR—NO DATA FOUND
PRESS R TO RECORD
PRESS C TO CHECK
PRESS E TO EXIT

If you press R the computer will let you try recording the
program again. If you press C the computer will check the
recording a second time.

If you press E the computer will prompt you with the message:

PRESS CASSETTE STOP CS1
THEN PRESS ENTER

Stop the recorder and press ENTER. The computer will
probably display an error message that will help you figure out
what went wrong. The first thing you should do in this case is
to make sure that all cables are connected properly, that the
recorder is plugged in and that the recorder’s tone and volume
controls are set correctly.

27

IF YOU DO NOT CHECK

If, when the computer asks whether or not you wish to check a
recording, you press N (remember, you do not need to press
ENTER), the computer will return to Tl BASIC. You will see the
‘>’ prompt and the flashing cursor.

Loading an Old Program
Once you have saved a program you may get it back (we say
load it) from the tape by using the OLD command. The OLD

command is similar to the SAVE command. To try out the
OLD command, type:

NEW ENTER

This will erase any program in the computer’s memory. Now,
type:

OLD CS1 ENTER

TIP! Remember that the ALPHA LOCK key must be UP or this
instruction may not work. However, the command must be
typed in capitals.

The computer will display:

REWIND CASSETTE TAPE CS1
THEN PRESS ENTER

Rewind the tape to a point before the program you want to
load, then press ENTER. The computer will display:

PRESS CASSETTE PLAY CS1
THEN PRESS ENTER

28

Start the recorder playing and press ENTER. The computer will
display:

READING

You will hear noises from the television set or monitor (unless
the sound is turned off). When they stop and the recording is
done the computer will display one of two messages,
depending on whether or not the program was loaded
successfully.

IF THE TRANSFER IS NOT GOOD

If the recording on tape was not transferred successfully to the
computer’s memory, the computer will display:

ERROR DETECTED IN DATA
PRESS R TO READ CS1
PRESS C TO CHECK

PRESS E TO EXIT

If you press R, the computer will ask you to rewind the
cassette tape and start all over. If you type C the computer will
display:

REWIND CASSETTE TAPE CS1
THEN PRESS ENTER

Rewind the tape and press ENTER. The computer will display:

PRESS CASSETTE PLAY Cs1
THEN PRESS ENTER

Start the recorder and press ENTER. The computer will
display:

CHECKING
29

When the check is over either the error message will be
displayed or the computer will display:

DATA OK

If the DATA OK message is displayed, you will be back in TI
BASIC, ready to give the computer further instructions.

IF THE TRANSFER IS GOOD

If the recording was successful the computer will display the
message:

DATA OK

PRESS CASSETTE STOP Cs1
THEN PRESS ENTER

Press ENTER, and you will be returned to Tl BASIC, ready to
give more instructions to your computer. At this time you
should see the > prompt. Type:

LIST ENTER

The program you have loaded from tape will be displayed.

Using The Disk Drive

If you want to save data more quickly and easily than you can
with a cassette recorder, you may wish to have a disk drive and
save programs on diskettes.

Diskettes are thin, flexible, plastic platters, 5% inches in
diameter, coated with a layer of iron oxide, the same material
used to make cassette tape.

30

S T D G e e

The difference between tape and diskettes is this: to find a
piece of data on a tape you have to play all the tape before it.
A diskette, however, spins like a phonograph record, and at
the same time, the heads which read data from a diskette
move from the center to the rim of the diskette. Thus data
may be read almost instantly from any point on the diskette,
just as you may put the needle down at any point on a
phonograph record. This means that using a diskette drive to
save or load programs is much faster than using a cassette
recorder.

Diskettes must be treated with care. The diskette itself is
permanently encased in a cardboard cover, and it is kept in a
paper envelope.

Write

~-@———— Protect
Notch

Jacket

Flexible Diskette

Storage Envelope

-—

31

Diskettes are very sensitive to magnetism, static, dust, smoke
and heat. You should never touch a diskette’s surface, and
should keep diskettes away from magnetic fields, such as that
around the Tl monitor. Once a label is attached to a diskette, it
should be written on only with soft felt-tip pens, never pencils
or ball points.

The cardboard cover which encloses each diskette has a notch
in the side. When this notch is covered by opaque tape, data
may not be written to the disk. If you purchase a special
program, or write one yourself, and you want to make sure it
can never be erased from its diskette, then you can cover the
notch of the diskette. Most diskettes are sold with little, sticky
squares which can be taped over this write-protect notch.

Data is sent between the computer and a diskette by a disk
drive and a disk drive controller. The disk drive is a box which
contains the motor that spins the diskette and the head which
actually records data onto and reads data from a diskette. The
controller sends the data between computer and disk drive.

Disk drives and controllers for the Tl 99/4A may be either of
two types. One type is a drive and controller which are each
separate components, and are called external. The other type,
called internal, is built into the TI Peripheral Expansion
System.

An external disk drive is a box about three inches tall, six
inches wide and ten inches long. An external disk controller is
about two inches tall, six inches wide and ten inches long.

WARNING! Before connecting disk drives or controllers to the
computer or to each other, make sure that power to all units is
off.

32

The disk controller plugs into the slot on the right side of the
computer. This is the same slot as the speech synthesizer
uses. You may use the speech synthesizer and disk controller
at the same time by plugging the speech synthesizer in as
usual and plugging the disk controller into the slot on the right
side of the speech synthesizer.

RIBBON
CABLE

g

DISK DRIVE
CONNECTOR

A flat cable (called a ribbon cable) comes out of the rear of the
disk drive and plugs into a socket on the rear of the disk
controller. Both disk drive and controller must be plugged into
a power outlet. The disk drive and the controller should always
be turned on before the computer is turned on. The disk drive
power switch is located in back, and the disk controller power
switch is a slide switch in front.

33

by b bw w oo w om W B WY B o e o el ol e

If you are using an internal disk drive, both the drive and the
controller will be located inside a Peripheral Expansion
System, a box about six inches tall, twenty inches long and ten
inches deep. The Peripheral Expansion System connects to
the computer with a wide, rubberized ribbon cable that ends in
a flat plastic box. This box has a plug that fits into the socket
on the right side of the computer. The Peripheral Expansion
System must be turned on before the computer is turned on.
The System power switch is on the left front of the box.

Before turning on the computer, you will need to plug in one of
two command modules that let you use disks: Disk Manager 1
or Disk Manager 2. The first of these lets you use only single
sided, single density disks. The latter lets you use single sided,
single density or double sided, single density disks.

With a disk drive and controller, and one of the disk command
modules, you may use commands described in the manual
which comes with your disk drive. These will let you save
programs to disks, just as you may save them to a cassette
tape.

Whenever you save data to a disk, it is recorded on the disk in
what is called a “file”’. Each file contains all the data saved at
a single time. Each file has a name. When you do not
remember what files are on a disk, you may see a list of them
by cataloging the disk.

Disk Manager

When you are using one of the disk manager command
modules, the Tl start-up menu will include a choice called
DISK MANAGER. (Other choices may be in foreign languages,
and are the French and German versions of DISK MANAGER.
The Tl 99/4A is a real jet-setter.)

34

BEGIN, PROC’D, REDO, BACK

To use the DISK MANAGER you will need to understand the
four function keys called BEGIN, PROC’D, REDO and BACK.
Each of these is a combination of the FCTN key and one of the
keys 5 and 6 or 8 and 9. There is a keyboard overlay strip for the
DISK MANAGER which labels these keys for you.

FCTN 5 BEGIN tells the computer to display the first menu in
a series of sub-menus. For example, if the computer
were displaying the sub-menu titled ‘Catalog Disk’,
pressing BEGIN would cause it to display the DISK
MANAGER main menu.

FCTN 6 PROC’D (proceed) tells the computer to proceed with
a menu selection that has already been made.

FCTN 8 REDO tells the computer to do over again from the
beginning any procedure, even if you were in the
middie of it.

FCTN 9 BACK tells the computer to display the menu that
came before the one presently displayed. For
example, if the computer were displaying the
‘Catalog Disk’ sub-menu and you pressed BACK, it
would display the ‘Disk Commands’ sub-menu.

USING THE DISK MANAGER

Choose the DISK MANAGER option from the TI start-up
display. If the computer is already on, press FCTN +. A title
graphic will be displayed, similar to the Tl start-up display, but
saying DISK MANAGER instead. Press any key and you will
see a menu. Choose the item called DISK COMMANDS. You
will now see another menu.

35

INITIALIZATION

When you want to use a brand new disk, the first thing you
must do is initialize it.

TIP! A disk only needs to be initialized once, when it is brand
new. If you initialize it again, you will erase any programs
recorded on it!

From the menu now displayed, choose the item: INITIALIZE
NEW DISK. The computer will display:

INITIALIZE NEW DISK
MASTERDISK 1-3 ?

This is asking you which disk drive contains the disk you want
initialized. If you have not already put the disk in a disk drive
now is the time to do it. Then answer the question. If you have
only one drive the answer can only be 1.

DEFAULT VALUES

Notice that as the cursor blinks, a number one appears. This is
called a default value. If you do not type a number, and just
press ENTER, the computer will assume that you are using
drive number 1.

Now, to get back to initializing that disk. If you are using drive
one, and you simply press ENTER, the computer will now
display:

TRACKS PER SIDE
WHAT IS A TRACK?

The default value here is 40, as you can see when the cursor
blinks. A track is a concentric ring around the center of a disk.
Data is recorded only in these tracks. One thing that happens

36

to a disk when it is initialized is that these tracks are laid down
on the disk’s surface. The more tracks on a disk, the more
information it can hold. Some disks only hold 35 tracks. If you
are using such a disk, type 35 followed by ENTER. Otherwise,
simply press ENTER, to get the dafult value, 40 tracks.

The computer will now display:
SINGLE SIDE (Y/N)

This is a yes/no question and the default is yes. If you have a
disk drive that can record on either side of a disk, and your disk
can be recorded on both sides (not all can), then type N
followed by ENTER. Otherwise just press ENTER. The
computer will display:

SINGLE DENSITY (Y/N)
If your disk drive and disk are capable of recording data at
double the usual density, putting twice as much data in the
same area of disk surface, then type N followed by ENTER.
Otherwise just press ENTER. The computer will display:

INITIALIZE NEW DISK
WORKING. . . PLEASE WAIT

For a few seconds nothing will happen and then this display
will be replaced with*:

® WORKING. . .PLEASE WAIT.

WHAT IS A SECTOR?

Each track is divided into nine sectors, and each sector can

*Remember, in this book we will show zeros with a slash through them, like this: @.
This is to make it look different from the letter “O". However, on your TV screen the
T computer shows zeroes as plain circles: 0.

37

bt lem e e v b e o = e o oo mE omd e ol owd

hold 256 bytes of data. A byte is the amount of data that is
required to store one character. We talk about bytes some
more in the next chapter.

The number 0 in this display is the number of the first sector to
be initialized. As each new sector is initialized, the number
displayed will change until the entire disk is initialized.

When the initialization is finished, you have a fresh, blank
disk ready to record your programs. Remember, a diskette
only needs to be initialized once in its whole life. Never
initialize a disk that already has files on it, unless you don’'t
mind erasing it.

OTHER DISK MANAGER COMMANDS

From the DISK MANAGER main menu you may choose file
commands, disk commands, disk tests or single disk
processing.

DISK MANAGER
Command What It Does

File Commands Displays a sub-menu from which you may
copy a file between disks, rename a file,
erase a file from a disk or change a file’s
protection.

Disk Commands Displays a sub-menu from which you may
catalog the disk, make a backup disk,
change a disk’s name or, as we have
seen, initialize a disk.

Disk Tests Displays a sub-menu from which you may
run tests to make sure that the diskette,
disk drive and controller are in good
order.

38

v e Do b v b mp o o o= wd e o =2 el

Set Single Disk Lets the computer know that you are

Processing using only one disk drive. This is
necessary when you are copying files
between disks or copying disks.

Saving And Loading Files

Saving a program on a disk, or loading a program from a disk,
is very similar to saving to or loading from cassette tape. The
big difference is that programs saved on disk have names. You
must know the name of the file you are loading or saving. If you
are saving a program for the first time, you get to make up the
name yourself.

You do not use the DISK MANAGER to save or load a disk file.
You use the same instructions as with cassette tape: SAVE
and OLD. Remember that to save to cassette tape you used
the instruction SAVE CS1. Once you have a program in the
computer’s memory, that is to say, a program that you can see
by typing LIST, you can save it to disk by typing:

SAVE DSK1.FILENAME ENTER

The number 1 after the DSK is the number of the drive you are
using. If you have more than one drive this might be a two or
three instead. Where we put the word FILENAME you type any
name that you want to give the file. The only rules about file
names are that they cannot be longer than 10 characters and
may contain any characters except the period or a space. The
DSK1 and the FILENAME must be separated by a period, and
no spaces.

When you use the SAVE instruction, the disk drive light will go
on and the drive will make a whirring sound for a few seconds.
Then your cursor will return and the file has been recorded.

39

You may check to see that the file has been recorded by using
the DISK MANAGER, selecting “Disk Commands’”, and
cataloging the disk.

Now let’'s see how to load a file from the disk into the
computer’s memory. Type:

NEW ENTER
This will remove any program already in memory. Now type:

LIST ENTER
No program will be there, and the computer will display:

CAN'T DO THAT
Now type:
OLD DSK1.FILENAME ENTER

To load the same program you just saved on the disk, you must
use the same FILENAME after DKS1 and the period. (If you
ever forget what files are stored on a disk, just use the DISK
MANAGER, choose “Disk Commands”, and catalog the disk.

This will give you a list of the names of all the files stored on
that disk.)

Again the disk will light up and whir. When it is done, type:
LIST ENTER

You will see that the program has been loaded back into the
computer from the disk.

40

Using The Voice Synthesizer

The Texas Instruments Voice Synthesizer is a box about two
inches high, two inches wide and five inches deep.

Looking at it from the front, where the Texas Instruments logo
appears along with the words ‘Speech Synthesizer’, you will
see on the left side a protruding plug about two inches long.
On the right side of the 99/4A is a little plastic door. Lift the
door and you will see a socket behind it. The speech synthe-
sizer plug fits tightly into this socket.

41

fow b oo b ow o ey s bw e T e ome e mm s e

WARNING! Do not plug the speech synthesizer in unless the
computer is turned off and unplugged. This is to avoid damage
from static electricity to the circuitry inside the speech
synthesizer.

The speech synthesizer is sold separately from the Tl 89/4A. It
gives the 99/4A a voice so that it can talk to you, or to members
of your family. It has a limited vocabulary of only 366 words,
but the suffixes -ing, -ed and -s may be added to any of them.
The speech synthesizer cannot be used without one of the
command modules that support it. We will use the Extended
BASIC command module to demonstrate the speech synthe-
sizer. The Extended BASIC module contains BASIC commands
beyond those that are already in the Tl 99/4A. Two of these let
you use the speech synthesizer.

If you do not have a voice synthesizer and command module
for it, you may want to skip to page 43.

If you have the EXTENDED BASIC command module, plug it in.
Plug in the speech synthesizer. Turn on the computer. The
start-up menu will have two choices:

1 FOR Ti BASIC
2 FOR T EXTENDED BASIC
Press the 2 key. The screen will go blank and then the

extended BASIC prompt will appear. This prompt is shorter
than the Tl BASIC prompt and just says:

‘READY’
42

Type the simple program:

10 CALL SPGET("HELLO"” ,WORD18$) ENTER
20 CALL SAY(,WORD1$) ENTER
30 END ENTER

Be sure to put the comma in before the W in line 20. Now RUN
the program. The computer will greet you with a cheery hello.

Do not worry that you do not yet understand how this program
works. You will before finishing this book. Just be happy that
you and your Tl 99/4A are on speaking terms.

Using The Joysticks

When you are writing on the screen, the cursor moves along
from left to right and from the end of one line to the beginning
of the next. Sometimes, however, you may want to move some-
thing around the screen, from one point to another. Some
games, for example, let you move space ships here and there
on the screen. To do this, you use joysticks.

Tl joysticks come in pairs, both joysticks connected to a single
plug. This plug goes into a socket in the middle of the left side
of the computer.

low b foo low bw by oo o Do v s o wd w wD o wed

The joysticks are mounted in a plastic box. Whichever
direction you move a joystick will be the direction in which
your spaceship or whatever will move on the screen.

TIP! With some game software and other programs, the joy-
sticks will not work unless the ALPHA LOCK key is up. The
ALPHA LOCK key affects the signals sent by the joysticks to
the computer. It is located at the lower left corner of the
keyboard. Pressed once, it stays down, and pressed again it
pops up. When using the joysticks make sure it is popped up.

To make the joysticks work you must have a command module
or program that uses the joysticks.

Conclusion

In this chapter we got started with the Tl 99/4A. You should
now understand how to set up the Tl 99/4A: how to plug it in,
how to connect various peripherals such as the speech
synthesizer and disk drives. You should be familiar with the
procedures for saving a program to a cassette tape and
loading it from tape back into the computer’s memory.

You should be able to make the Tl 99/4A obey a few simple
commands, and you should understand how to use the key-
board to write text, backspace, forward space and perform
several special functions.

Remember that you cannot hurt the computer in any way by
playing around at the keyboard. Let your imagination roam
freely. Use the “lI wonder what will happen if | do this”
approach. Make things happen. You will not understand all of
them, but don’t be confused. Everything will become clear as
we go along. After all, the more questions you have, the more
answers you will recognize when you come to them.

44

e oo fow fow o o o o bw we e wd e el o ol wed

COMPUTER HARDWARE

History Of The Computer

Humans have used devices to help them calculate since
before we began to record our history. No doubt the first
calculating device was our fingers. Then came simple
scratches in the ground, or rows of stones to keep track of
numbers being calculated. As calculations became more
complicated, early mechanisms were developed.

After the Renaissance in Europe, science, commerce and
manufacturing began to advance quickly. By the seventeenth
century, mathematics had become an important tool for
solving the problems met in these and other activities. As
mathematical problems became more complicated, especially
after the discoveries of trigonometry and calculus, some
scientists started thinking about how to use a machine to do
calculations which took people a long time to do, and at which
people made mistakes. In the seventeenth century, two mathe-
maticians invented the earliest of such machines. In France,
Blaise Pascal built a machine which could add numbers. The
machine had several wheels, with the digits 0 through 9 on
them. If you turned some of the wheels to the two numbers you
wished to add, other wheels would automatically be turned so
as to display the result. In Germany, Gottfried Leibniz built a
similar machine which could multiply as well as add, but it did
not always work.

The next great inventor of calculating machines was Charles
Babbage, an Englishman who worked in the first half of the
nineteenth century. Babbage contributed more to the history of
computers as a thinker than as an inventor, because most of
the calculating machines he thought up were never built. He
did, however, build one machine that worked, and he was the
first person to envision the basic parts that a computer must
have.

45

The working machine that Babbage built was called a
Difference Engine. It could add bigger numbers with more
accuracy than Pascal’s earlier machine, but it was still crude
by our standards. Babbage’s thoughts about what parts a true
computer must have were not at all crude. He was the first
person to think of a calculating machine as having input/
output, an arithmetic unit (he called it a mill), a means of
transferring data within the machine (electric circuits today,
but mechanical gears in his machines), and a memory (he
called it a store). Babbage also recognized the need for
conditional operations; that is, he saw that no important
automatic calculations could be done unless the machine
could choose the route a calculation would take, depending on
the result part way through the calculation.

Finally, Babbage borrowed an idea from the French inventor,
Joseph Jacquard. Jacquard had devised a way of punching
holes in cards, and using these cards as part of a mechanism
to control a loom. As different cards, with different patterns of
holes passed through the mechanism, the pattern woven into
the cloth changed accordingly. In effect, the loom was
programmed with punched cards. Babbage was the first
person to see that this method could be used to program a
calculating machine.

Herman Hollerith was working for the United States census in
1880, and saw that a lot of time could be saved if some way
could be found to count people automatically. During the next
ten years he invented a system to use punched cards to hold
data. Each card had a number of columns and rows, dividing it
into dozens of little boxes. A piece of data collected about
someone during the census could be represented by punching
out certain of the holes. Then, all the cards could be put into a
machine, the machine could add up all the holes in each
position. Hollerith made these cards on the same machines
used by the mint to make dollar bills. He used his invention to
save immense amounts of time during the 1890 census, and
went on to found a company which was the forerunner of IBM.

46

In the late 1920s, Vannevar Bush built the first useful analog
calculator at the Massachusetts Institute of Technology. Like
the machines of Pascal and Babbage, it was mechanical, but
technological developments in the meantime made possible a
more complex machine. The machine was constructed of
many gears and rods, and filled a small room. It was used to do
the large number of multiplications necessary to find the
answer to certain kinds of mathematical problems. Some of its
principles were later used in the first actual computer, the
ENIAC.

Until the 1930s, calculating machines were thought of as being
used only for “number crunching”, that is, for solving mathe-
matical problems that required many arithmetic operations.
The goal was to use a machine to solve these problems much
faster and with fewer errors than humans could. During the
thirties, however, work on more complicated calculating
machines gradually led various people to think about a
machine that could do more than just calculate. Such a
machine would be able to perform conditional operations,
would be electrical instead of mechanical, would be
programmable, would have some kind of memory—would be
more than a calculator. It would be a computer.

One of the first machines that could be called a computer was
the Mark |, built at IBM by Howard Aiken between 1939 and

o bo bo o o o o e o e o we wd e e e e

1944, Like other early computers, it was built primarily for use
in World War |l. Weapons had become so complex that lengthy
calculations were required to do things like aim long range
artillery or set bombing sights. The military needed machines
that could do these calculations faster than people. The Mark |
was the first large digital computer. However, it was not
electronic. It was electro-mechanical. That means that it used
mechanical relays to open and close electronic circuits. The
relays, in turn, were raised and lowered by electronic signals.
But the relays themselves were still mechanical, and very slow
compared to a completely electronic device.

Another electromechanical device was built at lowa State
University by John Atanasoff and Clifford Berry in 1942.
Atanasoff invented several new ways of designing a computer.
Although his machine was not widely used, many of his ideas
were adopted in building the first true electronic digital
computer, the ENIAC.

The ENIAC (Electronic Numerical Integrator And Calculator)
was built by a team headed by J. Presper Eckert and John
Mauchly, at the University of Pennsylvania, between 1943 and
1946. The ENIAC was built for the army and was expected to
perform the same kind of military calculations as the Mark |.
Unlike that machine, however, the ENIAC was completely
electronic. Instead of using mechanical relays to switch
circuits on and off, it used vacuum tubes, the same kind that
were used in radios. The ENIAC used over 18,000 vacuum
tubes, which made it very large—about a hundred feet long,
ten feet high, and three feet wide. It had a memory and was
programmable and far faster than any calculating machine
then in existence. Everything that the ENIAC could do can be
done today by a small desk-top computer.

While Mauchly and Eckert were working on ENIAC, their work
came to the attention of John von Neumann, a mathematician
who was working on the atomic bomb project. Von Neumann

48

saw that the ENIAC would be useful for doing some of the long
mathematical computations required by his work. As a result,
he became a consultant on the ENIAC project and contributed
some important ideas to it. He also helped write a number of
reports in which the ideas being developed on the ENIAC
project were systematically set forth, and expanded. The
design of a computer, as described in these reports, is, with
slight changes, the design of all modern computers, and it is
often referred to as ‘the von Neumann machine’.

The first generation of true modern computers followed soon
after ENIAC. These computers stored their programs in
memory, and could be programmed for much more complex
jobs than was formerly possible.

s = k=

The first fully programmable computer to be built was EDSAC,
and it was completed in 1949, at the University of Cambridge in
England. EDVAC was completed at the University of
Pennsylvania in 1951, the same year as another computer was
built by Mauchly and Eckert for Remington-Rand. This
computer was the famous UNIVAC, the first commercial,
electronic, digital computer. With its delivery to the Bureau of
the Census, the era begun by Hollerith had come full circle,
and a new age of computers was underway. Throughout most
of the nineteen-fifties, large vacuum tube computers were
made by such companies as IBM, Sperry-Rand (UNIVAC), and
Burroughs. These machines were used for scientific
calculations, and for a few commercial data-processing jobs.

All the computers discussed so far were vacuum tube
machines. In 1948 at the Bell Laboratories, John Bardeen,
Walter Brattain and William Shockley invented a transistor. In
1956 they received a Nobel Prize for this work. The transistor
performs the same functions as a vacuum tube, but it is tiny in
comparison and uses far less electricity. With the transistor,
new possibilities in computers were opened. In 1959 the first
transistor-based digital computers were delivered. The solid-
state era had begun, and with it, the second generation of
computers.

Transistors brought greater speed, smaller size and increased
flexibility. Because transistors occupied a fraction of the
space that vacuum tubes did, second generation computers
were much smaller. Also, computers with much more power
could be built and take up no more space.

Second generation computers had more sophisticated
memories. By the beginning of the second generation, internal
memories had advanced from crude, early forms like mercury
delay lines and electrostatic charges to magnetic drum and
magnetic core memories, and tape storage had made an
appearance. In the mid-60’s systems were built with disk
storage devices. Computers were used more and more for

50

commercial data processing in banks and other large
institutions, as well as for military, government and scientific
purposes. The leading companies during the sixties included
IBM, NCR, UNIVAC and Burroughs. Control Data Corporation
was founded during this time.

In 1964 the third generation of computers made their
appearance. The third generation, which is still current, is
identified with use of integrated circuits. An integrated circuit
is a ‘chip’ of silicon, about a quarter inch square, on which
thousands of microscopic transistors can be deposited. The
circuitry on such a ‘chip’ is more complicated than that of the
entire ENIAC.

By the early seventies, integrated circuits could be mass
produced cheaply enough to make possible inexpensive
computers whose entire processing unit was on a single chip
called a microprocessor. At first the new microcomputers

51

were built by hobbyists, but soon products like the Texas
Instrument 99/4A, Apple Il, TRS-80, Commodore PET, Atari 800,
and others proved that people would buy these small
computers for their homes and businesses.

The result of all this is that today more and more people are
learning about computers and using them. The computer
power that fifteen years ago was available only to large
corporations and government agencies now costs less than
half the price of an automobile. Some computers cost less
than $100. In the field of computer technology, new
discoveries are made virtually every day. Improvements come
along so fast that it is impossible for one person to keep up
with all of them. The search for ways to make tasks easier,
that began when a person first counted on his fingers, has
never stopped.

How A Computer Works

A computer is not a single device, but a number of machines
connected to each other. When the computer does a job, each
device does a part of the job. That is why we often speak of
computer systems.

The part of your Tl 99/4A that looks like a small typewriter
consists of a central processor, a memory and a keyboard. The
central processing unit, or ‘CPU’, is the part that controls what
the computer does. The CPU in your Tl 99/4A is all one
integrated circuit, or “chip”, that is called a microprocessor.

The microprocessor used in the Tl 99/4A is called a 9900. If you
are interested in technical things, you might like to know that
the 9900 is what is called a 16-bit processor, which makes it
faster than the 8-bit processors in most other home
computers.

52

DO IT NOW OR DO IT LATER

Computers do things only in response to instructions from a
human. Two kinds of instructions are used with computers:
immediate instructions and deferred instructions.

You may give your Tl 99/4A an immediate instruction (called a
‘command’) and it will obey immediately. Or you may group
several instructions (called ‘statements’) together and then tell
the computer to obey them all in order. Such a group of
instructions is called a program. When a computer is obeying
the list of statements in a program, we say it is running the
program. Once a computer is running a program, it will obey
each instruction in the program automatically, until the
program has finished running.

COMPUTERS DO THREE THINGS—
INPUT, OUTPUT, AND PROCESSING

A computer system does only three things: it inputs data,
processes data and outputs data. (‘Data’ is just another word
for ‘information’.)

Typing a letter on the keyboard is one example of computer
input. Input simply means data going into a device.

Processing is what the CPU does. Processing data simply
means changing it or transferring it from one place to another.

What goes in may also come out, and data coming out of a

device is called output. When the computer prints information
on the TV screen, you are seeing an example of output.

Input/Output

Input/Output, or ‘1/O’, is how the computer shares information
53

with you. In order to tell the computer what to do, you must
give it input. You have to “put in” your instructions.

The most common way of giving input to the Tl 99/4A is
through the keyboard. Each time you type a letter on the
keyboard, a message is sent to the CPU (central processing
unit). If you type a command into the computer, the CPU
receives it letter by letter, and processes your ‘input’ when you
press ENTER.

The computer can also input data from the joysticks, a tape
recorder or disk drive, and other input devices.

When the computer has finished processing your input, when
it has obeyed your command or run a program, it has to give
‘output’. Otherwise, you wouldn’t know it had done anything!
The Tl 99/4A usually displays its output, results or pictures, on
the TV screen. You can also make it print output on a printer, or
save it on cassette tape or floppy disk. If you have a speech
synthesizer, the computer’s output can be verbal!

Some /O devices can only do one part of the communications
job. A keyboard is only useful for input. A printer can only give
output. However, some devices, like the disk drive and tape
recorder, can both give data to the computer (input), and
record data from the computer (output).

How Data Is Processed

The central processing unit of a computer only does two
things: it transfers numbers from one place to another, and it
adds, subtracts, multiplies and divides them. Yet the CPU is
the “brain” of the entire computer system.

To understand how the CPU actually processes data, we
should know something about how the insides of a computer
are arranged and how the different parts work.

54

= b o e em bw e mm ww e e v e e w el e

ENCODING

Computers use numbers to stand for all kinds of information:
words, measurements, sounds, pictures and any other kind of
information. This is called encoding.

Encoding is quite simple. We use codes all the time. For
example, when we select channel seven on the television set
we are actually telling the television to show us the program
being broadcast at such and such a frequency. Seven is just a
code for that frequency. It is much easier to remember the
number seven than to remember, say, 80.2 kilohertz. Similarly,
all information inside the computer is represented by numbers.

ELECTRONIC DATA

Numbers and letters are called alphanumeric characters. “q”
is a character. “Q” is another character. All of the following
symbols are characters:1”$j@ ? HoO0.Eachcharacter
can be represented by a code. The most common computer
code for characters is called the ASCIlI code, usually
pronounced “AS-kee”. In ASCII, the upper case letters A
through Z are 65 through 90. The question mark is 63; the plus
sign is 43; and so forth.

What this means is that whenever you press a key on a
computer keyboard, the corresponding number is sent to the
computer’s CPU. Here is a table of the ASCII codes for all the
different characters:

55

o b b o w b Er b oo W e e e e e e o)

32 (space) 65 A 97 a
33 ! 66 B 98 b
34 67 C 99 ¢
35 # 68 D 100 d
36 $ 69 E 101 e
37 % 70 F 102 f
38 & 71 G 103 g
39 72 H 104 h
40 (73 | 105 i
41) 74 J 106 j
42 * 75 K 107 k
43 + 76 L 108 |
44 7 M 109 m
45 - 78 N 110 n
46 . 79 O 111 o
47 | 80 P 112 p
48 0 81 Q 113 q
49 1 82 R 114 r
50 2 83 S 115 s
51 3 84 T 116 t
52 4 85 U 117 u
53 5 86 V 118 v
54 6 87 W 119 w
55 7 88 X 120 x
56 8 89 Y 121 y
57 9 90 Z 122 z
58 91 [123 {
59 ; 92 \ 124 |
60 < 93] 125 }
61 = 94 A 126 ~
62 > 95 __ 127 (delete)
63 ? 96

64 @

56

The Memory
Every computer must have a place to store data.

A computer’'s memory is composed of thousands of cells.
Each cell can hold a number from zero to 255. Every character
on the keyboard is represented by some number in this range,
so we also say that each memory cell can hold one character.
This amount of memory, needed to fill one cell or store one
character, is called a “byte” (pronounced “bite”).

K=KILO

The memory in a Tl 99/4A can hold 16,384 bytes of data. We
call this 16K of memory. The K stands for kilo, which means
one thousand. Of course, 16,384 is more than 16,000.
Computer memory is built in chunks, usually chunks of 4096
bytes. The smallest memory a home computer would have is
4096 bytes, or 4K. The next largest memory would usually be
four times this, or 16K (16,384). No computer would have a
memory of exactly 4,000 or 16,000 bytes. It is an approximation
to refer to “16K".

RAM AND ROM
Computer memory is divided into two kinds, RAM and ROM.

ROM stands for Read-Only Memory. The computer can “read”
data out of the ROM, but cannot “write” new data into it. The
data in ROM is “built in” when the computer is assembled.
Some of this data helps control the computer’s most
fundamental operations. The Command Modules you use with
your Tl 99/4A also contain ROM memories. ROM memory is
permanent, and cannot be changed nor erased.

Most of a computer's memory, however, is used to store data
temporarily. This kind of memory is called RAM. RAM stands

57

for Random Access Memory, which means that data in any
part of the RAM can be read as quickly as that in any other
part. The 16K we mentioned in the last section was 16K of
RAM. The standard version of the Tl 99/4A comes with 16K of
RAM.

The data in RAM memory can be changed at any time, and is
used for many different purposes by the computer. Program
instructions are stored in RAM. So are words and numbers
which are needed by the computer while running a program.
There is a special section of RAM memory set aside as a sort
of “scratchpad”, which the central processor uses while doing
arithmetic. Even the TV screen display is in a certain part of
the changeable RAM memory.

ADDRESSING

That brings us to the question, how does the Tl 99/4A find the
right data in memory?

Each memory cell has a location, and each one is given a
number, from 0 to 16,383. (In the computer world, numbering
almost always starts with 0 instead of one.) The number of a
memory location is called its “address”. The computer is built
so that the CPU can send a byte of data to any memory
address or fetch a byte of data from any memory address.

So what kind of data does the computer keep in these regions,
anyway? The most important are, two kinds: program data and
storage data.

PROGRAM DATA

A program is a series of instructions which tell the computer to
do things. Each instruction which makes up a program
consists of several bytes of data. A program is stored in
memory.

58

STORAGE DATA

Any data in memory that are not part of a program instruction,
are called storage data. This includes many different kinds of
data, but for our purposes we will concentrate on strings and
variables.

STRINGS

A string is a group of characters always treated as a single
unit. For example, the word ‘computer’ is a string consisting of
eight characters. The expression ‘1234’ is a string of four
characters. Now, the string ‘1234’ is not the same as the
number 1234, as far as the computer is concerned. A string
must always be treated as a whole. To be able to do anything
worthwhile with a number, such as add, subtract, multiply or
divide it, you must be able to break it into parts and change the
parts around. That is why a computer cannot calculate with a
number that is expressed as a string. The computer stores
numbers in a very different way from strings.

VARIABLES

A variable is a number in a computer’s memory. Actually, a
variable is a special place or address in memory which you
have reserved and given a label. Let’'s say you give address
13123 the label ‘Mice’ as part of a program which counts mice
going through a maze. The number of mice that have gone
through will be kept at that memory address. Each time a
mouse goes through, the number will increase. That is, the
number kept at the location ‘Mice’ will vary. This number is
called a variable. The computer can use variables to keep track
of results during a calculation.

The Central Processing Unit (CPU)

Besides the memory, the other major part inside the computer
is the Central Processing Unit, or CPU. The CPU is the “brains”

59

of the computer. In our home computer, the entire CPU is in a
single integrated circuit, called a microprocessor.

The CPU controls everything that a computer system does.
Yet, as we said earlier, the CPU does only two things: it moves
numbers from one place to another, and it performs arithmetic
operations on those numbers. (By arithmetic operations we
mean addition, subtraction, multiplication and division.)

However, since everything is represented (or encoded) by
numbers inside the computer, the CPU can get a lot done by
“just moving numbers” and doing arithmetic.

When you type on the keyboard, the CPU moves the ASCII
code numbers into memory, and accepts your input. To give
output, it moves more numbers, sending codes to the TV
screen or printer. And by moving strings and variables, and
combining the arithmetic operations, the computer can carry
out commands, play video games, or ‘“talk” through the
speech synthesizer.

The parts of the CPU which concern us now are the Arithmetic-
Logic Unit (ALU) where the arithmetic operations take place,
and the Control Unit.

THE CONTROL UNIT

The Control Unit is the part of the CPU that keeps track of what
is going on. Everything the computer does is in response to a
program. Sometimes you write the program yourself. Some-
times it is stored in a command module or on a disk. The most
fundamental things the computer does are controlied by a
program built into the ROM. These include things like sending
the start-up display to the monitor screen when you turn on the
computer or sending a character to the screen when you press
a key on the keyboard.

60

P

Whatever program is controlling the computer, the Control
Unit is “running” it, command by command. For each
command, the Control Unit tells the other parts of the
computer what to do.

THE ARITHMETIC-LOGIC UNIT (ALU)

The ALU is the part of the computer that performs arithmetic
operations. If the control unit wants to add, subtract, multiply
or divide two numbers, it sends them to the ALU. The ALU
performs the required operation and sends the result back to
the control unit.

197 221.978

734X 65I=
q97.% 5 N
Z1X101.79-7 HA42610

T'&24B A izaxa =D
Sa92% ! 6-i0177>

yi7< 76 =
1Z24849.76

32426210 ,7 134 %X651= 9732 1.978
J2axih—> (mazrss 1112

6- 1077 75 \E1X¥ lor.79-7

sir¢ 762) LE28B, 1 P
174849.76 295274 =f

ow ke e e e mm e e e e o) wd

THINGS YOU CAN DO WITH TI BASIC

Now that you are familiar with the parts of the T| 99/4A
computer system, and you know something about how it
works and about computer history, it is time to play with it.
Professionals in the computer world often speak of playing
with computers, even large, powerful business systems. In
fact, using a computer can be a lot like play. You can try
anything that enters your imagination, and, like a playmate,
the computer will respond to whatever you do. Sometimes it
will even throw a fit. If that happens, do not be upset. It will all
blow over.

So now, let’s play. As we proceed, try out the instructions we
discuss, and feel free to try any changes you wish. If the
computer throws a fit you can always try pressing FCTN + or
even turning it off, and starting over. The more fun you have
playing with your computer, the faster you will learn how to
make it obey you.

In this chapter we will see many of the most useful commands
you can give the Tl 99/4A in the programming language called
BASIC. BASIC is one of the easiest to use of all programming
languages, and most personal computers can be programmed
in some version of BASIC. We will look at four major aspects of
Tl BASIC: numbers, text, graphics, and music. We will also
make the computer talk, using an extended version of BASIC
that has some additions to Ti BASIC. But first let us take a
moment to discuss some miscellaneous but important topics.

ERRORS, INSTRUCTION MODES,
FUNCTION KEYS, AND RESERVED WORDS

Before we start looking at Tl BASIC instructions, let’s look at
some things that will help you avoid being frustrated and will

62

make some of the exercises we do easier.
ERRORS

As you will see shortly, it is very easy to make a slight mistake
when typing an instruction to the computer. Leaving out a
single character, or putting one in the wrong place, or giving
the computer one number when it expects another are just a
few of the errors that are easy to make. If you do not make
several of these errors, you will be the first person in the
history of computing not to do so!

The main thing to remember about errors is that they can
always be explained and corrected. That may take some
careful reading of the section titled Error Messages in the
appendix of your User’'s Reference Guide. And it will take
patience. If you do encounter an error that you cannot figure
out yourself, a Texas Instruments Users’ Group may exist in
your community. Users’ Groups are clubs whose members all
use a certain make of computer, and they are excellent
sources of help and information. A list of TI Users’ Groups
appears as an appendix in the back of this book.

INSTRUCTION MODES—IMMEDIATE AND DEFERRED

To illustrate the TI BASIC instructions we are going to learn,
we will give two kinds of examples: immediate mode and
deferred mode. We met these two modes in the last chapter,
but it will be useful to review them here.

In immediate mode, you type in an instruction, press ENTER,
and the computer does whatever you instructed it to do. This is
quick, but it does not let you perform more than one instruc-
tion at a time.

Some instructions, however, cannot be used in immediate
mode. In such cases we will use the deferred mode, which is
just another way of saying that we will use a short program. In

63

that case, we will type in more than one instruction. Each
instruction will begin with a number called a “line number”.
The computer will not perform any of the instructions until we
type RUN and then it will perform all of them, one after
another.

THE FUNCTION KEYS

When you make a mistake in a program, you will have to go
back and fix the mistake. Since we will be using short
programs, it is time to learn about those function keys which
are used to alter program lines in TI BASIC. Knowing how to
use these keys will save you a lot of time when you want to
change or fix a program line. With the function keys you do not
have to retype the line, you can simply display the line and
then change only the characters that need to be changed.

In the world of computers, when you change something, such
as a program, by removing characters, adding characters or
substituting one character for another, we say you are
“editing”.

The keys we will be concerned with here are FCTN E, FCTN S,
FCTN D, FCTN 1, FCTN 2, FCTN 3 and FCTN 4. Some of these
keys have different uses, depending on what software is
running. We are only going to discuss their uses in editing
lines in a Tl BASIC program.

The FCTN (Function) key is like a “SHIFT” key: you hold it
down while pressing another key. For instance, to type FCTN
E, hold down the FCTN key and press the ‘E’ key.

FCTN E This combination of keys is used to display a
program line. Type the line number and then FCTN
E. The line will appear with the cursor over the first
character on the line.

64

FCTN S moves the cursor to the left within a program line.
FCTN D moves the cursor to the right within a program line.

FCTN 1 erases the character under the cursor and closes
the space which is left, by moving everything to the
right of the cursor one space to the left.

FCTN 2 starts the “insert mode”. In insert mode, every key
press will insert a character under the cursor and
move everything to the right of the cursor one space
over. To get out of insert mode, press either FCTN D
or FCTN S.

FCTN 3 erases the line completely.

FCTN 4 erases anything you have added to the line and ends
the edit. To see the line, type its number followed by
FCTN E again.

Let’s practice just a little with these keys. Type the following,
exactly as shown:

10 CALL CLEAR ENTER

20 PRINT ""HOW DO YOU DO?"" ENTER
30 END ENTER

RUN ENTER

This is an example of deferred mode. The CLEAR and PRINT
instructions are not executed when you type them, but only
later when the program is run. This simple program will make
the screen clear and print the phrase:

HOW DO YOU DO?
65

e bm b b ke e e e e o e e e o e ome wd

If this program does not work the way it should, type it over,
being careful to put in all the spaces and punctuation marks
exactly as shown. This is the long way of correcting a program.
We will learn a simpler way now.

Let’s change the program. Type:

10 FCTN E
The computer will display line 10, with the cursor:
10 WALL CLEAR

Use FCTN D and FCTN S to move the cursor back and forth on
this line. Then press ENTER.

Now type:

20FCTNE

The computer will display line 20:
20 WRINT ““HOW DO YOU DQo?”

Move the cursor to the H and type WHERE ARE YOU, so that
the line now looks like this:

20 PRINT ""WHERE ARE YOU?"

Now press ENTER and run the program by typing:
RUN ENTER
See the difference? Next type:

20 FCTNE
66

The computer will display:
20 BRINT “"WHERE ARE YOU?"

Move the cursor over the W and press FCTN 1 six times. Watch
the screen as you do this. The line now looks like this:

20 PRINT ''ERE YOU?"

Now press ENTER and run the program. Remember that when
you run a program the computer executes the instructions in it
automatically. To run a program type RUN and then press
ENTER.

Okay, that does not look complete. Let’s use FCTN E to edit
line 20 again. Move the cursor over the A and type FCTN 2
followed by HOW F and ENTER. Run the program. The result
should look like this:

HOW FARE YOU?

Now display the line again. Type anything you want, followed
by FCTN 4. When you display the line again with FCTN E, it will
be as it was before you made the last edit. Now type FCTN 3. |
hope you did not want to keep that line, because you just
erased it. Try looking at it again with FCTN E.

An even quicker way to erase a line, without using a single
function key, is to type the line number and press ENTER
immediately. Type:

10 ENTER
LIST ENTER

The computer will display the program with no line 10. (Line 20
was erased by our previous experiment, with FCTN 3.)

67

Now you should be familiar with the line editing functions of Tl
BASIC. When we start chapter four, on programming, we will
remind you to review line editing. In the meantime, you may
want to use these functions in some of the example programs
we will use throughout the rest of this chapter.

A summary of these editing functions appears as an appendix
in the back of this book.

RESERVED WORDS

When we start writing programs, you will learn that you can
make up words to be the names of variables. You can use
almost any combination of characters in making up these
names, but certain words are off limits. These words are, for
the most part, instructions in TI BASIC. When the computer
sees these words it thinks that you are giving it an instruction.
A list of these words appears in the appendix at the end of this
book.

Numbers

Numbers are to computers what blood is to humans. We have
already looked at binary numbers and decimal numbers. Now
we will see that computers have special ways of writing large
numbers.

EXPONENTS

A number multiplied by itself is said to be raised to the second
power. A number multiplied by itself three times is said to be
raised to the third power, and so on. For example: 2 to the
second power is four. 2 to the third power is eight.

2+2=4 2+2+2=8

(Computers use the symbol ‘+’ to mean multiplication.)
68

e b bo ko be b e mm od i e oo e e e we)

When using Tl BASIC, we write two to the second power like
this:

212

The upside-down “‘v” is typed by pressing the SHIFT key and
the 6 key at the same time. Try typing:

PRINT 2A3 ENTER

The computer will display the answer like this:

PRINT 2A3
8

In this example the the PRINT instruction is used in the

immediate mode. As soon as you press ENTER, the instruction

is executed.

SCIENTIFIC NOTATION

The Tl 99/4A, like most small computers, only has so much

room in its memory. One result of this is that it cannot display

all the digits of numbers over a certain size. Try typing this:
PRINT 9999999993 ENTER

The computer will display the number as you typed it. But try
this:

PRINT 10000000000 ENTER
The computer will respond with:

1.E+10
69

b by b s o b e mw e w ae o e o el e e

This is called scientific notation. 1.E + 10 means 1 times 10 to
the tenth power, or one followed by ten zeros. 2.38E + 4 would
be the number 23,800 or 2.38 times 10000. (10000 is 10 to the
fourth power.)

Arithmetic Operations

As we have seen, the arithmetic operations—addition,
subtraction, multiplication and division—are at the heart of
what a computer does. It is very easy to make the T| 99/4A
perform these operations.

ADDITION

Turn on your Tl 99/4A and get Tl BASIC running. You should
see the message and prompt:

TI BASIC READY
>

Type the following, making sure to leave a space between the
T in PRINT and the first 2:

PRINT 2+ 2 ENTER

The computer will print the answer, and your screen will look
like this:

PRINT 2+ 2
4

You have just instructed the computer to add two numbers and
print the answer.

70

o g b o ow b e v o T o v e o ed e el

INCORRECT STATEMENTS

Now try this. Type the following, which is the same instruction
that you just typed, but without any space between the T and
the first 2.

PRINT2 + 2 ENTER

What happened? You got an error message which looks like
this:

INCORRECT STATEMENT

Computers, for all that they can do, have no intuition. They
have to have things spelled out for them exactly. The Tl 99/4A
cannot recognize the end of a word, such as PRINT, unless itis
followed by a space. When the space is left out, the Tl 99/4A
thinks that the term PRINT2+2 is all one word. It does not
recognize it, since the BASIC language contains no such word.
Therefore, it displays an error message.

Every time you give an instruction to the computer, you must
make sure that you type it exactly the right way. The way an
instruction is written is called its syntax. If the syntax is
correct the computer will recognize it, if not it will stick its
tongue out at you, figuratively, and display an error message.

Don’t let that bother you. By the time you have finished this
book, correct syntax will be second nature to you.

SUBTRACTION

Subtraction, in Tl BASIC, works almost the same way as
addition. Type the following (don’t forget the spaces):

PRINT 4 -2 ENTER
' 71

The computer should display the answer so that the screen
looks like this:

PRINT 4 -2
2

Now try this:

PRINT 2 -4 ENTER

The result should look like this:

PRINT 2-4
-2

T1 BASIC can tell the difference between positive and negative
numbers. As you can see, a negative number is displayed with
a minus sign in front of it. It is not apparent, but positive
numbers are displayed with a blank space in front of them.

DIVISION

Division is a lot like addition and subtraction. Type this:
PRINT 4/2 ENTER

The computer should respond so that the display looks like
this:

PRINT 4/2
2

Now try this:
PRINT 2/4 ENTER

The result should look like this:

PRINT 2/4
5

72

ey kv b s bw b v Em oo we ww we e wd w owmdd e

TI BASIC knows decimal fractions. Next try this:
PRINT 2/@ ENTER
WARNING:
NUMBER TOO BIG
9.99999E + *+
Gotcha! You cannot divide by zero; if you try, the computer will

give you this friendly warning not to violate the laws of
mathematics.

MULTIPLICATION
In Tl Basic, we use the » to mean muitiplication. Try this:

PRINT 2+4 ENTER
8

All right, how about this:

PRINT 10000000000+ 1 0OOODCCOD0 ENTER
1.E+20

HIERARCHY
A problem arises with arithmetic operations. Say you write:
PRINT 2«3 + 6/4 ENTER

You might mean multiply two and three, add six to the result,
and divide that result by four.

2+3=6
6+6=12
12/4=3

73

Or you might mean add three to six, mulitiply that by two and
divide that by four.

3+6=8
2+:9=18
18/4=4.5

You might even mean multiply two by three and add to that the
result of 6 divided by four.

2+3=6
6/4=1.5
1.5+46=7.5

TI BASIC has a built-in rule to get around this problem. The rule
is: perform all multiplications and divisions first, then perform
additions and substractions.

first 2+3=6
6/4=1.5

second 1.5+6=7.5

The result you would get from the statement you wrote would
be 7.5, because the computer would first multiply two and
three to get 6, then divide 6 by 4 to get one and a half, then go
back and add the two together.

So how can you get the result you wanted, which is three? By
using parentheses to tell the computer how you want the
operations grouped. All operations inside parentheses are
performed before those outside parentheses.

For example, if you wrote your statement like this:

PRINT (2+3 +6)/4 ENTER
74

faw fow o b o o b e o o e e e e e wen) eed

the computer would first multiply two and three, then add six
and finally divide the result by four.

first 2+3=6
second 6+6)=12
third 12/4=3

The answer would be three.

Built-in Numerical Functions

One of the things computers do best is to perform complex
mathematical calculations, such as figuring out the square
root of an eight digit number. If you were a pretty good mathe-
matician, you could program the Tl 99/4A to calculate a square
root using the arithmetic operations. But most of us are not
such whizzes with numbers, so, since finding a square root is
something that might come up fairly often, a program for
finding square roots is built into TI BASIC.

In fact, several mathematical operations which might be used
often are built into Tl BASIC. These are called, reasonably
enough, built-in numerical functions. Sometimes, when time is
short, they are simply called ’intrinsics’. We are not going to
discuss them all, but we will look at these three of them:

SQR square root
INT integer
RND random number

SQR

The square root of a number is a second number which, when
multiplied by itself, gives the first number. For example, two is
the square root of four (2 times 2 is four), and 10 is the square
root of one hundred (10 times 10 is 100.)

75

Try this:

PRINT SQR(1@0) ENTER
10

PRINT SGR(25) ENTER
5

Notice the form (we say syntax) of the SQR instruction. The
number whose square root you are finding must be enclosed in
parentheses.

INT
This instruction takes a number that has a decimal point in it,
and chops off everything to the right of the decimal point.

Notice that this is not the same as rounding a number. Type:

PRINT INT(79.09876) ENTER
79

PRINT INT(1.9999) ENTER
1

RND

The random number instruction is just that—it returns a
random number between 0 and .9999999999, inclusive. Type:

PRINT RND ENTER
The computer will print some number in the range mentioned.

But, you might ask, what good is that? What if | want a random
number bigger than one? The answer is: multiply. For example,
say you want a random number between 1 and 6, inclusive, to
simulate the roll of a die. Since RND returns a number between

76

0 and .9999999999, the number it returns multiplied by 6 will
return a number between zero and just under six. Now if you
add one to that you will have a number between 1 and just
under seven. Next, use the INT instruction to lop off everything
between six and seven, and you have a number between 1 and
six, inclusive. Type:

PRINT INT(RND+6 + 1) ENTER

The computer will print a number between 1 and 6, inclusive.

Words

If computers could only use numbers, they would not be much
fun. Luckily, they can deal with words as well. We have already
seen that they do this by encoding each character on the
keyboard. We have also learned what a string is: several
characters treated as a unit. Let’s take that definition a little
further. Type:

PRINT 2+ 2 ENTER
4 .

Now type:

PRINT "2+ 2" ENTER
2+2

Well, that’s interesting. Quotation marks make a big
difference. In fact, putting the expression 2+2 inside
quotation marks tells the computer to treat it as a string, not
as two numbers and an arithmetic command.

Text is composed of strings. With TI BASIC you can play with
strings in a number of useful ways. Let’s look at a few of them.

77

ASC

Remember that in the last chapter we explained how every
character on the keyboard is represented by a code called an
ASCII code—the letter A is ASCII code 65, B is ASCII 66, and so
on. This instruction tells you (or the program you run) what the
ASCII code of a given character is.

The ASCII instruction tells the computer to return the ASCII
number of the first character in a string. The string, in
quotations is typed in parentheses following the instruction.
Type:

PRINT ASC("*A CAT") ENTER
65

PRINT ASC("ZEBRA'") ENTER
S0

CHR$
The CHARACTER instruction is the reverse of ASC. It returns

the character represented by an ASCII number that is typed in
parentheses following it. Type:

PRINT CHR3(65) ENTER
A

LEN
The LENGTH instruction tells you the length of a string. Type:

PRINT LEN(**A CAT") ENTER
5

78

The length is five, not four, because the space between A and
CAT is inside the quotation marks and counts as one
character.

SEG$

The STRING SEGMENT instruction returns a portion of a
string, that is, a substring. A substring is a string that is part of
another string. For example, ““am” is a substring of “example”.

What substring is returned by SEG$ depends on the
arguments you give the instruction. You always give it three
arguments: the string with which you start, the position within
that string of the first character of the substring you want and
the length of the substring. Type:

PRINT SEG$("'A BIG, OLD, ORNE
RY, STRIPED CAT"”, 21, 11) ENTER
STRIPED CAT

The substring, STRIPED CAT, starts at the 21st character
within the string, A BIG, OLD, ORNERY, STRIPED CAT.
(Remember, commas are characters too.) The substring is
eleven characters long.

POS

The POSITION instruction returns the location within a string
of a substring. Type:

PRINT POS(*'A BIG, OLD, ORNE
RY, STRIPED CAT","STRIPED", 1) ENTER
21

Within the string A BIG, OLD, ORNERY, STRIPED CAT, the
substring STRIPED begins at the 2ist character. The

79

arguments are the starting string, the substring and the
position within the starting string at which we wish to begin
looking for the substring. In this case we began at the first
letter.

VAL

The VALUE instruction looks at a string and returns a number
that is the value of the string. The characters in the string must
be those of a number, and they must be in quotes. Type:

PRINT VAL("'462")
462

PRINT VAL(''9.834"")
9.834

It may be difficult to understand why such an instruction is
necessary. As we will see in the next chapter, sometimes data
exists in the form of a string, but you want the computer to
perform arithmetic operations on it. For that to happen, the
string must first be translated into a number.

Graphics

Graphics is a word that is used in the computer world to mean
pictures. The Tl 99/4A can draw pictures, color them almost
any way you want and even make them move. In the following
section we will meet some of the instructions used to make
graphics. In the next chapter, on programming, we will use
these graphics capabilities in a BASIC program.

In Tl BASIC, graphics are built out of characters—not just the
characters on the keyboard, but characters to which you can
give any shape you like. You might, for instance, create several

80

fw o ko ks b b Eo mm bm w e e s mo D o e

characters so that when they are displayed next to each other,
they form a spaceship. Each character takes up one location
on the screen. Remember that the screen is divided into 32
vertical columns and 24 horizontal rows.

COLUMNS

1 2 345 67 8 9 1011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

@~ OO0 s WwN -

©

-
=

-
e

ROWS

-
Y

-
o

-
=

-
S

-
o

-
<©

N
=]

N
-

N
N

N
(=

n
B

Colors

The Tl 99/4A can display 13 different colors, plus black, white
and transparent. Uniless a character is a solid square, it will
not fill an entire location on the screen. Therefore, the
character might be one color, the parts of the location it does
not fill might be another color and the screen could be a third
color.

81

FOREGROUND
SCREEN BACKGROUND (CHARACTER)
COLOR COLOR COLOR

Normally, the foreground color of a character is black, the
background color is transparent, and the screen color is light
blue.

These colors may be changed using two subprograms. (If you
do not remember what a subprogram is, refresh your memory
by re-reading the section in chapter one titled Using the
Display.) These two subprograms are called COLOR and
SCREEN. COLOR and SCREEN can be demonstrated using
simple programs.

82

SCREEN
Type this:

10 CALL CLEAR ENTER

20 CALL SCREEN(2) ENTER
30 FOR J=1 TO 500 ENTER
40 NEXT J ENTER

50 END ENTER

RUN ENTER

The screen will go black for a couple of seconds. (If something
else happens, make sure you have typed exactly what is
shown. Remember how picky computers are about correct
commands.)

This little program uses the SCREEN subprogram to change
screen color. The SCREEN subprogram only works while a
program is running, so we have added lines 30 and 40 to make
the program run long enough to notice the color change. We
will learn the instructions used in lines 30 and 40 in the next
chapter.

Run this program a few more times, changing line 20 each time
so that each time you run it, the argument of the SCREEN
subprogram is a different number between 2 and 16.

COLOR

This subprogram changes the color of a character and the
color of its location. The character’s color is called the
foreground color and the color of the location is called the
background color. Using the above program which we wrote to
demonstrate SCREEN, change line 20 and add line 25 so that
the program looks like the one below, and then type RUN, as
shown.

(To change line 20 use the function keys for editing, as we
discussed at the beginning of this chapter. Type 20, then

a3

FCTN E. The line should be displayed with the cursor on it.
Make the change, then press ENTER.)

You can change line 20 and add line 25, without disturbing the
rest of the program. The Tl 99/4A will take care of putting the
statements in order according to the line numbers! You do not
have to retype lines 30 to 50.

1@ CALL CLEAR ENTER

20 CALL COLOR(5,16,7) ENTER
25 PRINT “ABCDE" ENTER

30 FOR J=1 TO 500 ENTER
40 NEXT J ENTER

50 END ENTER

RUN ENTER

The computer will print the string ABCDE in white letters on a
red background over a green screen for a couple of seconds.
The COLOR subprogram has three arguments. The second two
arguments are the foreground color and the background color,
respectively.

The first argument is the number of an ASCII group. Each
ASCII code belongs to one of these groups. There are sixteen
of these groups. The letters A through E (ASCII 65-69) belong to
group 5. A list of these groups appears below and in an
appendix at the end of this book.

ASCII GROUP ASCII GROUP
CODE NUMBER CODE NUMBER
32-39 1 96-103 9
40-47 2 104-111 10
48-55 3 112-119 11
56-63 4 120-127 12
64-71 5 128-135 13
72-79 6 136-143 14
80-87 7 144-151 15
88-95 8 152-159 16

84

o oo ur b tw b me e o e e o oo = = s owd

When the program you have typed is done, the colors will
return to their normal condition: black on a transparent
background over a blue screen. Color changes only last while
the program is running.

Try different color combinations by changing the last two
arguments of the COLOR subprogram. A list of available
colors and their numbers appears below and in an appendix at
the end of this book.

COLOR
CODE COLOR
1 Transparent
2 Black
3 Medium Green
4 Light Green
5 Dark Blue
6 Light Blue
7 Dark Red
8 Cyan
9 Medium Red
10 Light Red

11 Dark Yeliow
12 Light Yellow
13 Dark Green

14 Magenta

15 Gray

16 White

As you use this color chart, bear in mind that the colors you
see on the screen are affected by how the color controls on
your television or monitor are adjusted. If you do not get the
color you expect, try adjusting them differently.

85

bw bow bev ow o= bw oo e v oW by e o o = el e

Placing Characters Anywhere On The Screen
HCHAR

As you may have noticed, the PRINT instruction only displays
data at the bottom of the screen. The subprogram, HCHAR,
and its sister, VCHAR, let you display data anywhere you want.
Type this:

CALL CLEAR ENTER
CALL HCHAR(12,16,65,1@ ENTER

The computer will print a line of ten A’s, starting in the center
of the screen. The four arguments we gave HCHAR are as
follows: The first two numbers are the row and then the
column on the screen of the first character to be printed. In
this example we ask for the twelfth row down, sixteen spaces
over. The third argument is the ASCII code of the character, in
this case, 65 for A. The last argument is the number of times
we want the character repeated. We could leave this last
argument out, in which case the character would be printed
just once.

VCHAR

VCHAR is just like HCHAR, except that it prints vertical rows
of characters. Type this:

CALL CLEAR ENTER
CALL VCHAR(12,16,65,10) ENTER

You should see a column of ten A’s, starting in the middle of
the screen and running downward.

Character Definition

We mentioned earlier that you may create your own
86

b o bow b km e em em mm e mm ew = e ed ed el

characters, for instance, to form a spaceship. This is done with
the CHAR subprogram.

Every character in TI BASIC is made up of tiny squares.
Imagine a tiny checkerboard, eight squares on a side.

The letter A (ASCII 65) is formed like this:

We can use the CHAR subprogram to invert the letter A. Let’s
give our upside-down A the ASCII code 128. Here is how we
would do it. Type the following program, being sure that all
letters are in upper case (from here on out we will assume that
you will remember to press the ENTER key after each line and
after the run command without being reminded):

87

1@ CALL CLEAR

20 CALL CHAR(128,''4444447C44443800"")
30 CALL HCHAR(12,16,65,1)

40 CALL HCHAR(11,16,128,1)

5@ CALL HCHAR(12,15,128,1)

6@ CALL HCHAR(12,17,128,1)

7@ CALL HCHAR(13,16,128,1)

80 FORJ=1 TO 2500

90 NEXT J

RUN

The computer will print an A in the center of the screen and
surround it with inverted As. The first A is our old friend, ASCII
65. The other As are all ASCIl 128, which we have created
ourselves. Wow! How did we do that?

Here’s how. Let’s go back to our 8 by 8 checkerboard.

LEFT RIGHT

ROW 1
ROW 2
ROW 3
ROW 4
ROW 5 |
ROW 6
ROW 7
ROW 8

L
4
4
4
7
4
4
3
0

o ® A B o & H » D

Notice that the checkerboard is divided into 8 horizontal rows,
and each row is divided into a left side and a right side. So the
character area is divided into sixteen separate parts, each
composed of a horizontal row of four boxes. Some of these
boxes are dark, and form the shape of the inverted letter A. The

88

remaining boxes are light. When we define a character with
the CHAR subprogram we are telling the computer which
boxes are to be dark and which light. We do this according to a
kind of code which we will call our “character definition code”.

0

1

| L

89

These sixteen numbers represent all the possible combina-
tions of black and white boxes in a four-box row. The numbers
used are 0 through 9 and A through F. These are the digits of a
numbering system based on sixteen. This sixteen-base system
is called hexadecimal, or hex, for short, and it is used often in
the world of computing. Don’t worry if it puzzles you; just
remember that in hex, A is ten, B is eleven, C is twelve, D is
thirteen, E is fourteen and F is fifteen.

Now look back at the inverted A, as we divided it up into eight
rows. Let’'s look at the left half of row one. Only the second
square is black, so it would be the same as number 4 in our
character definition code. The right side of row one would also
be a 4. Both sides of rows two and three would also be 4s,
since in each of them, only the second from the left box is
dark. The left side of row four would be a 7, since the three
right-most boxes are dark. The right side of row four would be a
C, since the two left-most boxes are dark. If you continue
assigning code numbers to the inverted A, going from left to
right and top to bottom, you would wind up with the following
sequence: 4444447C44443800. Does this look familiar?

Right! Back to our little program. In line 20 we gave the CHAR
subprogram two arguments. The first was 128, the ASCII code
to which we are assigning a new character. The second
argument was a string (in quotation marks) composed of the
16 numbers we just created: 4444447C44443800. The rest of
the program simply placed an old ASCI| 65 A in the middle of
the screen and then surrounded it with the new ASCII 128 A’s,
and then kept the program running for about six seconds.

Try changing the second argument of the CHAR subprogram,
and see what new characters you can create.

90

Sound
TONES

In addition to handling numbers, text and graphics, the TI
99/4A can also produce music. The basic unit of music, of
course, is the single tone. TI BASIC creates a tone with the
SOUND subprogram.

Make sure that the volume control on your television or
monitor is turned up, and type this:

CALL SOUND(1000,330,15)

The computer plays a note through the loudspeaker of your
television or monitor. The first argument you gave the SOUND
subprogram determined the duration of the tone, the second
controlled the frequency of the tone, and the third gave the
loudness of the tone.

DURATION

Duration is how long the tone lasts. The duration argument
may be any number between 1 and 4250, inclusive. A duration
of 1 would last .001 second, and a duration of 4250 would last
4.25 seconds.

You may also give a duration argument of -1 to -4250
inclusive. In a single SOUND subprogram, such as we typed
above, a minus duration would sound the same as a positive
duration. However, if you follow one SOUND subprogram with
another one in a program, a negative duration in one will cut
off the duration of the previous one. For example, type:

10 CALL SOUND(4200,300,15)
20 CALL SOUND(-500,600,15)
RUN

91

The first tone will be cut off almost immediately.

FREQUENCY

Frequency determines the pitch of a tone, whether it is high or
low. The lowest frequency argument is 110 and the highest is
44733, which is way above what a human can hear, although it
may make your dog smile and wag its tail. For those of you
who read music, a frequency of 220 is A below middie C, and
110 is an octave below that; a frequency of 880 is A above high
C and 1760 is an octave above that. For other musical
equivalents, see the appendix in the back of this book.

PIANO OCTAVE

.

MIDDLE

C|D|(E|F|G|]A]|B]|C

SOUND 262 294 330 349 392 440 494 523
FREQUENCY 277 311 370 415 466 554

Type this:
CALL SOUND(1002,110,15)

Listen to the tone this produces. Then try the same
subprogram substituting different frequencies for 110.

The frequency argument may also be in another range: -1to -8
inclusive. -1 through -4 produce what Texas Instruments calls

92

s o oo bm oo bm e b ow e e e e e e e e

“periodic noise”, which sounds like a robot trying to hum.
Frequencies of the -1 through -3 noises are fixed, but the
frequency of the -4 noise varies, as we will see in the section
on harmony, below.

Frequencies in the range -5 through -8 produce what Texas
Instruments calls “white noise”, which sounds something like
radio static. Noises -5 through -7 are fixed, and noise -8
varies, as we will see. The best way to become familiar with
these noises is to play with them. Call the SOUND subprogram
a few times, each time using one of the minus frequencies.

Remember that the duration must be long enough to hear the
tone and that the three arguments must all be present, inside
parentheses, separated by commas.

LOUDNESS

Loudness is the third argument in the SOUND subprogram.
The value of 0 for this argument gives the loudest tone and the
value of 30 gives the quietest. Of course, the loudness is also
affected by the setting of the volume control on your television
or monitor. Type:

CALL SOUND(1 000,300,4)
CALL SOUND(1022,300,13)
Try using the SOUND subprogram with various different
loudness arguments.
Tunes
A tune is simply a number of tones played one after the other.

Let’'s see how you can play a tune on the Tl 99/4A. Let's be
patriotic today, and try the first few notes of the Star Spangled

93

Banner. Type this:

10 CALL SOUND(500,300,15)
20 CALL SOUND(500,250,15)
30 CALL SOUND(500,200,15)
40 CALL SOUND(500,250,15)
5@ CALL SOUND(500,300,15)
6@ CALL SOUND(500,400,15)
RUN

Play ball! Whoops, | thought for a moment. . .boy, that was
realistic, wasn't it? Now, see if you can finish the whole
national anthem. (You don’t have to stand up while you play it
unless you want to.) Or, if that seems a tedious assignment,
let’'s get fancy and move on to. ..

Harmony

TI BASIC can play not only one note, but three notes at a time,
and three notes plus one noise. This gives you almost endless
possibilities for combining different notes. To see how this
works, type this:

CALL SOUND(2000,300,0,500,15,700,15)

The computer plays a chord, the lowest tone of which is louder
than the other two. The first argument is still the duration, and
it will be the same for all three notes in the chord. The second,
fourth and sixth arguments are the three different frequencies.
The third, fifth and seventh arguments are the loudnesses for
each frequency. You may even add a noise by including a
fourth argument with a minus frequency. Type:

CALL SOUND(2000,300,0,500,15,7@0,15,-4,15)

Here we used the -4 noise. Although it is hard to tell, the sound
of this noise varies depending on the frequency of the third

94

tone in the chord. The same is true of the -8 noise.

It may be difficult to tell the difference between different
versions of the SOUND subprogram, especially if they are not
played one right after the other. Play around with different
combinations and try writing short programs like the one we
used for the Star Spangled Banner, so that you can hear
different harmonies played one after the other.

Speech

This section on speech takes you beyond Tl BASIC. Tl BASIC
by itself has no speech capabilities. However, a number of
command modules add speech to TI BASIC. One of these is
the TI EXTENDED BASIC module, which adds several
capabilities to what Tl BASIC can do, including speech. Of
course, to make your Tl 99/4A talk, you also have to have the TI
Speech Synthesizer.

If you have the TI EXTENDED BASIC command module and the
speech synthesizer, you can make the computer speak any of
366 words, in any combination. Furthermore, you can add the
suffixes ing, ed and s to any of these words. For some reason,
this vocabulary leaves out some of the most important words
in the English language, such as love, money, food and happy,
to name a few. Oh well, we will just have to make do.

The instruction that makes the Tl 99/4A talk is the SAY
subprogram. Make sure the Speech Synthesizer is plugged in;
get out of TI BASIC by pressing FCTN +; if necessary, turn off
the computer, insert the TI EXTENDED BASIC command
module, turn on the computer and select TI EXTENDED BASIC
from the start-up menu. Then type:

CALL SAY("'I WORK WHEN | CAN")
95

In a voice like a slightly hoarse, but friendly robot, the
computer will tell you that it works when it can. Computers are

TLL SAY
ANYTHING YOoUu
WANT/

As you can see, the argument of the SAY subprogram is a
string of words selected from the built-in vocabulary. This
vocabulary consists of some 366 words, as mentioned above.
The string of words for the computer to pronounce must be
enclosed in quotes, inside parentheses.

Conclusion

In this chapter we looked at some of the instructions in Tl
BASIC. With these instructions you can make your Tl 89/4A do
some very impressive things: play music, speak, produce a
rainbow of colors. In the next chapter we will look at the
workhorse instructions of Tl BASIC. These instructions work
behind the scenes to control the effects which we learned how
to make in this chapter.

96

PROGRAMMING IN TI BASIC

Before we start learning how to write programs, go back and
review the sections at the beginning of Chapter I, titled
ERRORS, INSTRUCTION MODES, FUNCTION KEYS and
RESERVED WORDS.

A Few Words About Program Lines

By now you know what a program written in T| BASIC looks
like. It is composed of a set of lines. Each line begins with a
line number and consists of instructions and their arguments.
These instructions and arguments look a little like English
words, but you cannot read them as English.

REM

We are going to spend the rest of this book writing programs in
TI BASIC. By the time we are finished we will have written quite
a few lines of BASIC. A few months from now, we might look at
these lines and not remember what they mean. It would be
even harder for someone else to understand them without
spending a lot of time studying them. We use the REM instruc-
tion to make it easier for a human to understand a program.

REM is short for “Remark”. REM statements are messages
that you add to your programs. These messages explain the
programs in which they appear. They do not affect the
computer; they are for the benefit of people reading the
program listing.

The REM instruction must go at the beginning of a line. It tells
the computer to ignore everything that follows on that line.

Here is how the REM instruction works. Type:
97

1@ REM A SHORT DEMO PROGRAM
20 PRINT “THIS IS A PROGRAM"
30 PRINT “WRITTEN IN TI BASIC"
40 END

RUN

This is a demonstration. In line 10 we use a REM to remind
anyone reading the program that it is a “short demo”. When
you run the program, line 10 does not cause anything to
happen because it begins with a REM.

Memory Use

A computer can store information in its memory. We will
discuss several kinds of information that the computer can
“remember”, including numbers, strings, numeric variables,
string variables, and arrays.

Numeric Variables

A numeric variable is a place in the computer’s memory. Think
of it as a box. It contains a number, but that number may
change from time to time. This box has a name, called a
variable name.

The name of a numeric variable may be up to 15 characters
long. The name may include any letter or any number, but it
must start with a letter.

Examples of names for numeric variables would be:
P PEOPLE PPL Pi

For example, say we are writing a program to keep track of
people going in and out of an elevator. We may use the name
PEOPLE to stand for the number of people in the elevator at a
given time. As the number of people in the elevator changed,
the number stored in the variable PEOPLE would have to be
changed.

98

LET

In TI BASIC a number is put into a numeric variable by using
the LET instruction. Type:

LETA =4

This will put a 4 into the variable named A.
PRINT A

The computer will print the number 4, which is the number that
is stored in the variable A.

1@ REM DEMO LET STATEMENT

20 CALL CLEAR
30LETA = 4
4ADLETB =5
SO PRINTA « B
BOLETB =6
70PRINTA * B
80 END

RUN

The computer will print:

20
24

In this program we start off with a REM instruction in line 10,
so that we have an explanation of what the program does. In
line 20 we use the CLEAR subprogram to clear the screen and
avoid confusion. In lines 30 and 40 we put the numbers 4 and 5
into variables. The names of these variables are single letters:
A and B.

In line 50 we multiply the number in A by the number in B and
print the result. Remember that the asterisk is the BASIC sign
for multiplication.

99

In line 60 we change the number in variable B. In line 70 we
again print the result of B times A, and of course, we now get a
different answer, since there is a different number in B.

In line 80 we end the program with an END instruction. It is a
good idea to get into the habit of ending all programs with an
END instruction.

TIP! The LET instruction consists of the word LET, a variable
name, an = sign, and a number:

LETA =4

However, in this instruction, the LET is not necessary. You can
leave it out if you wish:

A=14

The computer assigns a value to the numeric variable
whenever it sees a variable name, an = sign and a number. Try
changing the program with the FCTN keys so that the word
LET is eliminated. Then run the program. It should work
exactly as before.

Strings

A word, a sentence, or any other group of characters is called a
string. For example, type:

PRINT ““HIYA FELLA"
The computer will display the string:

HIYA FELLA

The group of characters, HIYA FELLA, is a string.
100

String Variables

Just as numbers may be stored in numeric variables, strings
may be stored in string variables. A string variable is a space in
memory that can hold a string. The name of a string variable
stands for that place in memory. A string is stored in that
space by using the LET instruction (or just an = sign).

The following commands all store strings into string variables:

LET X$ = “NOW IS THE TIME"
LET PHONE$ = "*BEACHWOOD 4-5769"
ADDR$ = ‘328 ELM ST."

The name of a string variable must begin with a letter, may be
up to fifteen characters long, and may contain any letters or
numbers. It must end with a $. The $ tells the computer that
this is a string variable and not a numeric variable. When
assigning a string into a string variable, the string must be in
quotation marks.

Type:
1@ REM TEST STRING VARIABLES
20 CALL CLEAR
30 LET A$ = “HIYA FELLA. WHAT'S HAPPENING?"'
40 LET B$ = "‘GOOD DAY, SIR. | FEAR RAIN."”
50 PRINT AS
55 PRINT B%
60 LET B$ = ““A POX ON ALL MISANTHROPES."
70 PRINT
80 PRINT AS$
85 PRINT B$S
90 END
RUN

101

The computer will print:

HIYA FELLA. WHAT'S HAPPENING?
GOOD DAY, SIR. | FEAR RAIN.

HIYA FELLA. WHAT'S HAPPENING?
A POX ON ALL MISANTHROPES.

Notice our use of the PRINT instruction all by itself in line 70.
This causes the computer to print a blank line, skipping a line.

We have now learned what strings and string variables are.
Strings are groups of characters. String variables are spaces
in the computer’s memory that can hold groups of characters,
like words or sentences. The name of a string variable will
stand for whatever string is stored in it.

Arrays

A numeric or string variable is a single box in the computer’s
memory. An array is a group of these boxes. It may be a row of
boxes or a checkerboard of horizontal and vertical boxes.

An array is a list of numbers or strings. A list has more than
one item in it. Therefore, when you want to get a particular
number or string out of an array, you have to tell the computer
both the name of the array and which item on the list you want.
With an array, this is done by putting the item number in
parentheses after the array’s name.

For example, say you want to keep track of the heights of
students in a class of six. If students in the class were
represented by the array name S, then the height of student
number one would be S(1), the height of student number two
would be S(2), and so on. The height of the sixth student would
be S(6). Each of these would be a member of the array S.

102

ARRAY OF STUDENTS’ HEIGHTS (IN INCHES)

S(S S@ S@ sG) s
58 61 65 56 61 68

Like variable names, array names must begin with a letter. The
name may be up to fifteen characters long, and may consist of
any letters or numbers. If an array name is the name of a string
array it must also end in a $.

An array may be a list of strings instead of numbers. In that
case each element in the array would be a different string. For
example, each element in our array might contain a student’s
name, instead of his or her height. But a name is a string, not a
number, so the array name would have to be S$, and the
elements would be S$(1), S$(2), etc.

ARRAY OF STUDENTS’ NAMES

S$(1) S$(2) S$(3) SH4) S$(B5) S%(6)
JOE SUE BILL JIM MARY JANE

DIM

The DIM instruction sets aside space in the computer’s
memory for an array. The DIM instruction must be used only
once in a program for each array in that program—once an
array is DIMensioned in a program, it may not be
reDIMensioned.

To see how to use DIM, let’s use a program that adds together
the heights of all the students in our class. Type this:

103

1@ REM TEST DIM INSTRUCTION
20 CALL CLEAR

30 DIM N(B)

40 S(1)=58

50 S(2) =61

B0 S(3) =65

70 S(4) =56

80 S(5) = 61

90 S(6)=68

100 PRINT S(1) + S(2) + S(3) + S(4) + S(5) + S(6)
110 END

RUN

In this program, line 30 reserves six places in array N. Lines 40
through 90 put numbers into the six places in the list. Finally,
line 100 adds these numbers up and prints the sum.

The computer will display:

368

Conclusion

In this section on memory use we have learned about numeric
variables, string variables and arrays. Each of these is a space
in the computer’'s memory. The numeric variable holds a
number. The string variable holds a group of characters. The
array holds a list of either numbers or strings.

Numeric variables, string variables and arrays all are given
names. These names may be up to fifteen characters long and
must start with a letter. The name of a string variable or a
string array must end in a $.

104

INPUT/OUTPUT

One of the most valuable features of a computer is that you
can communicate with it. It can talk to you, and you can talk to
it. When you talk to the computer it is called input, and when
the computer talks to you it is called output.

Tl BASIC uses several instructions to receive and to send
information.

PRINT

You are already familiar with the PRINT instruction. You know
that it displays numbers or text on the screen. What it displays
is a form of output, since it is information being given to you.
PRINT is the most important output instruction in TI BASIC.

We have not yet looked at how the PRINT instruction works
when it is printing more than one item at a time. For example,
you might want to print two string variables with one PRINT
statement. The PRINT instruction would put both strings on
one line by using one of three characters called print-
separators. The characters are the semi-colon, the colon and
the comma.

The semi-colon is used to link print elements together. Type:

PRINT “HIYA FELLA";""HIYA YOU
RSELF."

The computer will display:

HIYA FELLAHIYA YOURSELF
105

o » o oo e e e b Do e oe wd e ey e o e

Whoops, the two sentences are a little too close together.
We’'ll fix that next time. For now, it shows how the semi-colon
works. Items that are to be printed, such as these two strings,
are called print elements. The string HIYA FELLA is the first
print element, and the string HIYA YOURSELF is the second
print element. We could have more print elements if we
wanted. For example, we could have a PRINT statement that
looked like this:

PRINT “HI"";"THERE"';""HOW"";""ARE"";"'YOU"

TIP! If the combined length of print elements is greater than
twenty-eight characters, the print element that takes the total
over twenty-eight will be printed on the next line, semi-colon or
not.

The colon is used to print an element on the next line every
time. Type:

PRINT “HIYA FELLA ";"HIYA YO
URSELF":"YUP"

The computer will display:

HIYA FELLA HIYA YOURSELF
YUP

See the difference?

An Aside

Remember a moment ago we said that we would fix the
problem of words FELLA and HIYA running together? In our
last example we did that simply by adding a space after FELLA
and before the following quotation mark. The space becomes
the last character in the string, HIYA FELLA .

106

Back To PRINT

To understand how the comma print-separator works you must
know something about how the T1 99/4A organizes its display.
The screen is divided into a right half and a left half, each 14
columns wide. The comma causes print elements to be printed
on alternating halves of the screen. Type:

PRINT “A-ONE™,"AND A-TWO","A
ND-A THREE",""AND A-FOUR"

If you are not a Lawrence Welk fan, try the same example with
different print elements.

The three print separators—semi-colon, colon, and comma—
work the same way with numbers, numeric variables and string
variables as they do with strings. Numbers will not be run
together with the semi-colon, however, because they are
always printed with a space following them, and they always
have either a minus sign or a space preceding them. Type:

PR'NT “A";-‘ ;“B";z;“C";“D”

The computer will display:

A1B2CD

INPUT

INPUT causes the program to wait until you have typed
something at the keyboard and pressed the ENTER key.

107

Type:

10 REM TEST ‘INPUT"

20 CALL CLEAR

30 PRINT "'PLEASE TYPE YOUR NAME"
35 INPUT NAMES

40 CALL CLEAR

50 PRINT "“HI THERE '*;NAMES$

60 END

RUN

The computer will invite you to type your name and will display
a question mark, although on some television screens you may
not be able to see the question mark. Type your name, then
press ENTER. The computer will erase the screen and then
display whatever you typed.

The string variable NAME$ now stores what you typed. You
can check that by using the immediate mode to print NAMES.

Type:

PRINT NAMES

You are already familiar with the REM statement and the CALL
CLEAR subprogram we use in lines 10, 20 and 40. Line 30 asks
you to type your name. Line 35 is the INPUT instruction that
stores what you type in the string variable NAMES$. Line 50
prints the string stored in NAMES$. Line 60 ends the program.

If you wanted, you could combine 30 and 35. The INPUT
instruction lets us give the user a message. The message must
follow the word INPUT and be in quotes. It must be followed by
a colon which is followed by the string variable. If we used this
form of INPUT our program would work exactly the same way
and would look like this:

108

1@ REM TEST ‘INPUT

20 CALL CLEAR

30 INPUT “'PLEASE TYPE YOUR N
AME":NAMES

40 CALL CLEAR

5@ PRINT "*HI THERE **;NAMES$

60 END

You do not have to use any message with INPUT. If you don't,
you simply follow the INPUT instruction with a variable.
Change the program so that line 30 looks like this, then run it:

30 INPUT NAMES

The INPUT instruction may return information into a string
variable, as we have done, or into a numeric variable. INPUT
also may return information into a combination of variables. If
more than one variable is used, each variable must be separated
by a comma from the one following. Change lines 30 and 50 so
that they look like this, and run the program: (Notice that we
break the lines so that they look as they will when you type
them on the Tl 99/4A. Be aware that neither line 30 nor line 50
ends until you finish typing PHONENUMBER, so don't press
ENTER until then.

30 INPUT FIRSTNAMES,LASTNAME
$, AGE,PHONENUMBER

50 PRINT ““HI THERE *'; FIRSTN
AMES;" "';LAST NAMES;" WHO IS
";AGE;" YEARS OLD AND WHOSE
NUMBER IS "';PHONENUMBER

Try running the program now.

Note that in line 50 we again insert a space between two
strings (the first and last names) so that they will not be run
together when the computer prints them out.

109

When a single INPUT instruction asks for several variables you
must separate them with commas. You must also make sure
that you input a string when the computer expects a string and
a number when it expects a number.

KEY

The KEY subprogram is used to send a single character to the
computer. Its advantage is speed: you do not have to use the
ENTER key. Its disadvantage is that you can input only one
character.

The KEY program has three arguments: a number, a return
variable and a status variable. You may decide what you want
to name the variables. When you use the KEY subprogram, a
code that represents the pressed key is stored in the “return
variable”. In other words, the return variable is used to store a
key that you type. Type:

10 REM DEMO KEY SUBPROGRAM
20 CALL CLEAR

30 PRINT ““PLEASE PRESS A KEY "
4@ CALL KEY(3,RETVAR,STATUS)
50 PRINT RETVAR, STATUS

B0 IF STATUS =@ THEN 40

70 END

Note that the reason we name the return variable RETVAR
instead of RETURN is that RETURN is a reserved word and
cannot be used as the name of a variable. We discussed
reserved words in the previous chapter. We name the status
variable simply STATUS.

When you run this little program the computer, in obediance to
line 30, prints an invitation to press a key. Then it executes the
next lines, lines 40 and 50. This all happens in a tiny fraction of
a second. You have not had time to press any key yet, so the

110

value of RETVAR, when it is printed at line 50, is -1 and the
value of STATUS is 0, meaning that no key has been pressed.
Since the value of STATUS is 0, at line 60 the program goes
back to line 40 and repeats. This is called a loop, and we will
see more of loops before long. The program will repeat a loop
or two before you can press a key. Note that each time a loop
repeats, the KEY subprogram is executed.

When you finally press a key, line 50 prints the code for that
key—the value of RETVAR—as well as a new value for
STATUS. STATUS is no longer 0 so line 60 does not send you
back to line 40, and the program ends. Normally the code
stored in the return variable is the ASCII code for the character
whose key you pressed. Try running the program a few times,
pressing different keys, including function and control keys.

As we have seen, the status variable (which we have named
STATUS) stores a zero if no key is pressed. When a new key is
pressed, STATUS stores a one.

TIP! A common use for the KEY subprogram is simply to cause
a program to pause, for instance, while the user reads a
display. He may read for as long as he likes, while the program
waits for him to press a key. Then, at his own time, he may
press a key and continue. To use KEY this way you would leave
out line 50. We will be using KEY as a program pause in the
next chapter.

We still have not discussed the first argument of the KEY
subprogram, which is not a variable but a number between 0
and 5, inclusive. This argument is called a “key unit”.

From now on, we will use the key unit 3, in which the computer
ignores control codes. This is the best key unit for beginners in
Tt BASIC. The other key units have special purposes.

Key units one and two are used with the joysticks. They are
used to take advantage of the fire button on the joysticks.

111

When the button is pressed, the KEY subprogram will return
the number 18 in the return variable if the key unit is a one or a
two. See the section below on the JOYST subprogram.

Key units 0, 4 and 5 are for advanced uses. When you have
gone beyond the beginner stage you may want to find out more
about them.

CONTROL INSTRUCTIONS

Control instructions are used to control the path that a
program takes. Left alone, TI BASIC will start at the first line of
a program, then obey each line in order until it reaches the end.
Control instructions are used to alter that order, so that a
program may jump from one line to a line above it or below it.

T1 BASIC uses four major control instructions: GOTO, GOSUB-
RETURN, IF-THEN-ELSE and FOR-TO-STEP-NEXT.

GOTO

GOTO Is the simplest control instruction. It tells the program
not to execute the next line, but to jump instead to some other
line; that is, to GO TO another line. The number of that line is the
argument of the GOTO instruction. The line number, and only
the line number, must follow the GOTO instruction, on the
same line.

First, here is a program with no GOTO in it. Type:

1@ REM DEMO GOTO
20 CALL CLEAR

30 PRINT “"AAAAA™
40 PRINT “‘BBBBB”
50 PRINT “‘CCCCC"
60 PRINT *‘DDDDD"
70 PRINT “EEEEE"
80 END

RUN

112

The computer will display:

AAAAA

BBBBB

CCcccc

DDDDD
EEEEE

DONE

Now type a line 35 so that the program looks like this:

1@ REM DEMO GOTO
20 CALL CLEAR

30 PRINT "AAAAA™
35 GOTO 70

4(PRINT “BBBBB"”
50 PRINT ‘‘CCCCC"
60 PRINT “DDDDD’
70 PRINT **EEEEE"
80 END

RUN

The computer will display:

AAAAA
EEEEE

Now try this, erasing line 35 and typing a line 75 like this:

1@ REM TEST GOTO
20 CALL CLEAR

30 PRINT "AAAAA™
40 PRINT “BBBBB”
50 PRINT **CCCCC"
60 PRINT “"DDDDD"
70 PRINT "'EEEEE™
75 GOTO 30

80 END

RUN

113

The computer will type lines of letters forever, because
whenever it comes to line 75, that line directs it back to line 30,
where it starts all over, forever. To stop it press FCTN 4 .

Loops

This kind of repetition is called a loop. In this case, since there
is no way of escaping from the loop, short of stopping the
whole program, it is called an endless loop.

How could we have escaped, other than by pressing
FCTN 4 ? We’ll see that in the next chapter, so stay tuned.

GOSUB-RETURN

A “subroutine” is a part of a larger program. The lines in a
subroutine do some special job. Each time that job needs to be
done, the program jumps to the first line of the subroutine and
obeys the lines in the subroutine. When the program has
finished with the subroutine, it jumps back to the line it came
from.

This is done with the GOSUB instruction. GOSUB sends the
program to a subroutine, and RETURN sends it back. Every
subroutine must end with a RETURN instruction.

Type:

10 REM GOSUB-RETURN
20 CALL CLEAR
30S$="A"

40 GOSUB 10¢0

50 S%="B"

60 GOSUB 1000
708%="C"

114

80 GOSUB 1000

90 S$="D"

100 GOSUB 1000

110 S$="E"

120 GOSUB 1200

130 END

1000 REM SUBPROGRAM
1010 PRINT “LETTER ;S8
1020 RETURN

RUN

The computer will display:

LETTER A
LETTER B
LETTERC
LETTER D
LETTERE

DONE

In this program we assign different one-letter strings to the
string variable S$, in lines 30, 50, 70, 90, and 110. Each time we
do that, we then send the program to line 1000 by using a
GOSUB instruction. In line 1010, the word LETTER is printed
followed by whatever letter is stored in S$. At line 1020, a
RETURN instruction sends the program back to the point
where it was before jumping to the subroutine that begins at
line 1000.

The suffix SUB in GOSUB stands for subprogram, sometimes
called subroutine. This is a part of a program which does
something that you will want repeated several times. In this
case it printed the string “LETTER " with whatever the variable
S$ was. It is important to remember that every subprogram
must end in a RETURN.

This is a program in which it is vital to include the END instruc-
115

tion. Try leaving out line 130 and see what happens. (The
reason it happens is that the program reaches line 120 and
keeps going or, as we say, “falls through”, to lines 1000-1020.
In this case, a subprogram is being entered without a GOSUB,
and that causes an error.) The END instruction at line 130
prevents the program from falling through into lines 1000-1020.

IF-THEN-ELSE

This is the instruction that lets a TI BASIC program make a
decision.

Like or Unlike

One of the things that makes computers powerful is the ability
to make decisions. For example, a program might instruct the
computer to do one thing if a condition is true and another
thing if it is false.

Tl BASIC uses six different true/false tests. They are:

Equal to

Not equal to

Bigger than

Smaller than

<= Smaller than or equal to
>= Bigger than or equal to

<

AV Vi

When you use one of these true/false tests you are instructing
the computer to test whether something is equal to something
else, bigger than something else, smaller than something else,
and so on. To illustrate, type:

1@ REM DEMO IF-THEN

20 CALL CLEAR

SO PRINT 1 + 2 = 3"

B0IF1 + 2 = 3 THEN 80

70 PRINT “CONDITION IS FALSE"
80 GOTO 100

90 PRINT ""CONDITION IS TRUE"
100 END

RUN

The computer will display:

1+42=23
CONDITION IS TRUE
DONE

At line 60 the program made a decision. If 1 +2 =3 were true it
jumped to line 90, just as it would for a GOTO. You might think
of the IF-THEN-ELSE instruction as containing a built-in
GOTO. In fact, a line number and nothing else must follow
both the THEN and the ELSE, just as with a GOTO. If 1+2=3
had not been true, the program would have kept going to line
70. Try it and see—change lines 50 and 60 to look like this:

50 PRINT "1 + 6 = 3"
60IF1 + 6 = 3 THEN 90

117

Now run the program and see what happens.

The IF-THEN instruction may be used with ELSE. Change the
program again to look like this, and then run it:

1@ REM DEMO IF-THEN-ELSE

20 CALL CLEAR

S@ PRINT “1 + 2 = 3"

BOIF1 + 2 = 3 THEN 90 ELSE 70
65 PRINT

70 PRINT “CONDITION IS FALSE"
80 GOTO 100

90 PRINT “"CONDITION IS TRUE"
1@0 END

RUN

FOR-TO-STEP-NEXT

This instruction is used to do something repetitively, a
certain number of times. FOR-TO-STEP-NEXT does that by
starting with the FOR instruction.

FOR uses a variable, often named J. That variable will start off
being equal to a beginning number and will increase until it
reaches an ending number. FOR every increase of the variable,
something will be done. Then the NEXT instruction sends the
program back to the line where FOR occurs, and the process
repeats. Type:

10 REM DEMO FOR-TO-STEP-NEXT
20 CALL CLEAR

30FORJ = 1705

40 PRINT J

50 NEXT J

60 END

RUN

118

The computer will display:

ahbwn-

DONE

Line 30 tells the computer to do everything between the FOR
instruction and the NEXT instruction a number of times. In this
case it is five times; once when J equals 1, once when J equals
2, and so on through J = 5. The FOR instruction is always
followed by a numeric variable, in this case J, but it could be
any numeric variable. In this example the variable J will have
five values, from 1 through 5. Each time line 30 is executed, it
adds one to the value of J.

For each value of J, line 40 will simply print the value of J,
which is one greater each time it happens.

At line 50, the NEXT instruction will send the program back to
line 30, until J = 6. When J = 6 it is larger than the limit set in
line 30. When this happens, NEXT does not send the program
back to line 30, but instead sends it on to the next line, line 60,
where it ends.

This going back and starting over is called a loop. Since it only
happens a certain number of times, it is called a controlled
loop. A controlled loop will not go on endlessly, but will
automatically end after a certain number of repetitions.

So where does STEP come in? Change line 30 so that it looks
like this and then run it:

30FORJ = OTO 1@ STEP 2
119

The computer will display:

Db

Q
DONE

The STEP instruction takes an argument, in this case 2, which
tells the computer to count only certain values of J. In this
case the computer only counted every second value of J. Try
running this program using different arguments for the STEP
instruction.

As you can see, the STEP instruction may be used or left out. If
you do not actually write it, the computer assumes you want
the value of the STEP argument to be 1. This is known as a
“default value”—a value which the computer automatically
uses unless you give instructions to do otherwise.

JOYST

Joysticks are used with many games and other software
available in command modules, but you may also write your
own programs to use the joysticks.

We discussed how to install the joysticks in the first chapter. If
you have joysticks, plug them in now. (If you do not, you may
want to skip to the next chapter.) Look at the joysticks. Each
has a lever and a red bar, called a fire button.

The JOYST instruction is used to make the computer respond
to movements of the joystick. The following program

120

demonstrates how to use the JOYST instruction. It is a rather
long program, so be careful to type it exactly as shown, and to
check every line that you type. If you do make a mistake, use
the FCTN keys to go back and change the line, as we learned
how to do in chapter 3. Before you run this program, make sure
that the ALPHA LOCK key is not pressed.

1@ REM DEMO JOYST

20 CALL CLEAR

30 CALL CHAR(128,"00247EDB7E
3C1800")

4pR=12

50C=16

B0 X=0

70Y=0

75 CALL CLEAR

80 CALL HCHAR(R,C,128)

8@ CALL JOYST(1,X,Y)

100 IF (X=0) * (Y=0) THEN 200

1@ IF(X=4) » (Y=0) THEN 300

120 IF (X= —4) + (Y =0) THEN 400

130 IF (X=0) * (Y=4) THEN 500

140 IF (X=4) * (Y =4) THEN 600

150 IF (X= —4) + (Y=4) THEN 700

160 IF (X=0) * (Y= —4) THEN 800

170 IF (X=4) * (Y= —4) THEN 900

180 IF (X= —4) » (Y= —4) THEN 1000

180 END

200 REM NO MOVE

230 GOTO 75

300 REM MOVE RIGHT

310C=C+1

330 GOTO 75

400 REM MOVE LEFT

410C=C-1

430 GOTO 75

121

500 REM MOVE UP

520 R=R-1

530 GOTO 75

600 REM MOVE UP & RIGHT
B10C=C+1

620 R=R-1

630 GOTO 75

700 REM MOVE UP & LEFT
710 C=C-1

720R=R-1

730 GOTO 75

800 REM MOVE DOWN

820 R=R+1

830 GOTO 75

SO0 REM MOVE DOWN & RIGHT
8910C=C+1

820 R=R+1

930 GOTO 75

1000 REM MOVE DOWN & LEFT
1MM@C=C-1

1020 R=R+1

1030 GOTO 75

The first thing you may want to do now that you have typed in
this program, is to save it to cassette or disk. If you save it, you
will never have to type it in again. You will then be able to load
it from the disk or tape using the ‘OLD’ command.

Now start the program by typing:
RUN

Remember, the way to stop this program is to press FCTN 4 or
to run the saucer off the edge of the screen.

This program will display a flying saucer in the middle of the
screen. Nothing else will appear on the screen. The saucer will
remain where it is until you move the joystick. Then it will move

122

in the direction you move the joystick (provided the ALPHA
LOCK key is not pressed).

This is our most complicated program so far, and it will reveal
many things about programming. It has one serious flaw (we
call them “bugs’)—when the little flying saucer reaches the
edge of the screen the program is interrupted by an error (we
say it “crashes”). In the next chapter we will improve upon this
program, and fix that bug.

Now let’s take a look at this program. First, we must under-
stand how the JOYST subprogram works, as shown in the
following illustration.

(0,4)
(-4,4) (4,4)
(-4,0) 0.9 (4,0) < X »
(-4,-4) oa (4,-4)
¢ POSITION = (X,Y)
v

The X axis is the right and left direction, and the Y axis is the
up and down direction. The JOYST subprogram has three
arguments. The first is the key unit, which we will discuss

123

shortly. The other two are variable names that you make up
yourself. The first one will store one of three numbers, 4, 0 or
-4, depending on whether the joystick is moved right or left, or
not at all. The second variable will store one of three numbers,
4, 0 or -4, depending on whether the joystick is moved up or
down, or not at all. Why the JOYST instruction uses 0, 4 and -4
instead of some other numbers is a mystery, but Texas
Instruments must have had some good reason for it.

When you move the joystick, one of these numbers is stored in
each of the two variables, according to the diagram above. For
example, if you move the joystick up, a 0 will be stored in the
first variable and a 4 will be stored in the second. If you do not
move the joystick at all, a zero will be stored in both variables.

Here, then, is how the program works:

Line 30 defines the shape of the flying saucer and gives
it the ASCII code 128. This is similar to what we did on
page 88 when we defined an upside-down letter A.

Lines 40 and 50 set the initial value of (we say
“initialize”) the variables R (row) and C (column) so that
the first time the HCHAR subprogram is executed the
flying saucer will be in the center of the screen (row 12,
column 16).

Lines 60 and 70 initialize X and Y to zero so that the first
time the JOYST subprogram is executed the flying
saucer will not move. As you can see in the above illus-
tration, as long as X and Y are both zero, the flying
saucer stays where it is. When the joystick is moved,
the values of X and Y change from zero to either 4 or -4,

Line 75 clears the screen, so that it does not become
cluttered with flying saucers at old positions. This line
is what causes the flying saucer to blink, even if you do
not move it.

124

P

Line 90 assigns new values to X and Y, depending on how the
joystick is moved or not moved. The first argument to the
JOYST subprogram may be a one or a two, depending on
which of the two joysticks you are using. In our example, we
assumed you would use “key unit 1" (Joystick #1).

Lines 100 through 180 each refer to one of the possible
combinations of movement—up and right, down and
left, up only, etc. Each of these sends the program to a
set of lines between 200 and 1000. You will not
understand how lines 100-180 work, but do not worry.
We will explain what they do in the next chapter in a
section called Truth Tables.

Line 180 ends the program. This line is there for form’s
sake. The program is an endless loop, and if the
program works correctly, it should never get to line 190.

Lines 200 through 1000, which we have already
mentioned, take care of changing the value of R and C
so that the next time HCHAR is executed, the flying
saucer will be displayed in a new position (unless the
joystick has not been moved, in which cause the saucer
will stay where it is). Each group of numbers starting
with a different digit (200, 300, etc.) winds up sending
the program back to line 75, where the loop starts over.

One minor, but important, feature of this program is the way it
is laid out. Each group of lines in the series 200, 300 and so on,
all reset the value of C and R (or leave them as they are).

Recall that the numeric variable C is the number of the column
on which the saucer sits at any time. The numeric variable R is
the number of the row on which the saucer sits. For example, if
the saucer is at the point where column 8 and row 16 come
together, C = 8 and R = 16.

125

=)

The value of C is always set in a ’'10 line: 310, 410, etc. The
value of R is always set in a '20 line. Also, each group in this
series is documented with a REM statement. Anyone looking
at this program for the first time would be able to tell from the
REM statements that each group of lines moves the saucer in
a particular direction.

Lines 100 through 180 are spaced so that they are very easy to
see and compare. The pattern is apparent: in each of these
lines, the value of X changes in a pattern that repeats three
times; the value of Y changes three times, once every three
lines. As you will see as you study the program, these patterns
make is easy to detect a mistake in the pattern, like spotting
one soldier out of step in close order drill. This, in turn, often
makes finding a bug much easier and quicker. All these things
make reading and debugging a program a little easier.

126

SOME TRICKS

As we begin to actually write programs, you should know a few
simple tricks which make it a little easier to compose
programs. These tricks involve two instructions which you
already know from chapter one.

Trick #1—LIST

You already know that to show a program you simple type
LIST. Often, however, you only want to examine a part of a
program. You can still do this with the LIST instruction, by
giving it arguments. The arguments are the line numbers you
want to see. Type in the following program:

10 PRINT “AAAA™
20 PRINT "'BBBB"
30 PRINT ‘‘cccc*
40 PRINT "*DDDD"
50 PRINT *‘EEEE”

60 PRINT “'FFFF"

7@ PRINT "“GGGG"
80 PRINT “*HHHH"'
9O PRINT “1 1 1 I"
100 PRINT "*JJJJ”

Now type:
LIST 50-80

The computer will display:

50 PRINT “EEEE"
6@ PRINT “FFFF"
70 PRINT “GGGG"
80 PRINT “HHHH"

127

As you see, the LIST instruction will display a sequence of
lines if you give it the first and last line numbers as arguments,
separated by a hyphen.

Now type:
LIST 50-
The computer will display:

5@ PRINT “'EEEE”
6@ PRINT "'FFFF"
70 PRINT “'GGGG"
80 PRINT *“HHHH"
9@ PRINT I | | I”
100 PRINT "“JJJJ"

If you give a line number followed by a hyphen, the LIST

instruction will display the entire program from that line
number on.

Now type:
LIST -40
The computer will display:
10 PRINT "“AAAA™
20 PRINT '‘BBBB”
30 PRINT *‘CCccc"
40 PRINT "*DDDD"

If you give a hyphen followed by a line number, LIST will
display the entire program from the beginning to that line.

Finally type:

LIST 70
128

The computer will display:
70 PRINT “GGGG"

LIST also displays a single line, if that line number is the only
argument.

You can see that the LIST instruction is much more versatile
than we had seen up to now.

Trick #2—RUN

We have already met RUN, the instruction used to tell the
computer to execute a program that is in its memory. But RUN
is also a handy tool for testing parts of a program without
having to run the whole program or take the program out of
memory.

Add lines 900 to 940 to our program so that it looks like this:

10 PRINT “AAAA™
20 PRINT “BBBB"
30 PRINT ‘“‘Cccc”
40 PRINT "“DDDD"
50 PRINT *‘EEEE"
60 PRINT “FFFF"
70 PRINT “GGGG"
80 PRINT “HHHH"
SO PRINT “1 1 | I”
100 PRINT “JJdJJ”
900 PRINT “1111"
910 PRINT “2222"
920 PRINT “3333"
930 PRINT “4444"
940 PRINT 5555

129

If you now type RUN, the computer will display:

AAAA
BBBB
ccce
DDDD
EEEE
FFFF
GGGG
HHHH
1
JJJJ
1111
2222
3333
4444
5555

Now type:

RUN 900
The computer will display:

1111
2222
3333
4444
5555

If you give the RUN instruction an argument that is a line
number, it will start running the program at that line number. If
that line number is in the middle of the program, the computer
will start running the program in the middle. Sometimes you
may want to do that—for example, to see how the end of the
program runs without waiting to go through the first half of it.

Often, you might want to test a few lines of a program before
putting them into the program. To do that, first type them in
with higher line numbers than the rest of the program and run

130

them alone. If they work, you may then retype them in the
middle of the program, wherever you want them to go.

Programs

We will now write some interesting programs. We will use only
instructions that you have already met. If you wish, please feel
free to go back to chapters three and four to refresh your
understanding of the instructions we will use.

Input Routines

A routine is a part of a program that performs a specific task.
Thus the part of a program that receives input is an input
routine. This input routine will be used to receive data from the
person running the program.

Input routines are used very often, so we are going to start by
writing a couple of them, one for inputting numbers and one
for inputting strings.

In this routine, the line numbers may puzzle you. Don’t worry,
remember that in TI BASIC a program may begin with any line
number, as long as its highest line number is less than 32000.

String Input Routine

1020 REM INPUT STRING

1050 CALL CLEAR

1100 INPUT “TYPE SOMETHING P
LEASE ":CH$

1200 CALL CLEAR

1210 PRINT ""SAY WHAT?"

1300 PRINT CHS

1310 PRINT “"HOW ABOUT THAT?"

2000 END

131

To run this routine type:
RUN

This is a simple program that you use to send information to
the computer by typing at the keyboard. All the work is done in
line 1100 by the INPUT instruction which we have already seen.
The INPUT instruction firsts asks for a string, and then stores
what you type in the string variable CH$. Line 1200 clears the
screen. Line 1210 asks a question. Line 1300 prints back the
string that you typed before. Line 1310 prints another question.

Note the message “TYPE SOMETHING PLEASE”. When we
use this routine as part of a larger program, we may want to
use some other message, such as “TYPE A NOUN, PLEASE".
We can do that by changing line 110 so that it looks like this:

1100 INPUT MS$:CHS

Here, the string variable MS$ stands for a prompt. Each time
we go to the routine we first assign a string to this variable
with an instruction like:

300 MS$ = ""TYPE SOMETHING PL
EASE"

Then, until we change the string assigned to MS$, that will be
the message used by the string input routine. Add line 300,
change line 1100 as shown above, and try out the new
program.

132

Number Input Routine

2000 REM INPUT NUMBER

2030 CALL CLEAR

2050 PRINT *“‘PLEASE PRESS AN
UMBER BETWEEN 3 AND 6"

2100 INPUT N

2300 IF (N< 3) + (N >B6)THEN 2030
ELSE 2600

2600 PRINT N;“IS A NICE NUMB
ER!"

2700 END

Once more, remember that we are showing these programs as
they will appear on the Tl 99/4A. A line like 2050 does not end
until the quotation mark after the six, so don’t press ENTER
before then.

To run this routine type:
RUN
Line 2300 says that if the key pressed is less than 3 or more

than 6, go back to line 2030, otherwise go on to line 2600. How
does this line work? To find out, let’s talk about truth tables.

Truth Tables—OR
In line 2300 we see the expression:
(N<3)
If N is smaller than 3 this expression will be true. If N is larger
than or equal to 3 this expression will be false. So we can show

these two possibilities like this:

N<3 true
N=3 false

133

Now let's do the same thing for the expression:

(N>6)

As you may have already figured out, this will be true if N is-
bigger than 6 and false if N is less than or equal to 6. So. ..

N>B true
N<6 false

Now, here’s the good part. We combine the two expressions so
that a true plus a true is true, and true plus a false is true. A
false plus a false is false. Let’s show these four possibilities

like this:
+ N<3
TRUE FALSE
TRUE TRUE TRUE
N>B6
FALSE TRUE FALSE

This kind of diagram is called a truth table. The four squares in
the middle represent the four possible results of
(N<3)+(N >6).

Study line 2300. Do you see that the expression (N< 3) + (N> 6)
will be false only if N is 3, 4, 5 or 6?

Another way of saying this is that the expression is true if
N<3 or if N>6. That is why this kind of expression is
sometimes called an OR statement.

If the number pressed is outside the range of 3 through 6, then
line 2300 then sends us back to the beginning to try again.

If the number pressed is within the range of 3 through 6, we go
to line 2600. At 2600 we print the number and at 2700 we end.

134

More About Truth Tables—AND

While we are talking about expressions like the one in line
2300, and about truth tables, you should know that besides OR
statements, the IF-THEN instruction can be used with AND
statements. An AND statement looks just like an OR
statement, except that the + sign is replaced with a * sign. If
line 2300 were an AND statement, it would look like this:

IF (N>2)*"(N< 7)THEN 2600 ELSE 2030

The truth table for this statement looks like this:

* N>2
TRUE FALSE
TRUE TRUE FALSE

N<7
FALSE FALSE FALSE

You can see that a true times a true is true, but a false times a
true is false. A false times a false is also false.

Try using this truth table to see how such an AND statement
would work.

We used AND statements in the JOYST routine in chapter 4.

Draw A Pyramid

The following program demonstrates the kind of graphics that
the Tl 99/4A can display.

When you type RUN, the screen will clear. Then a 12-story,
colorful pyramid will grow before your eyes. When it is finished
it will stay on the screen, in full color, until you press a key.

135

1 REM DRAW A PYRAMID

5 CALL CLEAR

1@ CALL CHAR (128, FFFFFFFFF
FFFFFFF")

20C=5

30L=24

40R=24

BOFORJ=1TO 12

65 CALL COLOR(13,7,1)

7@ CALL HCHAR(R,C,128,L)

90 C=C+1

1M L=L-2

110 R=R-1

150 NEXT J

155 PRINT

160 PRINT ““PRESS ANY KEY TO END"

17®@ CALL KEY(3,RV,5V)

180 IFSV=0THEN 170

190 END

Typing in a program like this you are bound to make a few
typographical errors. This will cause errors when you try to run
the program. You will probably get error messages, such as
INCORRECT STATEMENT, BAD VALUE, or some other error.

If you get an error, LIST your program and look it over carefully.
Remember that even a missing space may cause an error.
When you find the mistake, simply use the editing functions
(see appendix) to correct it.

To run this program type:
RUN

The screen will clear and a bright, red pyramid will grow from
the bottom up. Then the computer will wait until you press a
key.

136

Line 10 defines a new character with the ASCII code of 128.
This is defined as a solid block.

Lines 20 through 40 are preparing for the HCHAR subprogram
to follow. They each assign a starting value to the arguments
of the HCHAR subprogram. C, R, and L are all numeric
variables. Each stands for one of the arguments of HCHAR:
column, row, and length.

Lines 60 and 150 together are a FOR-NEXT instruction.
Everything between them will be repeated twelve times. This
will correspond to twelve steps in the pyramid. For each step,
the numeric variable J will have a different value, from 1
through 12.

Line 65 is the COLOR subprogram. Its arguments are 13, 7 and
1. The first argument, 13, is the number of the character group
to which ASCII code 128 belongs. If you do not remember what
a character group is, go back and review chapter 3 (page 84).

The second argument of the COLOR subprogram is 7, which
stands for the color red. You could try changing the second
argument and see the different colors when you re-run the
program. Or try using the variable J for the second argument.

The third argument is the background character. We have
defined ASCIl code 128 as a solid block that takes up the
entire space available for a character. Therefore, the
background color will not be seen, no matter what it is. We will
assign it the value of 1, which stands for transparent.

Line 70 is the HCHAR subprogram. It draws a horizontal row of
squares, which will be the steps of the pyramid. The squares
are the character ASCI| 128, as we have defined it. The number
128 is the third argument of HCHAR.

The first time around the FOR-NEXT loop, HCHAR's first,
second and fourth arguments will be 24, 5 and 24, as they were

137

assigned in lines 20 through 40. This means that the pyramid’s
bottom step will start at row 24, the bottom of the screen; it will
start 5 columns in from the left; it will consist of squares (the
character of ASCII 128, as we have defined it in line 10); and it
will be 24 columns long.

But these values will be changed by lines 80 through 110. The
value of C will change from 5 to 6. The value of L will change
from 24 to 22. The value of R will change from 24 to 23.

The second time around, the loop will return to line 60 where J
will be given the new value of 2.

The second time around, the CALL HCHAR subprogram in line
70 will be changed, because the values of C, L and R were
changed. They will be 23, 6 and 22. This will mean that the
second step of the pyramid will be one row above the first,
start one column to the right, and will be two columns shorter.
To see how this works, look at the following table:

Value Value Value Value
of J of C of L of R
(time through (columns (length (rows from
loop) from left) of line) top)
1 5 24 24
2 6 22 23
3 7 20 22
4 8 18 21
5 9 16 20
6 10 14 19
7 11 12 18
8 12 10 17
9 13 8 16
10 14 6 15
11 15 4 14
12 16 2 13

138

Each time around the loop, the value of J will be different, and
so will the values of C, L and R. Therefore, each time around
the loop, the line of blocks drawn will be shorter and higher.

Try changing the second argument of the COLOR subprogram,
and see that the pyramid’s color will change. Also, try using
the variable J as the argument.

This and the following programs may require a little review of
the previous chapters, and a little concentration before they
become entirely clear. Take your time. After a while a light bulb
will go on over your head, and you will be well on your way to
understanding programming.

Make Up A Story

This demonstrates the use of arrays, and the DIM instruction
with which arrays are set up. It also shows how string
variables are used to store strings that the user types in
him/herself.

1 REM MAKE UP A STORY

3 DIM NOUNS(4)

6 DIM ADJS$(3)

1MMFORJ=1TO 4

15 CALL CLEAR

20 INPUT “'PLEASE TYPE A NOU
N *":NOUNS(J)

30 NEXT J

40FORJ=1TO3

45 CALL CLEAR

50 INPUT *“PLEASE TYPE AN AD
JECTIVE *":ADJ$(J)

60 NEXT J

139

65 CALL CLEAR

70 INPUT "PLEASE TYPE A PLU
RAL NOUN (E.G. BATS) '":PLN
OUNS

80 CALL CLEAR

90 INPUT *'PLEASE TYPE A VER
B ":VERBS$

95 PRINT

10@ PRINT “PLEASE PRESS ANY
KEY TO CONTINUE"

110 CALL KEY(3,RV,SV)

120 IFSV=0 THEN 110

135 CALL CLEAR

14Q PRINT “"ONCE UPON A TIME,
A "":NOUNS(1);" LWVEDINA "
;ADJS(1);"* "";NOUNS(2);".”

150 PRINT “"THIS "";NOUN$(1);"
WAS SO AFRAID OF '";PLNOUNS;
** THAT HE NEVER"

160 PRINT “WENT OUT OF THE '
:NOUNS(2);"* WITHOUT A '";ADJS
(@) "";NOUNS(3);"."”

170 PRINT ""ONE DAY THE ';NOU
N%$(1);"* DECIDED TO "';VERBS:"
HIS FAVORITE '*;NOUNS(4);"."”

180 PRINT “THAT EXPERIENCE W
AS S0 "";ADJS(3);" THAT HE NE
VER FEARED '';PLNOUNS;"* AGAIN *."

190 END

Again, remember that it is easy to make typing mistakes. If the
program does not work as it should, go back and check your
typing with a fine tooth comb.

To run this routine type:

RUN
140

This program first asks you to type nouns, adjectives, a plural
noun (a group of things, like ducks, houses, etc.) and a verb.
Then the computer automatically makes up a story using the
words that you have typed, and it prints that story on the
screen.

The story is printed to the screen in lines 140 through 180.
Notice the spacing—spaces often come after beginning
quotation marks or before ending quotation marks so that the
words will not be run together.

Within the program several words are missing from the story.
Their place is held by string variables. These variables are
NOUNS for nouns, ADJ$ for adjectives, PLNOUNS for a plural
noun, and VERBS$ for a verb. We use four nouns and three
adjectives, so these variables are each combined into an array.
In lines 3 and 6 we set aside space in memory for these two
arrays. The four nouns are NOUN$(1) through NOUN$(4), and
the three adjectives are ADJ$(1) through ADJ$(3).

In the first half of the program we ask the user to type in the
actual words that these string variables will stand for. To input
the nouns and adjectives we use FOR-NEXT loops.

Since we will input four different nouns, the FOR-NEXT loop
for inputting NOUN$(1) through NOUN$(4) must go around four
times. We ensure this in line 10, where we say that J will go
from 1 through 4. Then, in line 20, the user is asked to input a
noun, and that noun is assigned to NOUNS$(1), NOUN$(2),
NOUNS$(3) or NOUN$(4), depending on the value of J. Notice
that we always clear the screen before asking for the next
noun. We do this in line 15.

In lines 40 through 60 we do for adjectives the same thing we
did for nouns, but we only do it for three of them. The value of J
goes from 1 through 3.

In lines 65 and 70 we clear the screen and input one plural
141

noun. Notice that we give the user an example of a plural noun
in case he is not certain what a plural noun is. We do not use a
loop here because we only need one plural noun.

In lines 80 and 90 we clear the screen and input a verb.

In line 95 we skip a line so that our next message, asking the
user to hit any key to continue, will not be jammed up against
the last line we printed.

In lines 100 through 120 we pause until the user hits any key.
We could leave these lines out, and the program would still
work. But if we did that, the story would be displayed very
abruptly, as soon as the user finished inputting that last verb.
Computers are so much faster than people that it is often a
good idea to slow things down a little bit. In this case, it also
gives the user a little extra feeling of control over what is
happening. The program stops until he or she wants it to
continue.

Then in lines 135 through 180 we print the story with the words
that the user supplied. Sometimes the story will come out as
nonsense, but other times it will make a funny kind of sense.
Try it a few times!

Create A Word

In the last program we made up a whole story out of real
words. In this one we will make up new words. The words we
make up will all be five letters long, with their first, third and
fifth letters consonants and their second and fourth letters
vowels.

This program demonstrates the use of the GOSUB-RETURN
instruction. It also shows how to use the RND instruction to
randomly select one item from a list.

142

When you run this program the screen will clear, and a five
letter word will appear. A message will also appear asking you
to press Y to create another word, or press any other key to
quit.

You may have heard that sometimes corporations use com-
puters to pick their names. This is a simplified version of the
kind of program they use to do that. .

1@ REM CREATE A WORD

13 RANDOMIZE

15 CALL CLEAR

20 CONS = ""BCDFGHJKLMNPQRSTV
WXYZ"

25 VOWS = “AEIOU”

30 GOSUB 1120

35 A =CN$

37 B = VW5

4 GOSUB 1100

45 CE=CNS

47 DS = VWS

50 GOSUB 1100

55 ES=CN$

60 PRINT AS;B%,C3;D$;ES

70 PRINT

B0 PRINT “TO CREATE ANOTHE
R WORD PLEASE PRESS Y"'

81 PRINT

83 PRINT "PRESS ANY OTHER KEY TO
QuIT”

85 CALL KEY(3,RV,SV)

87 IF8V=0 THEN B5

88 IF Rv =88 THEN 10 ELSE 89

89 IFRV=121 THEN 10 ELSE 99

143

99 END
1100 REM SELECT RANDOM CHARA

CTER
111@ CN$ = SEGB(CONS,INT(RND+*21) + 1,1)
1120 VWS = SEGS(VOWS,INT(RND+5) + 1,1)
1130 RETURN

To run this routine type:

RUN

This is a fairly straightforward program. The most complicated
parts are that it uses a subroutine (lines 1100 through 1130),
and it uses the RND function in lines 1110 and 1120, which
require a bit of mathematics.

In line 13 we use the RANDOMIZE instruction. As you will
recall, the RND instruction returns a series of random
numbers. It returns the same series of numbers every time it is
used. How boring! That would mean that every time we ran
this program, we would get the same series of made-up words.

However, if we use the RANDOMIZE instruction, RND will
return a different series of numbers each time it is used. This
way, every time we run the program we will get a different
series of made-up words.

In line 20 we create a string called CON$ which consists of all
the consonants in the alphabet. In line 25 we create a string
called VOWS$ which consists of all the vowels.

In line 30 we go to the subroutine that starts at line 1100. It is in
the subroutine that the real work of the program is done.

144

O U O T [BN

In line 1110 we do several things. Let’s look at what they are.
We will start with the expression:

INT(RND*21) + 1

We want a number from 1 to 21 because we are going to pick
out one of the consonants, and there are 21 of them. RND
returns a number greater than 0 and less than 1, as we saw in
Chapter 3. Whatever that number is, if we multiply it by 21, the
result will be greater than 0 and less than 21. But we need a
whole number, not a number with a decimal fraction. If we
apply the INT instruction to this number, we will get a whole
number from zero through 20. We then add 1 to get a whole
number from 1 to 21.

We do our picking, still in line 1110, with the SEG$ instruction.
By now INT(RND*21) + 1 has been converted to a number from
1 to 21, so we may represent this:

SEGSB(CONS,INT(RND*21) + 1.,1)
...as this:

SEGS(CONS, (1 through 21), 1)

Recall from Chapter 3 that the SEG$ instruction takes three
arguments. The first is a string, in this case CONS$, which is all
the consonants. The second argument of SEG$ is the location
within the string of a substring. In this case the location will be
between 1 and 21. The third argument is the length of the
substring, in this case 1. In other words, we are picking out a
substring consisting of a single consonant, and it might be any
of the 21 consonants, chosen at random.

So now the above expression-SEG$(CONS,INT(RND+*21) + 1,1)-
has been reduced to one of the 21 consonants, and we may

145

write line 1110 as:
CN$ = "'a random consonant’’

The consonant we have picked is assigned to the string
variable, CN$.

In line 1120 we do the same thing with the vowels that we did in
line 1110 with the consonants. The arithmetic is slightly
different since there are only 5 vowels. We pick one at random
and assign it to the string variable VWS$.

In line 1130 we return to where we came from, in this case the
end of line 30.

Next we execute lines 35 and 37. These simply assign our
consonant to the string variable A$ and our vowel to the string
variable B$. Why not leave them in the string variables CN$
and VW$? Because we are about to go back to the subroutine
and pick out a different consonant and a different vowel, as we
continue constructing our 5 letter word. In the meantime we do
not want to lose our first two letters, so we put them in A$ and
B$.

In lines 40 through 47 we again pick out a consonant and a
vowel, and assign them to the string variables C$ and D$.

In lines 50 and 55 we go back one more time, pick out our last
letter, a consonant, and assign it to E$.

In line 60 we print our word by printing the five string variables,
A$,B$,C$,D$ and ES. The word will be something like TOQIT or
BASOP or JEPIX, etc.

Lines 80 through 88 give the user a chance to create another
word or quit. If he presses Y (ASCII 89), the loop that creates a
word goes around again. If he decides to quit, the program
skips to line 99, and ends. Notice the necessity of the END

146

instruction here. If it were missing the program would keep
going into the subroutine at 1100 (we say it would fall through
to the subroutine). Then it would come to line 1130 and
encounter a RETURN without having had a GOSUB. This would
cause a problem, and the program would stop and give an error
message.

A word about subroutines: as you have probably noticed, we
could have written this program without a subroutine, by
simply writing the program lines in the subroutine three
separate times, between lines 25 and 35, between lines 37 and
45, and between lines 47 and 55. Obviously, we save space by
using a subroutine instead.

Compose A Tune

This program lets you compose a simple tune of up to 100
notes. The 100 notes start out all the same, with a frequency
too high to hear. First, you can compose a tune by changing
any of these to notes that you can hear. Then you can go back
and play the tune as many times as you wish.

This program demonstrates the use of an array to store the
tones that make up a tune. It also shows you how to make sure
that a user types in only information that the computer can
use. It uses subroutines to take information from the user.
Finally, it will give you practice in using the SOUND
instruction, with which the Tl 99/4A makes music.

1 REM COMPOSE AND PLAY A TUNE

5 TUNLEN=0

6 DIM TONE(100)

7FORJ=1TO 100

8 TONE(J) = 40000

9 NEXT J

1@ CALL CLEAR

20 PRINT "THIS PROGRAM LETS
YOU COMPOSE AND PLAY A
TUNE OF UP TO 100 NOTES.”

147

30 PRINT

35 PRINT ""PLEASE PRESS ANY K
EY TO CONTINUE."

4@ GOSUB 2000

100 REM EDIT TUNE

101 d=1

102 CALL CLEAR

103 IF J >100 THEN 200

1@5 PRINT “NOTE #";J

110 PR$ = ""PLEASE ENTER A NUMB
ER FROM 110 TO 44733, INCLU
SIVE "

115 GOSUB 1000

116 PRINT

117 IFCH$ ="' THEN 102

135 IF (ASC(CH$)< 49) + (ASC(CH
$) >57) THEN 102

139 TONE (J) = VAL(CH$)

140 IF (TONE(J) >109)*(TONE(J)
<44734) THEN 160

150 PRINT ""BETWEEN 110 AND 4

4733, PLEASE"

151 FORK=1 TO 400

152 NEXT K

153 PRINT

155 GOTO 102

16@ CALL SOUND(1000, TONE(J).1)

161 TUNLEN =J

1862 d=J+1

165 CALL CLEAR

170 PRINT “PLEASE TYPE F TO-
FINISH, ENTER TO GO ON."

172 PRINT

175 GOSUB 2000

179 REM TEST FOR ENTER

180 IF RV=13 THEN 102

148

190 REM TEST FOR UPPER OR LO
WER-CASE F

191 IF (RV="70) + (RV=102) THEN
210

198 GOTO 170

200 PRINT “THAT IS ALL THE N
OTES | CAN STORE NOW."

205 FORK=1 TO 300

208 NEXT K

210 REM PLAY TUNE

215 FOR J=1 TO TUNLEN

220 CALL SOUND(1 000, TONE(J),1)

225 PRINT TONE(J);

230 NEXT J

231 PRINT

232 PRINT

235 PRINT "PLEASE PRESS ANY
KEY TO CONTINUE."

236 GOSuUB 2¢00

238 CALL CLEAR

240 PRINT "PLEASE TYPE P TO
PLAY AGAIN, ENTER TO
QuIT.”

250 GOsuB 2000

260 IF Rv=13 THEN 299

270 IF (RV=80) +(RV=112) THEN
210

280 GOTO 240

299 END

1000 REM INPUT STRING
1100 INPUT PRS:CHS
1990 RETURN

2000 REM INPUT SINGLE KEY
2100 CALL KEY(3,RV,SV)
2200 IF SV =0 THEN 2100
2300 RETURN

149

To run this program, first make sure that the two input
subroutines are as shown. These two subroutines are lines
1000 through 1990 and lines 2000 through 2300. These are
changed a little bit since we first saw them as routines at the
beginning of this chapter.

Then type:

RUN

First you will be shown an introductory message and asked to
press a key. You then will be greeted with a message that asks
you to enter the frequency of your first tone. Once you do that
you will hear the tone. Then you will have a choice of going on
to more tones or pressing F to indicate you are finished.

NOTE: There is a table of musical tone frequencies in the
appendix.

When you have composed as many notes as you wish (up to
100), press F. The computer will play the tune you have
composed. After that, you may play the whole tune again, or
quit.

1. Initialization

Lines 5 through 9 initialize certain values which the program
will use. You will recall that many programs have a section,
usually near the beginning, in which values are initialized.
Usually it is variables that are initialized. Later in the program

150

they will be assigned different values, but it is important that
they always start off with their initialized values.

One such variable is the numeric variable TUNLEN (tune
length). The value in TUNLEN at any time is the number of
notes in our tune at that time. It starts at zero and grows up to
the value 100. If TUNLEN started at some value other than
zero, its value throughout the program would be thrown off,
and the program would not work correctly.

You will recognize line 6 as setting aside room in an array for
100 different values of the numeric variable TONE. This array
will hold the frequencies of all the tones that will make up our
tune. TONE(1) will hold the first tone, TONE(2) will hold the
second tone, and so on, up to TONE(100).

Lines 7 through 9 assign the value 40000 to every element in
the TONE array. This FOR-NEXT loop goes around 100 times.
Each time, another element in the TONE array is assigned the
value 40000. The 40000 frequency cannot be heard by humans.
If we did not initialize the TONE array this way, we would have
no way of knowing what frequencies its elements would start
out with. We might produce some very strange sounds.

2. Compose a Tune

We compose our tune in lines 100 through 206. Line 101 sets J
to 1. We are going to compose the tune one tone at a time. As
before, the first tone will be TONE(1), the second will be
TONE(2) and so forth. So for the first tone, J must equal 1.

Line 102 is the beginning of a loop, but not a FOR-NEXT loop.
This loop ends at line 180, with a GOTO that sends it back to
line 102. Each time we go around this loop we will come back
to 102, and the screen will clear. Then line 103 will check to see
if J is greater than 100. If it is, that means that we have reached

151

the maximum length of our tune—remember that the most
tones it can have is 100. If line 103 finds that we have reached
our limit, it sends us to line 200 which tells us so. Then line 210
starts the process of playing the tune.

In the meantime, before we reach the limit of 100 tones, we go
on to line 105, which prints a message that looks like this:

NOTE # 1

Each time around the loop, the number of the note will
increase by one.

Line 110 assigns a message to the string variable PR$. Line
115 sends us to the input subroutine that begins with line 1000.
That subroutine will use PR$ to print out an input prompt. This
prompt asks that you enter a frequency for this tone.

But what if you enter an invalid frequency, say 100, or press
ENTER without typing any frequency first? Without lines 117
and 135 an error condition would arise. But these lines make
sure that if you try to enter an incorrect number, or no number,
you are notified and sent back to line 102 to try again.

The input routine assigns the new frequency to the variable
CHS$, and returns us to the end of line 115. Line 117 checks the
value of CHS$. If you pressed ENTER instead of selecting a
frequency, the value of CH$ will be nothing (we say null). A null
string is nothing between quotation marks, just as a normal
string is one or more characters between quotation marks. If
CHS$ is nuil then you are returned to line 102. J has not been
changed.

On the other other hand, if CH$ was not null we go to line 135,
which is another OR statement. Let's look at it:

IF (ASC(CH$)< 49) + (ASC(CH$) >57) THEN 1@2.
152

Recall that the ASC instruction returns the ASCII code of the
first character in a string. In this case the string is CH$, the
input you have just made. If this input is a number, its first
character will be 1 through 9, or ASCII code 49 through 57. If it
is anything else, we do not want it. If the first character of our
input has an ASCII lower than 49 or higher than 57, we simply
go back to 102, and start the loop over by asking for a number
between 110 and 44733, inclusive. (This happens in the 1000
subroutine entered from line 115.) Again, nothing has changed.

If, however, we have a good input for CH$, we drop through to
line 139. Here, the frequency of the current tone is made equal
to VAL(CH$), that is, the numerical value of the string CH$.

Line 140 is the AND statement we promised to see. It says that
if TONE(J) is greater than 109 and TONE(J) is also smaller than
44734, that we should go to line 160. If TONE(J) is greater than
109, then this condition is true. If TONE({J) is smaller than
44734 then this condition is true as well. Now, in an AND
statement we multiply, instead of adding as we did in the OR
statement. Here is the truth table for this AND statement:

TONEQ) > 109
TRUE FALSE
* TRUE TRUE | FALSE
TONE(J) < 44734
FALSE FALSE | FALSE

Notice that out of four possibilities, only one is true. That is if
TONE(J) is both above 109 and below 44734. This is why this is
called an AND statement.

If the input, CHS$, is not within this range, we drop through from
line 140 to line 150. Lines 150 through 155 remind us what the
acceptable range is and send us back to line 102 to try again.

Lines 1561 and 152 are a delay loop to give us time to read the
153

message in line 150 before continuing. Notice that we use the
variable K instead of J. The value of J must not be changed
during the loop we are in, where it is keeping count of which
note is current. If we also used J in a delay loop, we would lose
our count.

If the input, CH$, is within the acceptable range, we jump
down to line 160. Line 160 plays the current tone.

Line 161 changes the value of TUNLEN to the new length of the
tune. This will be one tone longer than before, since we have
just added one new tone. Line 162 adds one to the value of J.
We do this to keep track of which go-around of the loop we are
about to finish.

Line 170 then tells us to press the letter F if we are finished
composing, or to press the ENTER key to continue composing.

Line 175 then takes our answer to this prompt.

In lines 180 and 191, we test the input taken by the subroutine
at 2000. ASCII 13 is ENTER. ASCII 70 and 102 are upper and
lower case F. We make sure to include the lower case,
because the ALPHA LOCK key might be up.

If we press ENTER, line 180, takes us back to repeat the loop
again.

If we pressed an F (or an f), line 191 sends us down to line 210,
taking us out of the loop.

If we pressed any other key, lines 180 and 191 do nothing. We

go on to line 199 which sends us back to 170 to ask again for
either ENTER or F.

154

b o b b b bw s mT e e e e e oo e e e

3. Playing a Tune

The tune you have now composed is played by the lines
starting at 210. At line 215 we begin a FOR-NEXT loop that
goes around as many times as there are notes in the tune, that
is, from 1 to TUNLEN.

During each go-around of the FOR-NEXT loop between lines
215 and 230, the program plays a tone at line 220 and prints the
frequency of the tone at line 225. We have given the tones a
duration of 1000 and a loudness of 1. Only the frequency
changes, from tone to tone. Each tone is different, because for
each tone the value of J is different. Thus, the frequency
stored in TONE(J) in line 220, would be different for each go-
around of the loop. (Remember that during this FOR-NEXT
loop J goes from 1 to the value of TUNLEN. If, for example, the
tune were 10 tones long, the value of TUNLEN would be 10, and
the value of J would go from 1 to 10.)

Lines 231 and 232 skip lines. Lines 235 through 236 stop things
until the user presses a key. Line 238 clears the screen. Line
240 prints a prompt message. In line 250 we go to the
subroutine at line 2000.

Lines 260 and 270 test our input from the subroutine. If we
have pressed P, we go back to line 210, and the tune is played
again. If we have pressed ENTER, we will go to line 299, where
we end. If neither of these conditions are true, we will keep
going and hit line 280, which sends us back 240, asking for P or
ENTER.

Pilot A Flying Saucer

This is the same routine we used in Chapter IV to illustrate use
of the joystick. We have changed it slightly. Also, we have
added lines to prevent the saucer from flying off the screen
and to let you stop the program without having to press either

1565

FCTN 4 or FCTN +. Also, the line numbers are different.

When you run this program the screen will clear and you will
see messages that remind you to make sure that the ALPHA
LOCK key is up. Another message tells you to start the
program by pressing the fire button on joystick one (the red
bar). If you do not know which joystick is number one, try them
both.

Once you press the fire button the screen will again clear, and
you will see a little flying saucer in the center of it. The saucer
will move in whatever direction you move the joystick. When
you are done, simply press the fire button again.

100 REM PILOT A FLYING SAUCER

110 CALL CLEAR

113 PRINT “PLEASE MAKE SURE
ALPHA LOCK KEY IS UP*

117 PRINT

120 PRINT "'PLEASE USE JOYSTICK"

121 PRINT “NUMBER ONE"

122 PRINT

123 PRINT "“THE LEVER MOVES
THE FLYING SAUCER—THE FIRE
BUTTON QUITS"

124 PRINT

125 PRINT “PRESS THE FIRE
BUTTON TO START”

126 CALL KEY(1,RV,SV)

127 IFSV=0 THEN 126

128 IFRV<>18 THEN 126

129 REM INITIALIZE

130 CALL CHAR(128,"00247EDB
7E3C1800")

156

133 R=12

136 C=16

140 X=0

150Y=0

160 RV=0

170 FOR J=1 TO 400

171 NEXT J

174 REM INPUT FROM JOYSTICK
175 CALL CLEAR

176 CALL HCHAR(R,C,128)

177 CALL KEY(1,RV,SV)

179 IFRV=18 THEN 1200

180 CALL JOYST(1,X,Y)

185 REM HANDLE INPUT

190 IF (X=0) * (Y=0) THEN 300
200 IF (X=4) = (Y =0) THEN 400
210 IF (X= —4) » (Y=0 THEN 500
220 1IF (X=0) * (Y=4) THEN 600
230 IF (X=4) » (Y=4) THEN 700
240 IF (X= - 4) * (Y =4) THEN 800
250 IF (X=0) * (Y= —4) THEN S0
260 IF (X=4) * (Y= —4) THEN 1000
270IF (X=—4) * (Y= —4) THEN 1100
300 REM NO MOVE

310 GOTO 175

400 REM MOVE RIGHT
410C=C+1

415 IF C< 33 THEN 420

417 C=C-1

420 GOTO 175

500 REM MOVE LEFT
510C=C-1

515 IFC>0 THEN 520

517 C=C+1

520 GOTO 175

600 REM MOVE UP

610 R=R-1

157

615 IF R>0 THEN 620

617 R=R+1

620 GOTO 175

700 REM MOVE UP & RIGHT
710C=C+1

720 R=R-1

725 IF (C<33)+(R>@ THEN 730
727 C=C-1

728 R=R+1

730 GOTO 175

800 REM MOVE UP & LEFT
810C=C-1

820R=R-1

825 IF (C>0+(R>0) THEN 830
826C=C+1

828 R=R+1

830 GOTO 175

900 REM MOVE DOWN

910 R=R+1

915 IF R<25 THEN 920

917 R=R-1

920 GOTO 175

1000 REM MOVE DOWN & RIGHT
1010 C=C+1

1020 R=R+1

1025 IF (C<33)*(R<25) THEN 1030
1027 R=R-1

128C=C-1

1030 GOTO 175

1100 REM MOVE DOWN & LEFT
1110C=C-1

1120 R=R+1

1125 IF (C>D)*(R<25) THEN 1130
1127 C=C+1

1128 R=R-1

1130 GOTO 175

1200 CALL CLEAR

1210 END

1568

o bn tm bw b bw om wo w lem e e e o e e e

If you like, you can save this program on a disk or cassette. If
you do, you will not have to retype it when you want to use it
again.

To run this program type:
RUN

Since we studied this program in Chapter 4, we will look
closely only at the changes we have made in it. To refresh your
memory, however, here is a table of the variables used in this
program, which lets you use the joystick to move a flying
saucer around on the screen.

1569

variable’s variable’s variable’s
name use values
X joystick input, horizontal -4,0,0r4
Y joystick input, vertical -4,0,0r4
R current row where saucer is 1to0 24

C current column where saucer is 1to 32
RV return variable in CALL KEY 18 when the fire
instruction button is pushed

Lines 120 through 125 remind you to make sure that the
ALPHA LOCK key is up. (Remember that the joysticks will not
work correctly if the ALPHA LOCK key is down.) These lines
also remind you how to use the joystick, and they tell you how
to both begin and end the program: by pressing the fire
button—the red bar at the end of the joystick where the
connecting wire comes out of it.

Line 126 is our old friend the KEY subprogram. When the first
argument of the KEY subprogram is 1, it means two things.
First, it means that if you are using a joystick, it must be
joystick number one. Second, it means that if the fire button is
pressed, the number 18 will be assigned to the variable RV. In
other words, the fire button works just like a keyboard key—it
sends its own code (18) to the return variable of the KEY sub-
program.

Line 128 looks at RV, and if it is an 18, you drop through and
continue the program. Otherwise, you go back to line 126. This
little loop goes around thousands of times a second. What you
see when you run the program is simply that nothing happens
until you press the fire button on joystick number one.

Line 160 sets RV to 0. If we did not do this, RV would still be 18
when we came to line 177, and the program would end.

Lines 170 and 171 are there for a related reason. They simply
delay the program. If we did not delay the program, it would be

160

very easy to hold the fire button down long enough at line 126
for the program to get to line 177, and the program would begin
and end in the same moment.

Line 175 is the beginning of the large loop that goes around
and around from here on, as long as the program is running.

The first thing that happens in this loop is that the flying
saucer is displayed—at line 176.

The second thing that happens, at line 177, is that we check to
see if the fire button has been pressed since the last time
around the loop. If it has, we go right to line 1200, where the
program ends.

The only other change in this program since we first saw it in
Chapter 4, is that the flying saucer can no longer fly off of the
edge of the screen. We prevent it from doing so each time it
moves in any direction. This is done with one of the following
groups of lines: 415-417, 515-517, 615-617, 725-728, 825-828,
915-917, 1025-1028, and 1125-1228.

Each time the saucer makes a move, the program uses one of
the eight small subroutines which begin at line 400, 500, 600,
700, 800, 300, 1000 or 1100. Each of these groups begins with a
REM statement that describes how it moves the saucer; for
example, up and to the left or down and to the right.

Within each of these small subroutines a line such as 415
checks to see whether the saucer is about to go off the edge of
the screen. Line 415, for example, checks to see if the number
of the column to which the saucer is about to go is smaller
than 33. If the column number is smaller than 33, the saucer
will still be on the screen, since the screen is 32 columns wide.
In that case the program jumps to line 420, and the loop starts
over.

If the saucer is about to go off the edge, however, the program
161

falls through to line 417. Line 417 simply reverses what
happened in line 410, the net result of which is that the value of
the variable C is unchanged, and the saucer remains on the
same column and does not move. Then line 420 is executed,
and we are sent back to the top of the loop.

Conclusion

Do not expect to be able to absorb everything we have covered
in this chapter overnight. It has contained a great deal of
information, and a lot of new ideas. Go over it a few times; try
out the programs; play with them—maybe change lines here
and there to see what happens.

When you have digested all this, you will understand many
important ideas about programming in Tl BASIC. You will be
ready to start writing your own programs, limited only by your
own imagination.

Good Luck and Have Fun.

162

APPENDIX

ASCIl Codes

32
33
34
35
36
37
as
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

(space)

N — -
* Qoo\oealﬂ:

+

OQCO~NOORLWN—=O ™"

Wy AT

64 @
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
o1
92
93
94
95

| 2= 7" N<XXS<CHOWIOUVOZZrX&«—"IOTMMOUO®W>

163

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

— N XE<C~0WTQDTOI3 —X——JTQ *"0Q0T® ~»

(delete)

Color Codes

COLOR

CODE COLOR
Transparent
Black
Medium Green
Light Green
Dark Blue
Light Blue
Dark Red
Cyan
Medium Red
Light Red

11 Dark Yellow
12 Light Yellow
13 Dark Green

s
COWONOOOOAEWN-

14 Magenta
15 Gray
16 White

164

Character Codes

ASCII GROUP
CODE NUMBER
32-39 1
40-47 2
48-55 3
56-63 4
64-71 5
72-79 6
80-87 7
88-95 8
96-103 9
104-111 10
112-119 11
120-127 12
128-135 13
136-143 14
144-151 15
152-1569 16

165

Editing Function Keys

FCTN E this combination of keys is used to display a
program line. Type the line number and then FCTN E.
The line will appear with the cursor over the first
character on the line.

FCTN S moves the cursor to the left within a program line.
FCTN D moves the cursor to the right within a program line.

FCTN 1 erases the character under the cursor and closes
the space which is left by moving everything to the
right of the cursor one space to the left.

FCTN 2 initiates insert mode. In insert mode, every key
press will insert a character under the cursor and
move everything to the right of the cursor one space
to the right. To get out of insert mode, press either
FCTN D or FCTN S.

FCTN 3 erases the line completely.
FCTN 4 erases anything you have added to the line and ends

the edit. To see the line, type its number followed by
FCTN E again.

166

e L L O L B |

Musical Tone Frequencies

Frequency Note

110
117
123
131
139
147
156
165
175
185
196
208
220

220
233
247
262
277
294
311
330
349
370
392
415
440

A

A#, Bb

B

C (low C)
C#, Db

D

D#, Eb

E

F

F# Gb

G

G#, Ab

A (below middie C)

A (below middle C)
A#, Bb

B

C (middle C)

C#, Db

D

D#, Eb

E

F

F#, Gb

G

G#, Ab

A (above middle C)

167

Musical Tone Frequency (continued)

Frequency Note
440 A (above middle C)

466 A#, Bb
494 B

523 C (high C)
554 C#, Db
587 D '
622 D#, Eb
659 E

698 F

740 F#, Gb
784 G

831 G#, Ab

880 A (above high C)

880 A (above high C)

932 A#, Bb
988 B
1047 C
1109 C#, Db
1175 D
1245 D#, Eb
1319 E
1397 F
1480 F#, Gb
1568 G
1661 G#, Ab
1760 A

168

&:&mwabmvww

ABS
APPEND
ASC
ATN
BASE
BREAK
BYE
CALL
CHR$
CLOSE
CON
CONTINUE
COS
DATA
DEF
DELETE
DIM
DISPLAY
EDIT
ELSE
END
EOF
EXP
FIXED
FOR
GO
GOSuUB

Reserved Words

GOTO
IF
INPUT
INT
INTERNAL
LEN
LET
LIST
LOG
NEW
NEXT

NUM
NUMBER

OoLD

ON

OPEN
OPTION
OUTPUT
PERMANENT
POS

PRINT
RANDOMIZE
READ

REC
RELATIVE
REM

RES

169

e R e e -

RESEQUENCE
RESTORE
RETURN
RND

RUN
SAVE
SEG$
SEQUENTIAL
SGN

SIN

SQR
STEP
STOP
STR$

sSuB

TAB

TAN
THEN

TO
TRACE
UNBREAK
UNTRACE
UPDATE
VAL
VARIABLE

GLOSSARY

argument: Some instructions that you give to the computer
require extra information, telling the computer something
about how it is supposed to obey the instruction. This extra
information is called an argument.

ASCII number: Every character on the keyboard is represented
by a number called its ASCIl code. For example, the ASCII
code for A is 65. The ASCII code for B is 66, and so on.

catalog: a list of all the files on a diskette. Also to catalog a
diskette means to list the files on it.

central processor: The brain of a computer, which directs and
controls everything that the computer does. In the Tl 99/4A the
central processor is a single integrated circuit, or “chip’, called
a microprocessor.

column: on a computer display or print-out, a vertical line.

command module: a small plastic box which plugs into the TI
99/4A and contains a program stored in ROM.

CPU: stands for Central Processing Unit. The same thing as a
central processor.

crash: computer jargon for what happens when a program
stops running because something is wrong.

cursor: the flashing square or other figure that indicates
where on a computer display the next typed character will go.

data: information used by a computer, such as programs,
numbers, strings and files.

decrement: to reduce the value of a number by one.

default: a value which the computer automatically assigns to
some argument, if the user does not assign a value.

deferred mode: when you give the computer several instruc-
tions as part of a program so that they are executed one after
the other as the program runs rather than at the time they are
typed in. Opposite of immediate mode.

disk: a thin, fiat, circle of plastic, coated with iron oxide, on
which a computer may record information.

O.
0

171

o o o & aw ke v e e B e @ v e e)

diskette: a disk that is 5% inches in diameter.

display: pictures or text that a computer prints on a television
or monitor screen.

double density: refers to a disk that can hold twice as much
data as a single density disk.

double sided: refers to a disk which can have data recorded
on both sides.

edit: to change text or program lines by removing characters,
adding new characters, moving characters from one place to
another or substituting new characters for old ones.

element: If you think of an array as a row of boxes, each box in
the array is called an element of that array.

file: a body of information stored in a single place by the
computer. Information in a file is all related to a single subject.

N7

N

172

floppy disk: a disk that is made of thin plastic and is flexible.
hard disk: a disk that is made of aluminum and is not flexible.

hard-sectored: a disk whose sectors are located by holes in
the disk, usually one hole near the center of the disk for each
sector. Opposite of soft-sectored.

immediate mode: when you give the computer individual
instructions that are executed as soon as you press the
ENTER key. Opposite of deferred mode.

increment: to increase the value of a number by one.

initialize: (1) to assign a value to some variable for the first
time. (2) to prepare a blank disk for use.

load: to transfer data from a storage device, such as a disk
drive or cassette recorder, into a computer’s memory.

mass storage: devices where data is stored outside the
computer, such as a cassette recorder or a disk drive.

memory: the place inside a computer where data is stored.
This is different from mass storage, which is usually outside
the computer.

menu: a list of choices from which you may select what you
want the computer to do.

monitor: a device like a television, but meant especially for
use with a computer. It is used as a television screen for the
computer.

null: containing nothing. For example, a null string contains
no characters.

peripheral: a device attached to the computer such as a
printer or a disk drive.

173

program: a list of instructions which the computer follows in
performing a job.

prompt: a character displayed by a computer to notify the
user that an action is expected of him.

RAM: Random Access Memory. That part of a computer’s
memory whose contents may be changed by the user.

random access: the ability to'go directly to data anywhere in a
storage medium, as with a disk. The opposite of sequential
access.

ROM: Read Only Memory. The part of a computer’s memory
that contains built-in data which cannot be changed. Ti 99/4A
command modules contain ROM.

routine: a short program that performs a specific task.

row: a horizontal line of characters on a display or print-out.

save: to record data onto a storage medium such as tape or
disk.

sector: a disk is divided up into a number of pie-shaped
sections, called sectors. See ‘track’.

sequential access: when you are searching for an item of
information, and you have to look past all the information that
comes before it before you reach the item you seek, as with
cassette tape. The opposite of random access.

single density: a disk on which you can record a normal
amount of information. See double density.

single sided: when only one side of a disk can be used to
record data.

174

soft-sectored: a diskette whose sectors are located by marks
recorded on it, instead of by holes in the diskette. Opposite of
hard-sectored.

storage: a place where data is kept. Data may be kept for long
periods in mass storage, such as a cassette tape or disk; or it
may be kept temporarily in the computer’s memory while
power is on.

subprogram: a small program that may be part of a larger
program. A number of subprograms are built into TI| BASIC,
and these are run with the CALL instruction.

track: a disk is divided up into a number of concentric rings
around the center of the disk. These are called tracks. Each
track is divided up into a number of sectors. Each sector of
each track holds the same amount of data.

variable: a place in the computer’s memory where a number or
string is stored.

175

o [b b b b b bd o el o o) e o) D

176

Computer Books
from

THE GOOD IDEA PEOPLE

Finally, microcomputer handbooks you can understand. Written in
everyday language for the beginning beginner, these handbooks. . .

Start at the absolute beginning
Provide the information to make you “Computer Literate”
Guide you as you discover what your computer can really do

Give you “hands-on" experiences so that you can write your own
programs

Put you in complete control

FUNCTIONAL TOO! The built-in easel allows these books to stand
up at your computer for easy use!

Other computer books from ENRICH:
The lilustrated Computer Dictionary & Handbook $9.95

Free Software for Your ATARI $8.95

Free Software for Your Commodore $8.95
Free Software for Your Apple $8.95

Free Software for Your Tl $8.95

Apple for the Beginning Beginner $8.95
ATARI for the Beginning Beginner $8.95
PET for the Beginning Beginner $8.95
TRS-80 for the Beginning Beginner $8.95
Tl for the Beginning Beginner $8.95

good books are sold!

Printed in the U.S.A.
ISBN: 0-86582-132-1

“ || Ask for these books wherever
0

L d b

	front-cover
	inside-cover
	Binder1
	content001
	content002
	content003
	content004
	content005
	content006
	content007
	content008
	content009
	content010
	content011
	content012

	back-cover

