

Creative Programming
for Young Minds

...ontheTI 99/4A

Volume VII

by Leonard Storm

•^^-•v:'.. 'y^<WJ\
I ' '-' S i.1.n'Vi',1. r /3-> «v V '.fi ?•'..''.

CZ7" Zi - •• \!z7 czr
n—./^ay--n-

Jit
» ^r^ r^

© 1982, CREATIVE Programming, Inc., Charleston. IL 61920
A Subsidiary of RV Weotherford Co.

® A registered trade mark of Texas Instruments, Inc.

CREATIVE PROGRAMMING FOR YOUNG MINDS

...ON THE TI-99/4A

VOLUME VII

TABLE OF CONTENTS

LESSON #24

LESSON #25

LESSON #26

SPRITES 290

CALL SPRITE 290

CALL DELSPRITE 294

CALL MAGNIFY (2) 294
CALL MAGNIFY (1) 294
CALL POSITION 298

CALL MOTION 298

:: (double colon) 298

CALL COINC 300

CALL LOCATE 305

CALL PATTERN 308

CALL DISTANCE 310

CALL MAGNIFY (3) 313
CALL MAGNIFY (4) 313

DISPLAY 315

DISPLAY AT 315

BEEP 316

ERASE ALL 316

SIZE 316

USING 318

IMAGE 319

ACCEPT AT 321

VALIDATE 322

SUB 327

CALL subprogram 327
SUBEND 327

SUBEXIT 331

ON ERROR 334

RETURN number 334

RETURN NEXT 335

THE COLORED PAGES

VIOLET PROJECTS

j^v

LESSON #24: SPRITES

290

CONGRATULATIONS, TI-99/4A MASTER

PROGRAMMER! YOU HAVE COMPLETED

VOLUME VI AND ARE READY FOR THE

SPRITELY ADVENTURES AHEAD. IN

THIS VOLUME, WE WILL EXPLORE SOME

CAPABILITIES OF THE TI EXTENDED

BASIC COMMAND MODULE. TO BEGIN,

INSERT THE EXTENDED BASIC MODULE

INTO THE COMPUTER AND THEN TURN

ON YOUR COMPUTER.

In this lesson, you will learn how to create smoothly mov

ing graphics characters called sprites. These sprites are

defined using the CALL SPRITE subprogram. The format of

the CALL SPRITE subprogram is shown below:

CALL SPRITE (^number, character,color, dotrow, dotcol ,rowvel,colvel)

The first variable, number, is a numeric expression from

1 to 28. That is, up to 28 sprites can be defined at any

one time. The # sign must be present in front of the

numeric expression.

The second variable, character, is the character code which

defines the shape of the sprite. This number may be any

integer from 32 to 143.

291

The third variable, color, defines the foreground color of

the sprite. The background color of a sprite is always

transparent. COLOR may be any numeric expression from 1

to 16.

The next two variables determine the starting position

of the sprite. Dotrow is a number from 1 to 256 (but 193

through 256 are off the bottom of the screen) and dotcol

is a number from 1 to 256. The D0TC0L=1 ,D0TR0W=1 position

is the upper left-hand corner of the screen. DOTROW and

DOTCOL actually specify the position of the upper left-hand

corner of the character or characters which define the

sprite.

The last two variables of the CALL SPRITE subprogram are

optional. If present, they specify the row and column

velocity of the sprite. If these variables are not present,

then the sprite will be stationary. Rowvel and colvel may

be any number from -128 to 127.

Now type the following program into the computer and

RUN it:

10 CALL CLEAR

20 INPUT "CHARACTER ":Z

30 CALL SPRITE (#1, Z,16,80,80,10,10)

40 GOTO 10

292

Input the following numbers and record the sprite shape

CHARACTER SHAPE

65

34

98

72

Notice that once the sprite is defined in statement 30,

it continues to move with the specified velocity until

the sprite parameters are changed.

Also, notice that every time you run the CALL SPRITE

subprogram, the new character starts again at dot row

80 and dot column 80.

Next, change statement 30 to:

30 CALL SPRITE(#1,66,16,80,80,X,Y)

and change statement 20 to:

20 INPUT "XVEL,YVEL":X,Y

RUN the program.

On the next page, INPUT the values listed for XVEL and

YVEL.

jfPN

#^v

293

XVEL YVEL DIRECTION OF MOTION (Draw an arrow.)

0 0

10 0

-10 0

0 10

0 -10

-30 -30

Now change statement 20 to:

20 INPUT "SPRITE NUMBER":S

and change statement 30 to:

30 CALL SPRITE(#S,66,16,80,80,10,10)

Next, RUN the program. Input the following numbers (one

at a time):

S = l, 1, 1, 2, 3, 28, 15, 4, 5, 9, 8, 7

Note that entering the same number several times redefines

the same character and starts its motion at the position

DOTROW=80 and DOTCOL=80.

After you enter the numbers above, you should have 10

sprites moving diagonally across the screen.

What happens if you input a number outside the range from

1 to 28?

#^

294

Now change statement 30 to:

30 CALL SPRITE(#S,66+S,16,80,80,0,10)

RUN the program and input the following numbers:

S =1, 3, 9, 21

When you can see all the sprites on the screen at one

time, enter another sprite, say S = ll.

Notice that when you entered the last sprite, #11, one

of the other sprites disappears. The sprite that has

disappeared still exists, it's just invisible. The rule

is:

ONLY 4 SPRITES WILL BE VISIBLE

ON ANY ONE ROW OF THE SCREEN.

THE LOWEST NUMBERED 4 SPRITES.

WILL BE VISIBLE. HIGHER NUM

BERED SPRITES WILL BE INVISIBLE

Now add the following program statements:

25 IF S=0 THEN 45

45 INPUT "DELETE SPRITE":M

50 CALL DELSPRITE(#M)

55 GOTO 10

RUN the program again and input:

S = 21, 3, 9, 1.

Then input S =11 and observe that sprite #21, the W dis

appears .

r

295

Next, input S = 0 and when you get the DELETE SPRITE

message, input a 1. This causes sprite #1 to be undefined.

It disappears because it no longer exists. Now, the W

reappears since only four sprites exist on that row.

THE CALL DELSPRITE COMMAND IS

USED TO DELETE CURRENTLY DEFINED

SPRITES.

Now change the program again. Change statement 30 to:

30 CALL SPRITE (#S,66+S,16,80,80,-10,0)

Input as many sprites numbers as you wish. Notice that

none of the sprites disappear. All 28 sprites can exist

and be visible in any one column.

Now add the following program statement:

1 CALL MAGNIFY(2)

RUN the program again and input any numbers that you wish.

Notice that the CALL MAGNIFY(2) statement causes all the

sprites to have twice the size that they had before.

Finally, change statement 1 to:

1 CALL MAGNIFY(1)

RUN the program again and notice the size of the sprites.

296

Instead of using the standard character set, let's define

a sprite of our own design. It's really quite easy to do.

We just use the CALL CHAR subprogram

A program example is shown below. Type it into the com

puter and then RUN it.

10 CALL CLEAR

20 CALL CHAR(96,"3C7EE7DBDBE77E3C")

30 CALL SPRITE(#1,96,7,60,80,16,15)

40 GOTO 40

Now add the following program lines:

40 CALL CHAR(40,"FFFFFFFFFFFFFFFF")

50 CALL C0L0R(2,11,11)

60 CALL HCHAR(10,1,40,32)

70 GOTO 70

Rl)N the program.

Here's how the program works:

Statement 20 defines the sprite character shape.

Statement 30 defines the sprite characteristics. The

sprite is to be red, start at DOTROW 60 and DOTCOL 80, and

move with speed 16 downward and 15 to the right.

Statement 40 defines character 40 to be a solid

square.

Statement 50 causes set 2 (which contains character 40)

to be colored dark yellow.

Statement 60 prints 32 of the yellow squares in a

horizontal line beginning at row 10 and column 1.

297

Notice that the sprite that was defined appears to move

over the dark yellow band.

What change would you have to make to cause the sprite

to have twice the size it has now? Include a line in

your program which will make the sprite twice as large.

Write your program line:

Now change statement 30 to:

30 CALL SPRITE (#1,96,7,60,80,16,15,#2,96,7,62,100,16,15)

RUN the program again.

Notice that statement 30 defines two sprites at once.

See if you can alter statement 30 so that sprite #1 is

black and sprite #2 is red. Show the revised statement 30

on the line below. Then RUN the program to check it out.

Now let's write a bouncing ball program. Later we will

add a paddle and make a game out of it.

Type the following program code into your computer:

10 CALL CLEAR

20 A$="3C7EFFFFFFFF7E3C"

30 CALL COLOR(2,5,8)

40 CALL SCREEN(8)

50 B$="FFFFFFFFFFFFFFFF"

60 CALL CHAR(40,A$)

70 CALL COLOR(3,2,8)

80 CALL CHAR(48,B$)

298

Statement 20, 30, and 60 define the ball character.

Statement 50, 70, and 80 define the character which will

be used as a border.

Also type in the following lines:

90 CALL HCHAR(1,1,48,64)

100 CALL HCHAR(23,1,48,64)

110 CALL VCHAR(1,1,48,48)

120 CALL VCHAR(1,31,48,48)

130 CALL MAGNIFY(2)

140 CALL SPRITE(#5,40,7,80,80,8,10)

Statements 90 through 140 print a solid border around

the screen.

Statement 130 causes sprites to be double sized and

statement 140 prints the ball sprite on the screen. The

sprite is started at position DOTROW =80 and DOTCOL =80.

Its speed is 8 units downward and 10 units to the right.

Now type in the following code:

150 AX=8::AY=10::VX=8::VY=10

160 CALL POSITION(#5,X,Y)

170 IF X>160 THEN VX=-AX ELSE IF X<20 THEN VX=AX

180 IF Y>220 THEN VY=-AY ELSE IF Y<20 THEN VY=AY

190 CALL MOTION(#5,VX,VY)::GOTO 160

Statement 150 sets VX equal to the vertical speed of the

sprite and VY equal to the horizontal speed. The double

colon (::) is a statement separator which allows more

than one statement to be placed in a BASIC line.

299

Statement 160 asks for the position of sprite #5. This

statement sets X equal to the vertical position of the

sprite and Y equal to the horizontal position of the

sprite. (The position of a sprite is its upper left-

hand corner.)

Statement 170 then checks the value of X against the

horizontal borders of the screen. If X>160, then the

sprite has hit the screen border on the bottom. If X<20,

then the sprite has run into the top border. For either

of these conditions, the vertical direction should be

reversed. That is, set VX=-AX or +AX.

NOTE: TI EXTENDED BASIC also allows logical expressions

TO BE CONNECTED WITH LOGICAL OPERATORS (AND, OR,

NOT, XOR).

Statement 180 checks to see if the ball sprite has run

into the side borders. If it has, then the horizontal

motion of the sprite should be changed: VY=-AY or + AY,

Statement 190 contains another special subprogram used

with sprites. The CALL MOTION subprogram allows the

velocity of the sprite to be changed. After statement 190

is executed, the velocity of sprite #5 will be VX in the

vertical direction and VY in the horizontal direction.

Next statement 190 causes a jump back to line 160 where

the position of sprite #5 is again determined.

Statements 160 through 190 form a repeating loop.

300

RUN the program and observe the smooth bouncing action

of the ball sprite.

Now stop the program.

Let's define a paddle-like sprite to control the bouncing

of the ball.

Type the following program lines into the computer:

25 P$="FFFFFF0000FFFFFF"

60 CALL CHAR(40,A$,44,P$)

140 CALL SPRITE(#5,40,7,80,80,8,10,#4,44,15,140,120)

Statement 25 defines the paddle shape while statement 60

assigns this string to the character code 44. Note that

J^ more than one character code assignment can be made in

the same CALL CHAR subprogram.

Statement 140 has been expanded to define both sprite #5

and sprite #4. Sprite #4 is the paddle character, 44, and

is defined to be gray (15), and is located at location 140

down and 120 to the right.

RUN the program again and observe the effects of the

changes which have been made.

To get the paddle to move, modify the following program

lines as shown:

160 CALL POSITION(#5,X,Y)::CALL KEY(1,K,S)::IF S=0

THEN PV=0 ELSE PV=20*(K-2.5)

f 190 CALL MOTION(#5,VX,VY,#4,0,PV)::GOTO 160

301

Statement 160 determines the position of the ball. Then

the CALL KEY subprogram sets K equal to the key code of

the key pressed on the left-hand side of the keyboard

(unit 1). S is set equal to the status of the keyboard.

If S=0, then no key is currently being pressed. The

IF-THEN portion of statement 160 will then set PV=0

(paddle velocity=0). If S does not equal zero, then PV

will be set equal to 20*(K-2.5).

Statement 190 sets the velocity of the two sprites.

Now RUN the program again. Use the two arrow keys (<

to control the velocity of the paddle. (K=2 for < ; K=3

for >.) .

NOTE: Pressing any key other than the two arrow keys

MAY CAUSE THE PROGRAM TO "CRASH".

We now need to add the statement which will cause the

ball to bounce off of the paddle.

Type in the following line:

185 CALL COINC(#4,#5,T,C)::IF C=-l THEN VX=-VX::CALL

SOUND(-50,880,0)::T=0 ELSE T=8

RUN the program again. Use the arrow keys to move the

paddle. Try to hit the ball with the paddle.

Statement 185 contains a COINCidence subprogram which

checks to see whether sprite #4 and sprite #5 are at

the same screen position.

302

The third variable, T, is a tolerance variable. If

sprite #4 and sprite #5 are within T screen dots, then

the sprites are considered to be coincident. The CALL

COINC subprogram sets the numeric variable C equal to -1

if the sprites are coincident; otherwise, it sets C equal

to 0.

The next part of statement 185 checks the value of C.

If C = -l, then the sprites were coincident. The program

then causes the vertical motion to be reversed, a sound

to be played, and the tolerance variable to be set to

zero. If C doesn't equal -1, then T is set to 8.

303

EXERCISE 24-1

Now let's go back and review the new commands that you

have learned. They are listed below for your convenience:

CALL SPRITE CALL MOTION

CALL DELSPRITE CALL COINC

CALL MAGNIFY CALL POSITION

Write a program to do the following:

Create an arrow shaped character (—>) using the

CHAR subprogram. Then use the sprite subprogram to create

an arrow shaped sprite having a red color. The sprite

should be located at DOTROW=100 and DOTCOL=20. The velo

city of the arrow sprite should be zero.

Use a statement like 1000 GOTO 1000 at the end of

your program.

RUN the program to see that it works, then write

your program below:

Now add a statement to your program to cause the sprite

to move to the right with a velocity of 35. Show the

program line in the space below when you have it working

properly. ^

304

EXERCISE 24-1 (CONT.)

What statement could be added to your program to make the

sprite be double sized? Add the statement to your program,

Write it on the line below.

Now at the end of your program, but before the last infin

ite loop, include the delay loop shown below:

FOR DELAY=1 TO 1000::NEXT DELAY

After the delay loop, include a CALL MOTION statement to

stop the motion of the sprite. Then add another delay

loop. Finally, use the DELSPRITE subprogram to delete

the sprite. Show the additional program lines below.

(The 1000 GOTO 1000 statement should still be the last

program line.)

JP^

JP=N

305

EXERCISE 24-2

In this exercise, you will investigate the COINC, POSITION,

and LOCATE subprograms. To do this, type in the following

program lines:

5 CALL CLEAR

10 CALL CHAR(40,"CCCC3333CCCC3333")

20 CALL SPRITE(#1,40,2,80,100,#2,40,16,80,100)

30 CALL MAGNIFY(2)

40 INPUT "X,Y":X,Y

50 CALL LOCATE(#1,X,Y)

60 CALL COINC(#1,#2,10,I)

70 CALL POSITION(#1,A,B)

80 PRINT "POSITION ";A;B

90 PRINT "COINC ";I

100 FOR J=l TO 1000

110 NEXT J

120 CALL CLEAR

130 GOTO 40

A description of the program follows:

Statements 10 through 30 define the sprite character

istics.

Statement 40 allows you to input new position

coordinates for sprite #1.

Statement 50 actually repositions the sprite. The

first variable of the CALL LOCATE subprogram specifies

J$F=S

/ffP^V

306

EXERCISE 24-2 (CONT.)

the sprite that will be positioned. The next 2 variables

specify the dot row and dot column of the upper left-hand

corner of the sprite.

Statement 60 looks to see whether the upper left-hand

corners of the sprites are within 10 dots of each other.

If they are, then I will be set to -1, otherwise, it will

be set to 0.

Statement 70 determines the position of sprite #1.

Statements 80 and 90 print out the position and

coincidence information generated in 60 and 70.

Statements 100 and 110 cause a delay before statement

120 clears the screen of print and statement 130 loops

back to the input statement.

RUN the program and input position data for sprite #1.

Record the value generated by the COINC subprogram.

X Y COINC

307

f^ EXERCISE 24-2 (CONT.)

Now rewrite the last program using :: to condense the

program to as few program lines as possible. RUN the

program to make sure that it works. Then write the pro

gram below.

308

EXERCISE 24-5

In this exercise, you will learn about the CALL PATTERN

subprogram which allows you to quickly change the shape

of a previously defined sprite.

The form of the PATTERN subprogram is shown below:

CALL PATTERN (#sprite , character,value)

The first variable specifies the number of the sprite

whose character code is to be changed. The second

variable is the new character code for the sprite.

The CALL PATTERN subprogram is illustrated in the following

program. Type it into the computer and RUN it.

5 CALL CLEAR

10 CALL CHAR(40,"101010FE10101000",42,"8244281028448200")

::CALL MAGNIFY(2)

20 CALL SPRITE(#1,40,7,10,10,10,10)

30 P=42

35 FOR T=l TO 500::NEXT T

40 CALL PATTERN(#1,P)

50 P=40

55 FOR T=l TO 500::NEXT T

60 CALL PATTERN(#1,P)

70 GOTO 30

Statement 10 defines two different characters.

^^ Statement 20 defines a sprite using one of these characters.

The rest of the program alternately assigns one or the

other shape to the moving sprite.

309

EXERCISE 24-3 (CONT.)

Now it's your turn. Write a program using the CALL PATTERN

subprogram which defines a moving block that grows and

shrinks as it moves along. Use at least four different

codes to define different sized blocks.

When your program works properly, record it on the lines

below.

#^N

310

EXERCISE 24-4

In this exercise, you will learn about another sprite

subprogram: CALL DISTANCE. This subprogram has the

form shown below:

CALL DISTANCE (^sprite,%sprite,numeric variable)

OR

CALL DISTANCE (^sprite,dotrow,dotcol,numeric variable)

The first form of the subprogram finds the distance

squared between the two sprites listed as variables of

the subprogram. NUMERIC VARIABLE is set equal to the

calculated distance squared.

The second form of the subprogram finds the distance

squared between the sprite specified and the screen

position specified. NUMERIC VARIABLE is set equal to

the distance squared.

Type the following program into the computer. It illus

trates the DISTANCE subprogram.

10 CALL CLEAR

20 CALL CHAR(40,"C0C0000000000000M)

30 CALL SPIRTE(#1,40,2,40,160,#2,40,16,40,160)

40 INPUT "R1,C1 ":R1,C1

50 INPUT "R2,C2 ":R2,C2

60 CALL SPRITE(#1,40,2,R1/C1/#2,40,16,R2,C2)

70 CALL DISTANCE(#1,#2,D)

Keep going.

JgPN

EXERCISE 24-4 (CONT.)

80 PRINT "DISTANCE SQUARED ":D

90 FOR 1=1 TO 1000

100 NEXT I

110 GOTO 10

RUN the program. Input the following data and fill in

the value for distance squared.

Rl CI R2 C2 D

40 160

160

160

160

160

160

160

160

160

160

40

40

40

40

41

42

50

30

41

42

160

40 161

40 162

40 165

40 160

40 160

40 160

40 160

40 161

40 162

311

igjP^N

312

EXERCISE 24-5

In this exercise, you will learn how to make GIANT-SIZED

sprites. It's really quite easy to do.

Thus far, you have learned how to create sprites consisting

of a single character. To create larger sprites, one must

define four characters.

For example, one could use the character codes 40, 41, 42

and 43 to define a large sprite. (Note that the numbers

should be consecutive and the first one should be divisible

by 4.)

The first code number defines the upper left-hand corner

of the sprite. The second character code defines the

lower left-hand corner of the sprite. The third number

corresponds to the lower right-hand corner. This is

illustrated below:

40 42

41 43

The following program illustrates how one may create a

4-character sprite:

10 CALL CLEAR

20 CALL CHAR(44,,,FF00FF00FF00FF00")

30 CALL CHAR(45,"AAAAAAAAAAAAAAAA")

40 CALL CHAR(46,"FFFFFFFFFFFFFFFF")

Keep going.

313

EXERCISE 24-5 (CONT.)

50 CALL CHAR(47,"00003C3C3C3C0000n)

60 CALL SPRITE(#1,44,7,40,40,10,10)

70 FOR J=l TO 4

80 CALL MAGNIFY(J)

90 FOR 1=1 TO 1000::NEXT I

100 NEXT J

110 GOTO 70

RUN the program. Observe the various sprite sizes.

When J=l, statement 80 causes the sprite to consist of

one character and be single-sized.

When J=2, the sprite will consist of one character and

be double-sized.

MAGNIFY(3) causes the sprite to consist of 4 characters,

each single-sized.

MAGNIFY(4) causes the sprite to consist of 4 characters,

each double-sized.

Note statements 20 through 50 could be replaced by a

single CALL CHAR statement. The additional forms are

shown below.

CALL CHAR(44, "FF00FF00FF00FF00 ",45 ,"AAAAAAAAAAAAAAAA" ,

46,"FFFFFFFFFFFFFFFF",47,"00003C3C3C3C0000")

OR

CALL CHAR(44,"FF00 FF0 0 FF00FF0 0AAAAAAAAAAAAAAAAFFFFFFFF

FFFFFFFF00003C3C3C3C0000")

314

EXERCISE 24-5 (CONT.)

Now it's your turn. Write a program which creates a

GIANT-SIZED sprite. Use the CALL PATTERN and CALL MOTION

subprograms to introduce linear motion and the effect of

rotation. Write the program below.

/sfpss

315

LESSON #25: DISPLAY

IN THIS LESSON, YOU WILL FIND

OUT ABOUT THE VERSATILE DISPLAY AT

COMMAND WHICH ALLOWS TEXT TO BE

PLACED AT ANY POSITION ON THE

SCREEN WITHOUT CAUSING THE SCROLL

ING ASSOCIATED WITH THE PRINT

COMMAND.

A simple form of the DISPLAY command is illustrated in the

program below. Type it into the computer and RUN it.

10 CALL CLEAR

20 A$="HELLO, MY NAME IS TEX."

30 B$="SEE, I CAN PRINT ANYWHERE!"

40 DISPLAY AT(6,5):A$

50 DISPLAY AT(23,2):B$

60 DISPLAY AT(15,10):B$

70 GOTO 70

The numbers included inside the parenthesis tell where

to begin printing the desired message. For example,

DISPLAY AT(1,2):"HELLO";X$

would print the message HELLO at row 1, column 2. The

string, X$, would be printed in the next column to the

right of the O in HELLO since a semi-colon is used as

the separator.

^PN

J^V

316

Now, add a line to the program that will cause the computer

to print a message at row 17, column 8. Show your working

program line here: .

Now change statement 40 to the following:

40 DISPLAY AT(6,5)BEEP:A$

RUN the program again.

BEEP causes a short tone to be.played when the data is

displayed.

Next, add the following program lines:

55 FOR 1=1 TO 1000::NEXT I

60 DISPLAY AT(15,10)ERASE ALL:B$

RUN the program again and notice the effect of the ERASE ALL,

Now type in the following program:

10 CALL CLEAR

20 A$="125"::B$="7649"

30 DISPLAY AT(12,14)BEEP:B$

40 DISPLAY AT(12,11)BEEP:A$

50 GOTO 50

RUN the program. Notice that the information printed in

statement 30 gets erased by statement 40.

To inhibit this erasure, change statement 40 to:

40 DISPLAY AT(12,11)SIZE(5)BEEP:A$

RUN the program again.

317

Notice that statement 40 now only erases 5 spaces before

printing the A$ data.

NOTE: If the SIZE option is not present, the rest of

THE ROW WILL BE ERASED BEGINNING AT THE COLUMN

SPECIFIED IN THE DISPLAY COMMAND.

Now change statements 30 and 40 to:

30 DISPLAY AT(24,4)BEEP:B$

40 DISPLAY SIZE(3)BEEP:A$

RUN the program again. Where is the information printed

this time?

Now add this line and RUN the program again.

45 DISPLAY AT(24,1):A$::GOTO 45

Notice that using DISPLAY without an AT causes the line

to be printed in the 24th row, first column and also

causes an upward scroll to the 23rd row.

Statement 45 causes no such scroll.

Now for something different. . .

You have no doubt noticed that computer calculations

often give results containing many decimal digits and

yet sometimes it is desirable to ignore most of those

digits.

For example, if A=124.1234567, you may desire to print A

as 124.12 and ignore the rest. It is possible to do this

^FV

318

using a special format option of TI EXTENDED BASIC. The

following program shows how this is done. Type it into

the computer and RUN it.

10 CALL CLEAR::INPUT A

20 DISPLAY AT(5,5) :USING "##.###" :A

30 FOR 1=1 TO 1000::NEXT I

40 GOTO 10

Input the following data and record the computer's response

A RESPONSE

l

12

12.1

12.12

64.123

82.1234

10.0000

100

100.11

-1

-12

.9995

99.9994

99.9995

319

Now change statement 20 so that the computer BEEPs when

it displays the data. Show the working program line below,

Instead of putting the number format in the USING clause,

one may put it in an IMAGE statement. The variable of the

USING clause is then the line number of the IMAGE state

ment. This option is illustrated in the program which

follows. Type it into the computer and RUN it.

1 IMAGE ##.#,##.##,##.###

10 CALL CLEAR::INPUT A,B,C

20 DISPLAY AT(1,1):USING 1: A,B,C

30 FOR 1=1 TO 1000::NEXT I

40 GOTO 10

INPUT RESPONSE

10,11,12

1,2,3

123,2,4

Statement 20 displays the message beginning at row 1,

column 1, using the format specified in statement 1.

320

Notice that the # symbol gets replaced by the numerical

value of the variable to be displayed. The periods,

commas, etc. in the IMAGE statement are printed just as

they are found in the IMAGE statement.

Now make the following changes:

1 IMAGE HELLO, ##########

10 CALL CLEAR::INPUT A$

20 DISPLAY AT(1,1):USING 1:A$

RUN the program again. Input TEX at the question mark.

Now change statement 20 to:

20 PRINT USING 1:A$

RUN the program again. Use TEX as the input.

Next, type in and RUN the following program:

1 IMAGE ##.########

10 CALL CLEAR::INPUT A

20 PRINT USING 1:A

30 FOR 1=1 TO 1000::NEXT I

40 GOTO 10

A RESPONSE

1

123

123.123E100

-1E-5

jf^N

321

TI EXTENDED BASIC ALSO ALLOWS ONE

TO INPUT DATA FROM ANYWHERE ON

THE SCREEN. THE COMMAND WHICH

ALLOWS THIS IS CALLED ACCEPT AT.

The ACCEPT command is illustrated in the program below.

Type it into the computer and RUN it.

10 CALL CLEAR

20 ACCEPT AT(2,20):M

30 DISPLAY AT(20,2)BEEP:M

40 GOTO 20

Input the following data and write the computer's response

DATA RESPONSE

1

23

1234567890

112233445566

-1.23E4

-1.23E89

Q

00.100

Did you notice how the screen got messed up when you

entered Q? The computer was expecting a numerical value,

but it got a string instead. There is a way to prevent

input mistakes, like the one above, from ruining a well-

planned screen display.

Change statement 20 to:

20 ACCEPT AT(2,20)VALIDATE(NUMERIC):M

RUN the program again. Try several different inputs to

see what happens.

DATA RESPONSE

322

The VALIDATE(NUMERIC) option only allows numeric data to

be entered (0 through 9,".","+","-", and "E").

Other examples of the VALIDATE option are shown below:

VALIDATE (ualpha) — allows only uppercase alphabetic
characters.

VALIDATE (digit) — allows only 0 through 9.

VALIDATE {string expression) — allows only the characters
in the given string expression

Now change statements 20 and 30 to:

20 ACCEPT AT(2,20)BEEP VALIDATE("YESNO"):M$

30 DISPLAY AT(20,2)BEEP:M$

RUN the program again. Input the following data

DATA RESPONSE

HELLO

YESNO

YES

NO

Y

YO

12

What happens if statement 20 is typed in as:

20 ACCEPT AT(2,20)VALIDATE("YESNO") BEEP:M$

323

Now let's investigate another option available with the

ACCEPT AT command.

Type in the following program and then RUN it.

10 CALL CLEAR

20 DISPLAY AT(2,1):"ABCDEFGHIJKLMNOPQRSTUVWXYZ"

30 FOR 1=1 TO 1000::NEXT I

40 ACCEPT AT(2,10):A$

50 DISPLAY AT(20,10):A$

Notice that statement 40 erases the rest of the second row

beginning at column 10 and then waits for your input.

One can modify this erasure by using the SIZE command.

324

Change statement 40 to:

40 ACCEPT AT(2,10)SIZE(5) :A$

RUN the program again, noticing the effect of the SIZE

option.

Now change statement 40 to:

40 ACCEPT AT(2,10)SIZE(-5):A$

RUN the program again. When the program is waiting for

a response from you, just press ENTER.

This time statement 40 does not clear the 5 spaces. If

you input a string, the computer will accept up to 5

characters. If no new string is typed onto the screen,

the computer accepts whatever is in those 5 spaces.

Finally, change statement 40 to:

40 ACCEPT AT(2,10)BEEP VALIDATE(DIGIT,"YN")SIZE(-1)

ERASE ALL:A$

RUN the program again.

ERASE ALL causes the whole screen to be cleared.

325

EXERCISE 25-1

In this exercise, you are to write a program using the

DISPLAY, ACCEPT, and IMAGE commands.

Your program should input numbers from the screen using

the ACCEPT AT statement. The program should BEEP every

time it is waiting for an input. The input statement

should VALIDATE that the data entered is numeric.

As each number is entered, the program should display

the current sum of the numbers entered. Also, have it

print out the number of data entries.

When you wish to zero the adder, enter a 0. The program

should respond by clearing the counter and displaying

zeroes in each display area.

A possible screen display is shown below.

THE ADDING MACHING

NUMBER OF ENTRIES: 000

CURRENT SUM: 000.00

*ENTER 0 TO CLEAR

Use an IMAGE statement to produce this number format:

XXX.XX

Record your working program on the lines provided on

the next page.

326

l^\

327

LESSON #26: SUB

IN THIS LESSON, YOU WILL LEARN

HOW TO CREATE YOUR OWN SUBPROGRAMS

SUCH SUBPROGRAMS ARE CALLED JUST

LIKE REGULAR TI BASIC OR EXTENDED

BASIC SUBPROGRAMS.

The best way to learn about subprogramming is just to

crawl right in. So here we go. . .

Type the following program into the computer:

10 CALL CLEAR

20 CALL ADDER(1,4,A)

30 CALL ADDER(12,3,B)

40 PRINT A

50 PRINT B

100 SUB ADDER(NUM1,NUM2,SUM)

110 SUM=NUM1+NUM2

120 SUBEND

RUN the program.

There are several things you should notice. The program

begins by clearing the screen (line 10). Statement 20

then calls a subprogram named ADDER. This is a user

defined subprogram. It contains 3 variables, 2 of which

are passed to the subprogram, and 1 which is given a

value by the subprogram.

328

After statement 20 is executed, the program jumps down

to (passes control to) the subprogram which begins in

line 100.

Statements 100 through 120 define the subprogram's

operation. Statement 100 tells the computer that a

subprogram is being defined, that its name is ADDER,

and that it has 3 variables.

When statement 100 is executed, NUMl and NUM2 are set

equal to the numbers passed from the main program.

That is, NUM1=1 and NUM2=4.

Next, statement 110 computes the value of SUM. SUM=l+4=5.

This value is associated with A (A=SUM=5).

Statement 120 signals the end of the subprogram's operation

Control is passed back to the main program at line 30.

Statement 30 makes another call to the subprogram. This

time NUM1=12, NUM2=3, and SUM=15=B.

Control is passed from the subprogram back to line 40.

Statements 40 and 50 print the values of A and B that

have been generated.

The program stops after statement 50.

NOTE: SUBPROGRAMS SHOULD ALWAYS COME AT THE END OF

THE MAIN PROGRAM.

329

Now type the following program into the computer and

RUN it.

10 CALL CLEAR

20 X=10

30 CALL PROG

40 PRINT "MAIN PROGRAM VALUE OF X=";X

50 GOTO 50

60 SUB PROG

70 X=50

8 0 PRINT "SUBPROGRAM VALUE OF X=";X

90 SUBEND

Here's how the program works:

After line 10 clears the screen, line 120 sets X equal

to 10.

Statement 30 is executed next. It calls the subprogram

named PROG. Notice that no variables are passed between

the main program and the subprogram.

Statements 60, 70, 80, and 90 are executed next.

Line 70 sets X equal to 50 and line 80 prints this value

Line 90 signals the end of the subprogram and sends

control back to line 40 which prints the value of X.

Notice! Instead of printing a value of 50 for X, line

40 prints the earlier value, 10. The reason for this is

that the computer considers the X in the main program

and the X in the subprogram to be different variables.

330

This is a great advantage! It means that you don't have

to worry that you've mistakenly used the same variable

in a main program as in a subprogram.

It also means that you can use the same subprogram with

many different main programs without having to change

the variable names within the subprogram.

The variables within a subprogram are said to be local

variables since they are only "known" to the subprogram.

Now type the following program into the computer and

RUN it.

10 CALL CLEAR::A=5

20 CALL PROG(A)

30 PRINT A

40 GOTO 4 0

50 SUB PROG(X)

60 A=10

70 PRINT X

80 SUBEND

Record the program display: line 70

LINE 30

Now change statement 50 to:

50 SUB PROG(A)

RUN the program again. Record the program display

line 70

line 30

Finally change statement 20 to:

20 CALL PROG ((A))

RUN the program again. Record the display as before

line 70 '

line 30

331

Finally, make the following program changes:

20 CALL PROG(A)

50 SUB PROG (X)

60 X=10

LIST the program to observe the complete program, then

RUN it. Again, record the display:

line 70

line 30

Notice under what conditions the value of A(=5) in the

main program gets altered by the subprogram.

Now input and RUN the program listed below.

10 CALL SAY("ENTER X")

20 INPUT X

30 CALL A(X)

40 PRINT "MAIN"

50 GOTO 10

60 SUB A(M)

70 IF M=5 THEN PRINT "SUBEXIT"::SUBEXIT

Keep going. >

332

80 PRINT "SUBEND"

90 SUBEND

This program shows a way to leave a subprogram before

the SUBEND statement.

Input the following values of X and record the computer's

response.

X RESPONSE

l

5

NOTE: THE VOCABULARY FOR THE CALL SAY SUBPROGRAM HAS

BEEN GIVEN IN AN EARLIER VOLUME.

333

EXERCISE 26-1

Write a main program that ACCEPTS 4 numbers from the

keyboard and then calls a subprogram which uses these

4 numbers as variables. After the main program calls

the subprogram, it should loop back to the ACCEPT

statement waiting for more inputs.

The subprogram should interpret the 4 variables as follows

1st variable — The color of solid blocks to be used

in building up a larger square.

2nd variable — The screen row position of the upper
left-hand corner of the large square.

3rd variable — The screen column position of the
upper left-hand corner of the large
square.

4th variable —The length (in blocks) of each side
of the square.

The subprogram should draw a square on the screen with

the above specifications.

Use IF-THEN statements to cause the subprogram to execute

a SUBEXIT if any given specifications are outside the

allowed range.

Show your working program on the lines below.

/^P^s

334

EXERCISE 26-2

Type the following program into the computer and RUN it.

10 ON ERROR 100

20 INPUT X

30 CALL SCREEN (X)

40 PRINT X

50 GOTO 20

100 PRINT "ERROR"

110 RETURN 20

Input the following data. Record the computer's response

X

7

14

17

13

18

RESPONSE

Statement 10 tells the computer what to do if an error

occurs. In this case, the computer will be directed to

a subroutine beginning at statement 100.

After you input a 17 at line 20, an error occurs in

line 30. The computer immediately jumps to line 100

to begin execution of the error handling routine. The

routine prints "ERROR" and then returns to line 20 of

the main program. (If no line number is given after

RETURN, it will cause a return to the same line that

causes the error.)

Keep going. >

f^

/pp^s

335

EXERCISE 26-2 (CONT.)

Later, when you input 18 at line 20, an error condition

again arises at line 30. This time, however, the program

stops with an error message. The reason for this is that

the second time an error occurs, the ON ERROR (statement

number) is no longer in effect. The computer reverts to

its normal action: ON ERROR STOP.

To circumvent this, you need to reset the error option

after every error.

Add the following program line and RUN the program again

using the data below.

105 ON ERROR 100

X RESPONSE

7

14

17

13

18

Now make the following change:

110 RETURN NEXT

RUN the program again. What is the effect of the change

made in line 110?

Keep going. ^

336

EXERCISE 26-2 (CONT.)

Now use the ON ERROR (line number) statement in the program

that you wrote in EXERCISE 26-1. Use it in place of the

IF-THEN statements to keep the program from crashing when

error conditions arise. Show your working program on the

lines below.

THE COLORED PAGES

At the end of this manual, you will find several

colored pages. These are projects that test your ability

to use what you have learned. There are no right or

wrong answers. If your program does what is asked, then

it is quite acceptable. You are free to express your

creativity. Be proud of what you do. Do not worry

whether your solution is like anyone else's.

Some of these projects may seem easy. . .but do not

be deceived into thinking that you can skip them. After

all, if they are easy for you, then it will not take long

to do them.

Good luck!

Henry A. Taitt
Director

VIOLET PROJECT 1

Create a program that will cause a sprite to "fly"

across the screen. Have the sprite take on all possible

character numbers from 32 to 143, with each passage

across the screen being a different character number.

VIOLET PROJECT 2

Create a program that causes a sprite to "fall"

from the top of the screen to the bottom. Have the

velocity increase like a real freely falling object.

V = Vo + a * t

where: V= Velocity

Vo = Original Velocity

a = acceleration

t = time

You may wish to review the YELLOW ALL STAR book,

pages 31 to 33.

VIOLET PROJECT 3

Using DISPLAY and ACCEPT, create a program of

your own design that also uses the SUB command.

VIOLET PROJECT 4

Using subprograms, create a program that will take

the number that you INPUT, and sum all whole numbers

(integers) between it and zero IF you INPUT an even

number.

If you INPUT an odd number, have it sum only the

odd number (integers) between it and zero.

VIOLET PROJECT 5

Using four subprograms, create four graphic figures

Give each graphic figure a name. Have them appear

randomly at different locations on the screen with their

name printed beneath them.

VIOLET PROJECT 6

Design a program that uses high-resolution graphics

to create a picture of the American Flag. If you can,

have sprites fly across the flag saying:

"OH SAY CAN YOU SEE?"

Copy your program on tape or disk and send it along

with this page to obtain your Programmer VII card. You

have become an excellent programmer! Congratulations!

Send to:

The cost of creating for you a PROGRAMMER'S
card is included in the cost of this manual. By send
ing in this colored page, we know this cost has
already been paid. If you are sharing this manual
and cannot remove this page, then you may also
receive your PROG RAMMER'S card and have your
name listed in the newsletter by sending us a copy
of your working program for this project along with
$2.00 and a self-addressed, stamped envelope.

Henry A. Taitt
CREATIVE Programming, Inc
604 Sixth Street

Charleston, IL 61920

Your name

Phone # _

Address

TI-99/4A

City, State

Zip ___^ Birthdate

Don't forget to enclose a self-addressed stamped envelope

p'^'jjsfr.' z^^3is?!L .rsr^n

US- i WF - «3
^CREATIVE
Ligations

A FORUM FOR YOUNG MINDS

CREATIVE Programming, Inc., Charleston, IL 61920

EE7 -£h—lb-—sis—cS

Name_

Address

City

A newsletter published 12 times a year. The articles are for young programmers, about young
programmers and often written by young programmers.

Each month a graphics program created by a student is selected for the cover. It could be yours!
Contests, mind bending challenges, computer game reviews, new creations, programs, even an X-rated
column for parents and teachers who are running programs in their areas.

.State Zip.

Only $18 a year ($32 for two years) brings all twelve
issues to your door. Join us today in sharing in the
excitement of CREATIVE Programming through
CREATIVE Creations.

Please make checks payable to: CREATIVE Creations
604 Sixth Street
Charleston, IL 61920

• one year ($18.00) • two years ($32.00)

	front-cover
	front-cover-inside
	content01
	content02
	content03
	content04
	content05
	back-cover

