
A PRCJGRAIVIIVIER'S

GUIDE TO

VCJLUIVIE 1

'frorn the Editors o'f

Horne Cornputer IVIagazine™

A PROGRAMMER'S GUIDE TO
THE BEST OF 99'er™

From the pages of The Best of 99'er, Volume 1, comes this selec
tion of programming hints, how-to's, artd why's. As you read through
these programming segments and their accompanying explanations ,
your knowledge of what makes a program "tick" will be greatly enhanc
ed and fortified . From creating sound effects and animated graphics,
to storing your files efficiently, to programming a joystick capability
into LOGO, this 99'er Programmer's Guide will reveal the "tricks of
the trade" which you can put to work in programs you create yourself.

CREATING SOUND EFFECTS
One of the most challenging and enjoyable aspects of the home com

puter is its ability to create sound effects. As an example, let' s look
at the Engine program in "Livening Up Your CALL SOUNDs" (page
45). The CALL SOUND statement directs the computer to create the
sounds using three types of variables. The first type of variable is the
duration. Only one duration is specified in each statement to deter
mine how long a sound will last. This duration is specified in
thousandths of a second; so a sound of 2 seconds is specified by 2000
in the program. You also have the option of giving the sound a negative
duration to make the sound stop as soon as another CALL SOUND
statement is encountered. Using this procedure, you can make a smooth
transition from one tone to the next. However, when you use a negative
duration, you sacrifice the ability to predict how long the tone will last.

The other two variable types in a CALL SOUND statement are the
frequency and the volume. You can specify up to 3 tone frequencies
anp one noise, each with a separate volume control. You specify a noise
by entering a negative number from - 1 to -8.

The following program segment (lines 760 to 800) simulates the sound
made by the car as the engine turns over. The first part of this routine
is a loop (lines 760 to 790):

750 REM ENGINE
760 FOR N = 1 TO 8
770 CALL SOUND(60,220,8,- 5,0)
780 CALL SOUND(60,220,8,- 5,5)
790 NEXT N
800 CALL SOUND(80,220,8,- 5,0)

Lines 760 and 790 cause the CALL SOUNDs in lines 770 and 780
to repeat 8 times. In line 770 the CALL SOUND has a duration of
60 milliseconds, (60/ lOOOths of a second). This statement combines
a tone with a frequency of 220 cycles per second (cps) and a noise (- 5).
The tone has a volume of 8, and the noise a volume of 0. The volume

99'e r Programme r's Guide

ranges from 0 (the loudest) to 30 (the quietest). A good way to become
acquainted with the different noises is to enter them into the computer
one at a time and experiment with them. Line 780 is identical to line
770 except that the volume of the noise is quieter (5 is quieter than
0). The tone created in line 800 is like the other two, but here the dura
tion is longer, set to 80 milliseconds.

The next portion of the code simulates the car revving up after igni
tion. Here the loop counter variable (F) goes from 1000 to 5000 in
steps of 20. The F is used in the CALL SOUND statement in line 820
to specify the third tone:

810 FOR F = 1000 TO 5000 STEP 20
820 CALL SOUND(-99,111,30,111,30,F,30,-8,0)
830 NEXT F

When you use noises -4 or -8, the frequency of the noise generated
depends on the frequency of the third tone in the statement. The third
tone in line 820 has a volume of 30 and is silent. The frequency of
the noise (- 8), which is at maximum volume (0), increases as F in
creases. Because the duration is a negative number (- 99), the CALL
SOUND does not wait the full 99/ 1000 second-it stops when the next
CALL SOUND is encountered. This kind of frequency change sounds
smoother and creates the effect of an engine revving up.

The next loop is similar to the last one-the loop counter F is used
again to vary the frequency of the noise . This loop, however, counts
down in steps of 50 until the loop counter F reaches 800. This makes
the sound get lower in frequency to simulate the slowing down of the
motor:

840 FOR F = 4000 TO 800 STEP - 50
850 CALL SOUND(- 99,111,30,111,30,F,30,- 8,0)
860 NEXT F
870 END)

STORING GRAPHICS IN DATA STATEMENTS
Now that we've heard a bit of the sound capabilities of the 99/ 4A,

let's take a look at another celebrated feature of the machine-its
graphics . The 99/ 4A was designed with graphics in mind, and you can
create elaborate graphics designs in many ways. The method described
in "Dynamic Manipulation Of Screen Character Graphics" (page 78)
is one of the most straightforward. It uses DATA statements to store
the graphics characters and their positions on the screen.

2

750 DATA POT BASE LEFT SIDE,24,6, 146,POT BASE RIGHT SIDE,
24,8,149

760 REM ----FOLIAGE----
770 DATA LO,l8,1,96,LI,l8,2,136,LO,l7,1,96,LI,7,2,136,LO,l6,1,96,LI,

16,2,136,LO,l5,2,96,LI, 15,3,136
780 DATA L0,14,2,96,LI,14,3,136,LO, 13,2,96,LI,13,3, 136,L0,12,3,96,

Ll, 12,4, 136,LO, 11,4,96,LI, 11,5,136

99'er Programme r' s Gu ide

The DATA in the statements above is defined in groups of four.
The first member is simply a label and identifies the graphics being
displayed (LO, for example). The next item is they coordinate (18 in
our example above), which indicates a row on the screen (I =TOP,
24 =BOTTOM). The next number (I) is the x coordinate, or the col
umn in which to place the graphics (I =LEFT EDGE, 32 =RIGHT
EDGE). The fourth item is the ASCII character code (96) for the
character to be placed in the indicated position.

930 REM SCREEN LOCATION LOOP
940 HOW MANY= 86
950 RESTORE 750
960 FOR CHARACTER= 1 TO HOWMANY
970 READ IDENTIFICATION$,ROW ,COLUMN ,CHARACTER

NUMBER
980 CALL HCHAR(ROW,COLUMN,CHARACTERNUMBER)
990 NEXT CHARACTER

This portion of the program READs and displays the information
contained in the OAT A statements. The variable HOWMANY is set
to 86, indicating that there are 86 records to read. Line 950 RESTOREs
the OAT A pointer to line 750. The loop in lines 960 to 990 READs
the OAT A and displays the graphics on the screen.

GRAPHICS WHEN MEMORY IS TIGHT
Of the many ways to place graphics on the screen, the simplest is

to write out a separate CALL HCHAR or CALL VCHAR for each
character you want to place on the screen. But this method will deplete
available memory rapidly, and it will severely limit the graphics you
can put on the screen. To avoid these pitfalls, you may want to use
the alternative method found in "Preschool Block Letters and Data
Compaction" (see page 165). It is similar to the method shown in
"Dynamic Manipulation of Screen Character Graphics" on page 78,
with a few subtle differences. In the Xmas Tree program, the values
of the character and the coordinates were in numerical format-just
as you would usually read them. This method, while easier to read
and faster running, requires more memory than does the following
program segment. In this example, the value of the character itself
and each of the coordinates is represented by its own single character.
For instance, to represent they coordinate position 23, you would use
the letter A (the letter A requires only 1 byte of memory storage area,
and the number 23 requires 9 bytes). You can see that you will end
up saving a great deal of memory if you use this method throughout
your program. We calculated the value of 23 by taking the ASCII value
for A (65), and subtracting the offset value of 42 from it. We would
do the same thing for the x coordinate except that we would subtract
40 from the ASCII value.

99'er Programme r' s Gu id e 3

510 RESTORE 600
520 FOR S1 =0 TO 35
530 READ AR$(S1,1),AR$(S1,2),AR$(S1,0)
540 NEXT S1
600 DATA "321 00000000 12345677777777654"
610 DATA "00123456789:;;;;:98765432100"
620 DATA "DECJKSSSSIHBFGEDCKJVVVVHIBGF"

Lines 510 to 540 read the data contained in the DATA statements
starting at line 600. After it is read, the DATA goes into an array,
called AR$(), which makes retrieving the information simpler.

In order to use the information in the array, the program converts
the character it reads to its ASCII form and adjusts that value to get
the desired number. The following code performs this task .

380 FOR I= 1 TO LEN(AR$(51, 1))
400 COL= ASC(SEG$(AR$(S1, 1)1, 1))- 40
410 ROW= ASC(SEG$(AR$(S1,2)1,1))- 42
420 C = ASC(SEG$(AR$(S1,0),1, 1)) + 63
430 CALL SOUND(100,300,2)
440 CALL HCHAR(ROW ,COL,C)
450 FOR DELAY= 1 TO 10
460 NEXT DELAY
470 NEXT I

Line 380 determines the length of the string contained in AR$() and
uses it as the limit in the FOR- NEXT loop (from line 380 to 470).
The loop repeats once for every character in the string. Line 400 ex
tracts the ASCII value of one of the characters in the string and deter
mines the column location by subtracting 40. The row coordinate is
calculated in the same way (in line 410) except that the offset is 42.
In line 420, the ASCII code for the graphics character is extracted with
an offset of 63.

In line 600, the first character of AR$(SI,l) is 3, and its ASCII value
is 51. Because 51 - 40 = II, the column or the x coordinate is II. In
line 610, the first character in AR$(SI,2) is 0 (ASCII value 48), mak
ing the row or they coordinate 6 (48- 42 = 6). In line 620, the character
number is extracted from the first character in AR$(Sl,O). The ASCII
value of the character (D) is 68, and 68 + 63 = 131. Character number
131 is then placed on the screen at column II, row 6. This process
repeats until all the members of the strings have been converted into
values that can be used by the HCHAR statement in line 440.

HIGH-RESOLUTION BAR GRAPHICS
The home computer's ability to create custom graphics characters

lends itself to business applications too. In the article "Dynamic
Manipulation Of Screen Character Graphics" are several examples of
bar graph display techniques. The Bar Topper program shows you how
you can increase the vertical resolution of a graph.

4 99'er Programmer' s Guide

First, the height of the bar is calculated and placed on the screen
in lines 680- 730:

680 BARHEIGHT =HORSEPOWER/ SCALE
690 Y = INT(BARHEIGHT)
700 REMAINDER= BARHEIGHT -INT(BARHEIGHT)
710 CALL VCHAR(22- ,16,96,Y)
720 CALL VCHAR(22- Y,17,96,Y)
730 CALL VCHAR(22- Y,18,96,Y)

Then the new graphics character is created in lines 750 through 770
(below). The remainder of the bar height (the portion where less than
a whole character is needed) is calculated in line 750, and MASTER$
is created in line 760. Line 770 calculates the STARTPOSITION in
MASTER$ necessary to make the appropriate character. Line 780 then
extracts 16 characters from MASTER$ using the SEG$ command with
STARTPOSITION as an index . TOPPATTERN$ is set equal to the
character needed to complete the graph . Line 790 assigns the shape
stored in TOPPA TTERN$ to ASCII character 97. Finally, line 800
completes the high resolution bar by placing the new character on the
screen:

750 TOPPATTERN = 1 + INT((REMAINDER*8) + .5)
760 MASTER$= "OOOOOOOOOOOOOOFFFFFFFFFFFFFFFFFF"
770 ST ARTPOSITION = 2*TOPPATTERN- I
780 TOPPATTERN$ = SEG$(MASTER$,ST ARTPOSITION ,16)
790 CALL CHAR(97,TOPPATTERN$)
800 CALL HCHAR(21- Y,16,97,3)

THE DATA STOREHOUSE WITHIN A PROGRAM
Most people don't usually think of storing DATA within a program,

but that is what DATA statements have been designed to do. They
are ideal for storage applications that either (l) don't require a large
volume of data, or (2) don't need to be constantly updated. DATA
statements provide fast information retrieval with no need for an ex
ternal storage medium other than the one used for storing the pro
gram itself. Using OAT A statements does, unfortunately, limit the
amount of information to the size of the program and thus, to the
size of the computer's memory. Also, if you need to change the data,
you must halt the program, enter Edit mode, and change the infor
mation in the OAT A statements. Thus, you cannot change the infor
mation while the program is running.

An excellent application of the use of DATA statements to store
information that won't undergo lots of changes is the houshold in
ventory program in "NOW WHAT?" (page 16). The information for
the inventory is kept in DATA statements like this:

460 DATA 3,COMPUTER, 1000
470 DATA 3,DESK,I29.50
480 DATA 2,"MICRO. OVEN" ,450 Continued

99'er Programmer's G uide 5

490 DATA l,PIAN0,5900
500 DATA 3.PRINTER,225.50

570 DATA 9,ZZZ,9

The last line above is a flag to the computer. Whenever 9,ZZZ,9
appears in the program, it signals the end of the DATA for that pro
gram segment. The progam segment above shows that there are three
pieces of information for each item in the house: first comes the number
of the room containing the item, second, the name of the item, and
finally, its value. Such a record could prove invaluable for insurance
purposes. Each piece of information in DATA statements must be
separated from the others by a comma. Therefore, it is essential that
you do not use commas as part of the information that you are
storing-the computer will interpret them as OAT A separators.

Once the information is entered into the OAT A statements, your
program must READ it and manipulate it so that the computer can
display it on the screen or a printer. This is much simpler than it sounds .
To make sure the computer is READing the right OAT A at the right
time, you use a RESTORE statement. RESTORE simply tells the com
puter the line number of the first OAT A statement to be READ. It
is good programming practice to follow the RESTORE with the READ
statement that retrieves the information. For example:

300 RESTORE 460
310 READ ROOM,ITEM$,COST

Once the computer READs the information, it uses it in various ways.
For example, line 320 (below) checks for the end of OAT A and branch
es to line 380 when the end is reached. Remember that the number
9 is used to signal the end of the OAT A:

320 IF ROOM= 9 THEN 380

In the following program segment, the variable CH represents the
room the user has chosen to inventory. If CH is equal to 4, then the
whole house has been inventoried; otherwise line 340 checks to see if
the information read from the DATA pertains to the room requested.
If not, the computer branches back to get another record in line 310.
If the item is in the specified room, the computer continues to line
350, where the the information on the item is printed .

330 IF CH = 4 THEN 350
340 IF ROOM< >CH THEN 310
350 PRINT ITEM$,"$";COST

Next, a running total of the value of everything inventoried is stored
in the variable TOTAL. Then the computer branches back to line 310
to get the next record:

6

360 TOTAL= TOTAL+ COST
370 GOTO 310

99'er Programme r' s Gu ide

THE BUBBLE EFFECT IN SORTING
Often in programs you have a list of data that needs to be put in

order. This may be a list of numbers or a list of names that needs
alphabetizing. Your TI-99/ 4A is made to order for sorting lists of data,
and many sort routines have been developed . There is no practical dif
ference between lists of numbers and lists of names because ASCII
codes for letters are in numeric order, so a sort routine for numbers
will need only minor alterations to work on character strings.

One of the routines in the Homeward Helper: Fractions program
on page 168, takes up to 10 fractions as input and sorts them from
smallest to largest. The sort used here is the bubble sort. Of all the
sort routines used by programmers, it is one of the simplest to under
stand, and it is implemented with just a few lines of code as well.

In this program up to lO fractions are entered from the computer
into two arrays: NNN() for numerator and ODD() for denominator.
Then the decimal values of the fractions are computed and entered
into an array called FRC(). Here' s the code that receives the input
of the fractions and computes the values:

5160 INPUT "HOW MANY FRACTIONS?" NF
5170 IF NF < 11 THEN 5200
5180 PRINT "SORRY; UP TO 10 ONLY."
5190 GOTO 5160
5200 FOR I = 1 TO NF
5210 PRINT : : "FRACTION ";I
5220 INPUT" NUMERATOR :":NNN(I)
5230 INPUT" DENOMINATOR:":DDD(I)
5240 FRC (I)= NNN(I)/ DDD(I)
5250 FRD(I) = FRC(I)
5260 NEXT I

The sort begins by clearing a flag called SW (for SWitch) to zero,
and initiating a FOR-NEXT loop. The loop is executed one time less
than the number of fractions (NF- 1) entered.

5280 FOR I= 1 TO NF- 1
5300 IF FRC (I)< = FRC(I + 1) THEN 5350
5310 FF = FRC(I)
5320 FRC(I) = FRC(I + 1)
5330 FRC(I + 1) = FF
5340 SW= 1
5350 NEXT I
5360 IF SW = 1 THEN 5280

Every time through the loop, each member of the array is compared
to the succeeding member. If the first member is smaller than the ad
jacent member, then no switch is needed (the two members are already
in the desired order), and the computer jumps to the NEXT in line
5350. However , if the first member is the larger number of the two,

99'er Programme r's G u id e 7

then the computer goes on to lines 5310 through 5340, where the switch
occurs. First FRC(I) is placed in the temporary storage variable FF,
then FRC(I + I) is moved is moved into FRC(I), and finally FF is loaded
back into FRC(I + 1). In this way the smaller numbers "bubble up"
to the top of the array. In line 5340 the SW flag is set to one. Line
5260 causes the entire FOR-NEXT loop to be executed again whenever
the SW flag has been set. If, for example, the first fraction equaled
.5, the second equaled .6 and the third equaled .4, then the first time
the loop was executed .4 and .6 would be exchanged. But the loop would
have to be executed again to switch the .4 and the .5 values . Only when
the entire loop executes without any switches can we be sure that the
fractions are in order .

When the list of fractions is in order, then no switches are needed;
this time when the loop is executed, SW equals 0. At this point the
computer continues with the program, and the sorted list of fractions
is printed.

CASSETTE FILE HANDLING
So far we have talked about manipulating data in programs and stor

ing data in programs. Now we come to the problem of storing large
amounts of data so that it can be easily brought into memory and
manipulated. The TI-99/ 4A accesses a cassette-based data storage
system that is inexpensive, reliable, and easy to use.

Cassette data files are stored in a sequential format. This means that
information is written on the tape one record after another. When the
computer reads the information back into its memory it will be in the
same order in which it was written. (While diskette files can be sequen
tial, they also have a random-access capability not possible with cassette
storage.) The following program comes from "A Beginner's Guide
To Cassette Operation With a Home Computer" (page 20) and il
lustrates how easily information can be stored and retrieved using
cassettes.

410 REM OPEN FILE FOR OUTPUT
420 OPEN #l:"CSI" ,OUTPUT,INTERNAL,SEQUENTIAL,FIXED 192
430 FOR I = I TO 60 STEP 3
440 REM PRINT THREE SETS OF DATA PER RECORD
450 PRINT #I:B_NAME$(1);B_AVG(I);B_HANDI(I);
460 PRINT #I:B_ NAME$(1 + I);B_ AVG(I + l);B_HANDI(I +I);
470 PRINT #I:B_NAME$(1 + 2);8_ AVG(I + 2);8_HANDI(I + 2)
480 NEXT I
490 CLOSE #I

Line 420 OPENs the file that is going to send data out to the cassette
recorder. The# I is an I D number the computer will use in referencing
any data to be sent to this cassette file. The computer knows it is a
cassette file because CSI is named as the file device . Similarly, diskettes
are designated with DSK I. The rest of line 420 tells the computer that
file #I is to be an OUTPUT file, using an INTERNAL (binary) and

8 99"er Programme r' s G uide

SEQUENTIAL format for storing the data, and that each record will
have a FIXED length of 192 bytes.

Lines 430-480 form a loop that writes to the file. The variable I is
incremented by 3 each time it passes through the loop because of the
STEP 3 in line 430. Line 450 through 470 then PRINTs the data to
file# 1 from arrays, using the loop counter I to index the array elements
in order. Each record of the file includes each of the three file variables
[B_NAME$(N), B_AVE(N), B_HAND(N)] three times; a total of
9 different quantities is written to each record in the file . Line 480 is
the end of the output loop. Every time NEXT I is encountered, the
variable I is checked to see if it has reached 60. If not, then control
passes to line 440. If I reaches 60, then the program continues to line
490, where the file is closed. The file should always be closed before
leaving the program; otherwise, erroneous information can be writ
ten to the file, or data can be lost.

The following program reads information back into the computer
from the cassette tape file created with the last program.

190 REM OPEN FILE FOR INPUT
200 OPEN #1:"CS1" ,INPUT,INTERNAL,SEQUENTIAL,FIXED 192
210 FOR I= I TO 60 STEP 3
220 REM READ THREE RECORDS FROM THE TAPE
230 INPUT #1:8_NAME$(1),8_A VG(I),B_HANDI(I),
240 INPUT #1:8_NAME$(1 + I),B_ A VG(I + I),B_HANDI(I+ 1),

250 INPUT #1:8_NAME$(I + 2),8_A VG(I + 2),8_ HANDI(I + 2)
260 NEXT I
270 CLOSE #I

This program is similar to the output program. The difference is
that this program is reading information into the computer ' s memory
(INPUT), whereas the first program was writing information to the
tape (OUTPUT). In line 200 the OPEN statement includes the word
INPUT in the place where OUTPUT used to be. In place of the PRINT
in lines 230 through 260 you will now find INPUT. The only other
difference is that the variables are now separated by a comma; in the
first program they were separated by a semicolon.

CREATING MOTION WITH SCROLLING
One of the most ingenious ways to create the illusion of motion on

the TI-99/4A involves moving the entire screen image. Then the sta
tionary object on the screen appears to be moving. Let's look at San
Francisco Tourist (page 260), a good example of this method.

Line 170 defines a new function for the variable R. Whenever R
is used in the program, the equation in line 170 makes R either + I
or - 1. This random number alters what's on the screen as it scrolls.

170 DEF R = (-I) " (INT(4*RND))*(INT(4*RND))

The coding in lines 750-860 prints a road six characters wide. On
either side a border character randomly moves from side to side by
-I or +I character positions. Line 750, the RANDOMIZE statement,

99'e r Programmer' s Gu ide 9

places a random seed in the random number generator. Without this
command, the random number generator would select the same series
of random numbers each time the program runs. The variable J in
itialized to a value of 18 in line 760 keeps track of the horizontal posi
tion of the road as it is printed.

750 RANDOMIZE
760 J = 18

The statements from line 790 to 1070 make up the control loop to
display the scrolling road and then to accept and respond to the player's
move. Let 's look closely at lines 790-860. Line 790 specifies that this
loop should repeat 75 times. Lines 800 through 850 check the value
of J to see if it gets too close to the edge of the screen. If it does, the
value is adjusted to keep it on the screen. All the action is at line 860:
Each time the statement is executed, it scrolls the screen. T AB(J); in
the line causes whatever is printed next on the screen to be tabbed over
J character positions. The "())))))(" section is the road and border to
be printed. The character patterns are altered by the program so they
look like a road on the screen and not parentheses .

790 FOR I = I TO 75
800 IF I > 59 THEN 860
810J=J+R
820 IF J<21 THEN 840
830 J = 21
840 IF J >I THEN 860
850 J =I
860 PRINT T AB(J); "())))))("

BASIC ANIMATION
With computer graphics you can create effects that take cartoon ar

tists months to draw-you can create animation. Although home com
puters haven't quite reached the level of quality that we expect from
our Saturday morning cartoons, they have made significant progress .
County Fair Derby (page 263) illustrates one example of animation.
This program will also prove to non-believers that you do not need
Extended BASIC to create animation effects.

In the following program segment the patterns for the characters
are contained in an array called H$(). The use of an array allows you
to index or "flip through" the graphics characters by indicating which
cell of the array is to be used.

10

480 H$(1) = "000000004020100F"
490 H$(2) = "000008080FIF30FO"
500 H$(3) = "OFOFI02040000000"

The following lines use the array to produce the an imated horses:
3150 X=S+8
3160 FOR Y= I to 4
3170 CALL CHAR((95 + Y),H$(X)) Continued

gg·er Programme r·s Guide
downloaded from www.ti99iuc.it

3180 X=X+5
3190 NEXT Y

In line 3150 the index pointer, X, is given an initial value. The value
of X determines which pattern is used from the H$() array. The loop
from lines 3160 to 3190 flips through the patterns, assigning each horse
the next pattern in sequence (using the loop counter variable Y). This
creates the effect of animation. Line 31 70 ass igns the pattern from
the array H$() to the cha racter indicated by 95 + Y.

FULL SCREEN DISPLAYS WITH EXTENDED BASIC
The animation in County Fair Derby can be achieved in BASIC,

but Extended BASIC expands your graphics capabilities. If you use
the method we illustrate here, you'll spend less time and consume less
memory in your full- screen graphics programs. It works by placing
the characters in OAT A statements, READing them, and then either
PRINTing or DISPLAYing them on the screen a whole line at a time
instead of a single character at a time . In Interplanetary Rescue (page
272) the DISPLAY AT command available in Extended Basic
DISPLAYs the alien topographical map over most of the screen. The
benefit here is that it took only a few seconds and used very little
memory . The following code shows you how this is done:

470 DATA "IIII!!!AII_---- - * _ 111111!!!1111 - -- "
480 DATA "11!!!!1111 __ *_ ** * ___ _ 11!!!1111 __ "
490 DATA "11!!!!!11_ *** __ __ **_ 111111!!11 _ II

500 DATA "11!!>!!1111 _ ****_ ****_ 1111!!1111 "
510 DATA "!!!!!!II ___ * _ _ ** _ _ _ 111111!111111"

1660 IF OPT2= 1 THEN RESTORE 1730 :: GOTO 1700
1670 IF OPT2 = 2 THEN RESTORE 1940 :: GOTO 1700
1680 IF OPT2 = 3 THEN RESTORE 470 :: GOTO 1700
1690 IF OPT2=4 THEN RESTORE 2150
1700 CALL CLEAR:: CALL COLOR(8,10,12)
1710 FOR TER = 1 TO 21 :: READ TERN$:: DISPLAY

AT(TER, 1):TERN$:: NEXT TER

In lines 470 through 510 you can see one example of how DATA
statements can be formatted in a screen image display. Each of the
characters is redefined to different colored blocks. The DATA shown
here is 26 characters wide, leaving the right two character columns for
another display area. The two edge characters on either side are not
used because of " bleed over" on TV sets. Lines 1660 through 1710
select the proper OAT A, and DISPLAY one of four screen displays
depending on the value in the variable OPT2. OPT2 is the second op
tion selection in the game and selects the level of difficulty. The higher
the level, the more complex the topographical map becomes. Lines
1660 through 1690 make this selection by testing OPT2 and restoring
the appropriate block of DATA statements. Line 1700 CLEARs the
screen and sets the color of character group 8 to light red on light yellow.

99'e r Programme r' s G uide 11

Line 1710 will display the DATA by setting up a loop that repeats 21
times where TER is the loop control variable. This loop causes 21 lines
of DATA to be displayed on the screen. The DATA is first READ
into the string variable TERN$, and then displayed using the DISPLAY
AT command, with the variable TER indicating the screen row for
the line of OAT A.

SPRITES IN EXTENDED BASIC
One of the main advantages of Extended BASIC over TI BASIC

is that it gives you the ability to move up to 28 sprites on the screen
simultaneously. Sprites given an X and Y velocity continue moving
in the direction specified until changed by another sprite-controlling
command . The short program Sprite Chase (page 267) is a good ex
ample of sprite capabilities.

320 CALL CHAR(96,"FFFFFFFFFFFFFFFF")
330 CALL SPRITE(#28,96,2,90,120,0,0)
340 FOR A= I TO TARGS
350 CALL SPRITE(#A,A + CH,2,90,120,1NT(RND*50-25),

INT(RND*50-25))
360 NEXT A

The routine above initializes the sprite that the player controls and
the targets that the player must catch. Line 320 defines ASCII character
96 as a square block. Line 330 then designates the player's sprite as
number 28, gives it this pattern, and sets its color to black. The com
mand also specifies the sprite's location as vertical dot row 90 and
horizontal dot column 120 (approximately the center of the screen) .
The speed for this sprite is set to 0 on both the x and y axes.

Lines 340 to 360 create a loop called A that will create a number
of sprites, giving them all a different random motion. A choice is made
earlier in the program, setting CH to 47 or 64 and TARGS to 10 or
26 so that either numbers or letters are displayed.

550 CALL COINC(#28,#A,9,HIT)
560 IF HIT=-1 THEN 620

Lines 550 and 560 see whether there is a coincidence between the
player's sprite and the sprite number corresponding to the value of
A. Line 550 will check to see if sprite #28 and sprite #A are within
9 pixels of each other. If they are, then the variable HIT is set to - 1.
If there is no coincidence, then HIT is set to zero. In Line 560, if HIT
is set to - I (the two sprites were within 9 pixels of each other), then
the computer branches to line 620; otherwise it continues on to line 570.

SPRITE CONTROL
In addition to being able to just place flying sprites on the screen

randomly, you can also control the sprite for excellent visual effects .
A routine in Dog Fight (page 269) lets you control the flight of a WWI
biplane. You can do loops and all sorts of aerobatics while trying to
shoot down your opponent. The following code shows how this is done
with the keyboard. With a little ingenuity you could easily modify the
program to accept the joystick as input.

12 99'e r Programme r' s Gu ide

500 CALL KEY(I,Kt,Sl)::CALL KEY(K2,S2)

530 IF Kl < >5 THEN 570 ELSE IF P>3 AND P<7 THEN P= P-1 ELSE
IF P<3 OR P=8 THEN P=P+l

540 IF P=O THEN P=8
550 IF P=9 THEN P= I
560 GOTO 650
This routine reads the keyboard, checks the current direction of the

plane, and changes the direction if the keyboard input corresponds
to a possible move. In this program, the directions in which you can
point the plane are limited by your current position . If you press S,
then the plane rotates until it eventually points to the left. But if it
was originally pointing directly to the right, pressing S has no effect.
You must point the plane either up or down before pressing S to get
the plane to go left. The plane can't do 180 degree turns with just one
key press. The variable P is used to keep track of the plane's direc
tion, from l to 8. l is to the right, 3 is straight up, 5 is left, and so on.

Line 650 changes the plane's pattern to point in the appropriate direc
tion, then causes the computer to branch to a subroutine that sets the
plane's speed.

650 CALL PATTERN(#t,(P*4)+92)::0N P GOSUB 910,920,930,940,950,
960,970,980::GOTO 760

These subroutines go from line 910 to line 980. The variable V is
determined by the level of difficulty in the game. The higher the level
of difficulty, the higher the value given to V and the faster the speed
of the plane.

910 CALL MOTION(#l,O,V)::RETURN
920 CALL MOTION(#l,-V*.6,V*.6)::RETURN
930 CALL MOTION(#l,-V,O)::RETURN

COINCIDENCE VS. SPEED
Once a sprite is put in motion, it will continue moving until the pro

gram changes its motion. Still the program must check to see where
the sprites are if you wish to have them interact. This presents a prob
lem if the sprites are moving quickly or there are a lot of sprites to
check because a fast moving sprite can pass over an area before your
program can check it. In the program Battle Star (page 234), this prob
lem is eliminated by limiting the moving sprites to either horizontal
or vertical motion along predetermined lines. This means that only
one axis needs to be checked for a sprite . By setting a flag variable
when the sprite is created, the program merely tests the variable to
see whether or not a sprite is on the given line. This is much faster
than using CALL POSITION to first locate the sprite and then check
to see if it's on the right course.

Lines 700 through 800 randomly select which enemy ships appear
and whether or not they fire at you before the keyboard is scanned
for your first response. As the characters and sprites are placed on
the screen, flags are set. For example, let's say a ship appears from

99'er Programme r's G u ide
downloaded from www.ti99iuc.it

13

the top. Then the first flag (SAl) is set to I. If the ship fires a missile ,
then a second flag (SB I) is set.

The following lines monitor your response:

390 CALL KEY(O,K,S) :: IF S = 0 THEN RETURN
400 IF K = 69 THEN 450

Line 390 scans the keyboard, and if no key has been pressed, the
program returns to line 320. Line 400 causes a branch to a subroutine
to fire up if the letter E was pressed. Lines 450 to 490 fire your laser,
check to see if there is a target, and adjust the laser accordingly.

450 IF SAl =0 AND SBI =0 THEN CALL VCHAR(I,l6,105,10) ::CALL
SOUND(I0,800,0) ::CALL VCHAR(I,l6,32,10) :: SC=SC-10 ::
RETURN

460 IF SBI = 0 THEN CALL VCHAR(2,16,105,9) ::CALL SOUND(500,
110,2,-5,2) ::CALL VCHAR(2,16,32,9) :: SC=SC+50 :: SAI=O ::
RETURN

470 CALL POSITION(#l,Pl,P2) ::IF Pl>76 THEN 840
480 PI= INT(Pl / 8) + 1 ::CALL VCHAR(Pl,l6,105,10-Pl) :: CALL

SOUND(200, 110,10,-5,8) :: CALL VCHAR(Pl,l6,32, 10-P I)
490 CALL DELSPRITE(#l) :: SC=SC+20 :: SBI =0 ::RETURN

In line 450 both SAl and SBI are checked for the existence of either
the ship or the missile. If neither of them is on the screen, then the
laser is fired all the way to the edge of the screen, and your score is
reduced by 10 for the miss . The program then returns control to the
main loop.

If either of the two flags is set to I, then the computer will continue
on to line 460 . Here the flag SBI is tested to see if a missile has been
fired yet. If not, then the position of the space ship is known because
it is stationary. The rest of the line fires the laser, adds 50 points to
the score, resets the SA I flag to zero, and deletes the ship from the
screen.

If the missile had been fired (SB I = I), the computer would branch
to line 470, where the position of the missile is determined , to see if
it has reached your Battle Star yet. You could use a CALL COINC;
however, this would not only slow down the program, but a sprite
would occasionally slip through a coincidence area before the com
puter could detect it. Instead, the program simply checks to see if the
sprite has passed a certain point (the edge of the Battle Star); if a hit
was made by the missile, then the computer branches to line 840. If
the missile has not reached the Battle Star, then line 480 causes the
laser to fire . Line 490 deletes the missile sprite from the screen, resets
its flag, and adds 20 points to the player's score. The program then
returns the computer to the main control loop.

DETECTING CHARACTERS BENEATH SPRITES
When using sprites you often want to know what character lies

beneath the sprite as it crosses the screen. In Interplanetary Rescue
(page 272), a short routine provides this information:

14

390 CALL POSITION(#l,XC, YC) :: CALL CHAR (ABS(XC + 4)/ 8 + .5),
ABS((YC + 4)/ 8 + .5),CC)

99'e r Programme r' s Guide

This line of code returns the character's ASCII code to the variable
CC that lies directly under the center of the sprite. First, the CALL
POSITION command returns the dot-row and dot-column of the upper
left-corner of the sprite; so this line compensates for that movement
by offsetting the position to the very center ((XC+ 4)/ 8 + .5). By us
ing this offset, the GCHAR statement in line 390 returns the character
position based on the dot positions plus four pixels (half a character).

PROGRAMMING FOR JOYSTICK OR KEYBOARD
Almost every arcade-type computer game either requires joysticks

or is much easier to play with them . Not everyone who owns a home
computer, however, has purchased a pair of joysticks. So all game
programs should be written so that the option of using the keyboard
in place of them is available. The four arrow keys (E,S,D,and X) on
the left hand side of the keyboard are the keys most commonly used
to simulate the joystick. If you wish to use the four corner positions
for diagonal movement as well, you can include the W ,R,Z, and C
keys . The following code is from N- Vader on page 276 .

The program lets the player choose whether to use the keyboard or
joysticks in line 700:

700 INPUT "JOYSTICKS (Y / N)? ":X$
710 IF SEG$(X$,1,1)="Y" THEN JS= I

The program sets a flag (JS) in line 710 so that the computer knows
which method of input you wish to use. It can then branch to the ap
propriate subprogram. If the program does not ask the player to choose,
then the computer must scan both the joystick and the keyboard for
input. This slows the game down considerably. Because in this pro
gram the computer knows which input device is being used (keyboard
or joystick), it executes the proper subprogram in line 1080.

1080 IF JS =I THEN CALL JOYST(I,JX,JY)ELSE CALL KEYST(I,JX,JY)

Notice that CALL KEYST is not a standard subprogram name. In
Extended BASIC it is possible to CALL true user-defined subprogram
and pass parameters between them and the main program. In this case,
the CALL KEYST routine scans the keyboard and returns values that
simulate those that would be returned by a joystick.

1390 SUB KEYST(N ,X, Y)
1400 CALL KEY(N,K,S)
1410 IF S=O THEN X,Y=O::SUBEXIT
1420 IF K=2 THEN X= -4::Y=O
1430 IF K=4 THEN X= -4 :: Y=4
1440 IF K=S THEN X=O :: Y=4
1450 IF K=6 THEN X=4 :: Y=4
1470 IF K=3 THEN X=4 :: Y=O
1480 IF K = 14 THEN X= 4 :: Y = -4
1490 IF K=O THEN X=O :: Y= -4
1500 IF K =IS THEN X= -4 :: Y = -4
1510 SUBEND

99'er Programmer's G u ide 15

Line 1390 is the entry point to the subprogram and sets the parameters
to be passed . Because thi s is truly a subprogram, the variables used
here will not affect variables of the same name in the rest of the pro
gram. The first parameter passed is N. This variable sets the keyboard
mode . It is set to I to scan the left half of the keyboard and set to
2 for the right half; it is used in the standard CALL KEY statement
in Line 1400. The next two variables, X and Y, are set to the same
values returned by the joystick if the corresponding position is selected.
The value returned here will not be that character's ASCI I value. To
find the values of the keys in the split-keyboard mode, consult the Ap
pendix in the User's Reference Guide . The third variable, S, is used
to detect the keyboard status. Line 1410 checks this status, and if S
is equal to zero (no key pressed), then the computer exits the sub
program, returning to the statement immediately after the calling state
ment. Lines 1420 through 1500 check the value of the pressed key in
the variable K and set the return variables to the proper values to
simulate the joystick. Line 1510 returns control back to the main pro
gram following the statement that called thi s subprogram.

JOYSTICK USE WITH LOGO
Many LOGO users don't reali ze that they have the capability of us

ing joysticks with LOGO procedures. Thi s is accomplished with the
undocumented JOY command. The LOGO JOY command can be
useful in a number of applications. The following subroutine is part
of "Fly Away With The Joy Commands Of Tl LOGO" (page 121):

TO STICK :S
MAKE "X JOY :S
TELL:S
IF :X < 4 THEN TURNLEFT
IF :X > 6 THEN TURNRIGHT
IF :X 6 THEN FASTER
IF :X 4 THEN SLOWER
END

This procedure reads the joystick and calls the appropriate routine,
depending on which direction the joystick was moved . The prodedure
SETUP prompts for the choice of keyboard or joystick, and puts one
choice in the variable :MODE. Then the procedure FLYAWAY chooses
either CONTROL or CONTROLJOY, depending on the value of
:MODE. The line MAKE "X JOY :S in the procedure STICK reads
the joystick, and a number from 0 to 10 is placed in the variable :X.
This value is compared to values in the succeeding lines to determine
in which direction the joystick is pointed. Based upon these IF- THEN
statements, the proper routine is called.

16 99'er Programme r·, Guide

LTfJer 1?'1
.:.11 vear 20J5,

if

AN
EMERALD VALLEY

BOOK

Copyright C> 1981, 1982, 1983. by Emerald Va lley Publis.hlng Co. All rights reserved. No part of this book m1y be
teproduced or transmitted In any form or by any muna, electronic or mechanical , Including photocopying, record·
lng, or 1ny lnformttlon storage and retrlen l aystem, without permlnion In wri ting from the Publisher.

IMPORTANT NOTICE REGARDING BOOK MATERIALS
Emerald Valley Publishing Co. make a no warran ty, either upressed or Implied, Including but not limited to any lm·
plied warrantlea of merchantablllly and fit ness tor partlculu purpose, regarding these book materials and mtkes
such meteriela nallable solely on an " as.Js" buis.

In no ..,tnt shall Eme11ld Valley Publl5hlng Co. be liable to 1nyone lor spec ial , collate ral , lnc lden tt l, or consequen·
tiel damages In connectlona with or arising out of the purchase or use of thue book materials, 1nd the sole and
excluslvell l blllty to Emereld Valley Publishing Co. regardlus of the form of acllons, shall not exceed the purchue
price of this book. Moreover, Emeflld Valley Publishing Co. shall not be liable for eny claim of any kind whatsoever
egalnst the user of these boolt materf1ls by any other p1r1y.

Emerald Valley Publishing Co.
P.O. Bo~ 5537 • Eu~ene . Ort~ton 9740 • Tel. (503) 48 -8796

by WW It
~----------------------~ --------------------------~

	TIB99er-v1-minibook-001_2R
	TIB99er-v1-minibook-002_1L
	TIB99er-v1-minibook-002_2R
	TIB99er-v1-minibook-003_1L
	TIB99er-v1-minibook-003_2R
	TIB99er-v1-minibook-004_1L
	TIB99er-v1-minibook-004_2R
	TIB99er-v1-minibook-005_1L
	TIB99er-v1-minibook-005_2R
	TIB99er-v1-minibook-006_1L
	TIB99er-v1-minibook-006_2R
	TIB99er-v1-minibook-007_1L
	TIB99er-v1-minibook-007_2R
	TIB99er-v1-minibook-008_1L
	TIB99er-v1-minibook-008_2R
	TIB99er-v1-minibook-009_1L
	TIB99er-v1-minibook-009_2R
	TIB99er-v1-minibook-010_1L
	TIB99er-v1-minibook-010_2R
	TIB99er-v1-minibook-015_2R

