
...J\11 ~t:;-----

The Information contained in this manual is subject
to change without notice.

Millers Graphics shall not be liable for technical or
editorial errors or omissions contained herein; nor
for incidental or consequential damages resulting
from the furnishing, performance, or use of this
material or product described by this manual.

This manual contains information protected by
copyright. All rights are reserved. No part of this
manual may be photocopied or reproduced in any form
without prior written consent from Millers Graphics.

Manual written by Craig G. Miller

Explorer Software and Associated Manual
(Printed in the United States of America)

Copyright 1985

by

Millers Graphics
1475 W. Cypress Ave.
San Dimas, CA 91773

-------------------- TABLE OF CONTEHTS -------------------

The Explorer - An Overview •••.•....••••••••.•...•.•...•.•

The Explorer Files . • . • • • • • • • • • • • • • . • • • . • • . • • • • • 2

Loading it into the Environments •. .•••••.•..••• ...•••.•.. 3

The Function and Control Keys •.•••••.••••••.••••.••.••••• 10

Start ing I t Up • . . • • • • . • • . . • • • • • • • • • • • • • • . • . • . . • . . • • • 13

Warning- Warning- Warning •••••.••••.••••••••••••••••••• 14

Explorer 1 s Mai n Sere e n • • . . • • • • . • • . • . • • • • . . • • • . • • . 15
Cpu Controls • • . • • • • • • • • • . • 16
Grom Controls • • • • • • • • • . • • • • • • • • • . • • • • . • • • • • . • . • . • . . • . 17
Vdp Controls • . • • . • • • • • • • • • • • • . . • . . . • . . . • • • • • • • . . • • • • • 18
Programmable Break Points ••..••••..•••••••••••.•.•.•• 20
Cpu Status & Interrupts ..••.•...•.••.•••••••.•••••••• 21
Workspace Registers • • • • • • • • • • • • . • • • • • . • • • • • • • • • • • • • • • 24
Vdp Registers • . • . • . • . • • • . . • . • . • • • • • • • • • . • . • • • • • • • • • • • 25
Memory Pointer & Windows ••••••••••••••••••••••••.•••• 26
Memory Editor • . • • • • • • • • • • • . • • . • • . • 29
Search Function • • • • • . . . • • . . . • . . • . • • • • • • • • • . • • • • • • 31
Grom Library & Instruction Counter ..•••.••••••••••••• 33
Instruction Disassembly •.•.••••••.•••.••••••.•••••••• 34

Explorer 1 s Options Se ree n • • • . . • • • . • . • • • . • • • . • • • • • • • • • • • • • 35
Number Conversion • • . • • • • • • • • • • • • • • • • • . • • • • • • • . • • . • • . • 36
Cru Base • • • • • • • • • • • • . • • • • • . • • • . • • • • . • • . • • • • • • • • • • • • • • 40
High/Step speed Options • • . . • • • • . • • • • • • • • • • • • . • • • • • . • • 43
Colors • . . • . • . • • • • • • • . • • • • • • • • • • • • • 44
Decimal Instruction Counter ••.••••••••••.•.•.••••••.• 44

Explorer 1 s Registers Screen •••••••••••••••••••••••••••••• 45
Gpl Status • • . • . • • . • • • • • • . • • • • • • . • • • • • • • • • • • . • • • • • • • • • 46
Vdp Status . • • . • • • • • • • • • • • • • . • • • • • • • • • . • • • • • • • • . • • 47
Vdp Write Only registers •..•.••.••••••••••••••••••••• 48

The Interrupt Routine •.•.....•..•..•.••••.•.••....•••...• 52

Explorations . • • • . • . • • • • • . . . • • . . • • • • . • • • • . • • • . • 54
Key scan routine and the Explorer ..•.....•...••.•.••. 55
Executing the Power Up Routine . . . • . . • . • . . • . • . • . • • • . • • 57
Executing a Basic CALL • • • • . • • • • • . . • • • • . • • • . . 62
Executing an Extended Basic CALL .•.•••••.•..••.••••.. 65
Executing Other Assembly Language Programs •....•...•. 67
Direct Execution of Modules .•••.•...••••.........•..• 70

Appendixes
Overall IJA Memory Map . . . • . • . • • . . . • . • • • . • . • • • . • . • . 7IJ
Cpu Rom >0000->1FFF ...•..•..••.••..•••.....•.•.•..•.. 75
Cpu Scratch Pad Ram >8300->83FF •...•....••.•..•.•.•.• 80
XB Low/High Memory Expansion ••••..•......•...•.•..•.• 83
Basic and Editor/Assembler Vdp Memory .••...•..•..•..• 85
Extended Basic Vdp Memory ..•••••••••.•.•••.•..••..•.• 86
Grom-O >0000->17FF (System Monitor) .••••....••• 89
Grom- 1 & 2 >2D00->57FF (Basic Interpreter) .••.•.•.• 92
Console Gru Bi ts • . • • • . • . • • • • • . • . . . • . . • • • . • . • 100
9900 Microprocessor Instructions ••.•.•.••••.•.•••...• 101
Break Point Work Sheet •......•...•..•.•..•••.•••..••• 103
Grom Address & Vdp Register Work Sheets .••.•.•••.•••• 101J

The KIPLORER - An Overviev

The Explorer program was designed to be used as a tool to help you understand
how your computer thinks and operates and to be as transparent as possible to
the environment or program that loaded it. The Explorer converts your ~A into
a programmer's instrument similar to a engineers Logic State Analyzer. But,
instead of high/low trace lines on a screen it will display a number of items
pertinent to the execution of programs by the 9900 Microprocessor.

This new Explorer Instrument will allow you to execute Extended Basic, Basic,
Assembly Language and a variety of Command Modules all under your contro!.
You can stop and start execution at any time with just the press of a key.
You can watch the actual program screen in slower motion or you can watch the
Explorer's Main Screen as it is dynamically updated after each and every
instruction. You can stop the program and examine and modify memory and other
items, which allows you to conduct "WHAT IF" experiments.

The heart of the Explorer is a Machine Language Interpreter that thinks, acts
and has the same logic as a software based 9900 microprocessor. Through this
interpreter the Explorer will open the window into your 99/4A and allow you
to see the actual inner workings of your computer in action.

The Explorer goes through great lengths to analyze and preserve the
environment that it is loaded into so that you can easily continue execution
of that program or module. It is fully compatible with the Extended Basic,
Editor Assembler, Mini Memory and other Assembly Language Loaders to allow a
wide variety of Explorations.

The following few pages contain the instructions and examples for loading the
Explorer into these environments. We hope that you find this new Explorer
instrument to be as much of an education in the the 99/4A 1 s operation system,
GPL Interpreter, and other languages and modules as we have.

MGEXOOZOO

XBEXP

BA.SAMPLE

IBSAMPLE

XBLOAD

l:BMF2fFULL

XllfEMOFF

THE EXPLORER FILKS

This is the serial number of
registration. It will appear as
list.

your disk for the warranty
the first item on a Catalog

This is the Editor/Assembler, Mini Memory, Basic through the
E/A or Mini Mem, or other Load and Run type loaders version of
the Explorer.

This is the Myarc Disk Controller CARD• version of the above
file.

This is the Extended Basic loader version of the Explorer.

This is the Myarc Disk Controller CARD• version of the above
file.

This is a sample Basic program that loads the Explorer and
allows you to continue execution of the Basic program.

This is a sample Extended Basic program that
Explorer and allows you to continue execution of the
Basic program.

loads the
Extended

This file can be renamed as LOAD so that whenever the Explorer
disk is in drive 1 and Extended Basic is selected the Explorer
will automatically load and pass control to you.

This is an Extended Basic MERGE type file that contains line
number 1. This file allows you to bypass the Extended Basic
loader's Memory Full error condition when you or your Extended
Basic program has previously loaded another Assembly language
program that has filled up LOW Memory expansion.

This file is an example of how you can turn off memory
expansion to load and execute your Extended Basic program from
VDP RAM instead of High Memory Expansion. This is useful when
your Extended Basic program is larger than the approx 6K bytes
left after the Explorer is loaded.

NOTE
If you have a Myarc Disk Controller CARD replace the reference to
"DSK1.EXP" in the BASAMPLE file with "DSK1.MEXP". Also replace the
references to "DSK1.XBEXP" in the XBSAMPLE, XBLOAD and XBMEMFULL files
with "DSK1.MXBEXP".

• The Explorer is compatible with the Myarc Disk Controller CARD only. It
will not work with the Myarc MPES (Mini Peripheral Expansion System) due
to low level hardware differences between the Card and this system.

2

LOADING TRE EXPLORER INTO TRE

EXTENDED BASIC ENVIRONMENT

The Explorer can be loaded into the Extended Basic environment either from
the Command/Edit mode or from a running Extended Basic Prograrn. If it is
loaded from the Command/Edit mode of Extended Basic then, when you start up
the Explorer, it will return to the Cornrnand/Edit mode environment. If it is
loaded from a running program then, when you start up the Explorer, it will
continue execution of the prograrn exactly where it left off.

NOTE
CALL INIT must be executed either by you or the running Extended Basic
program sometime prior to executing the CALL LOAD("DSKl.XBEXP"). Also, if you
have a Myarc Disk Controller Card replace all references to "DSK1.XBEXP" with
"DSK 1 . MXBEXP n.

FROH COHKAHD/EDIT MODE

Type in CALL LOAD("DSK1.XBEXP") and press enter. The Explorer will load and
pass control of your computer to you. When you start up the Explorer it will
return to the Cornmand/Edit mode of Extended Basic but now it will be in your
control. Once the Application Program screen has scrolled up 1 line and the
cursor has reappeared you can slowly type in anything that is valid for the
Extended Basic Cornmand/Edit mode and watch it work.

FROM A RUNNING PROGRAH

Place CALL LOAD("DSKl.XBEXP") into your Extended Basic prograrn, where you
want the Explorer to load and pass control to you, and then RUN your Extended
Basic program. When your Extended Basic program reaches the line that
contains this CALL LOAD the Explorer will load and pass control of your
computer to you. When you start up the Explorer it will continue executing
your Extended Basic program where it left off but it will be in your control
so you can watch it work.

Type in OLD DSK1.XBSAMPLE and LIST and RUN it to see an example of this type
of loading and program execution. After this prograrn has finished executing,
the Extended Basic interpreter will go through its READY routine. This will
load some default values into the Vdp registers, restore the color table and
character set and the scroll the screen up one line to place the • READY •
message on the Application Program screen. Then it will scroll the screen up
2 more lines and bring out the cursor. At this point Extended Basic is back
in Cornrnand/Edit Mode and is waiting for you to type something in.

3

LOADIHG TRE KIPLORER IRTO TBE

KITEHDKD BASIC ENVIRONMENT Continued

KITEHDKD BASIC PROGRAH SIZE

The Explorer occupies approximately 18K bytes of High Memory Expansion when
it is loaded. This leaves all of Low Memory Expansion free for your Assembly
Language subprograms and part of High Memory Expansion free for your RUNNING
Extended Basic program. If you are not sure if your Extended Basic program
will fit in memory with the Explorer then load and check your program as
follows:

1. OLD DSKx.yourprogram
2. Type in RUN - press Enter and then Press and hold down FCTN 4 CLEAR.
3. When the program breaks - type in SIZE and press Enter.
4. The STACK size doesn't matter since this is in Vdp Ram.
5. The PROGRAM space must be at LEAST 18,400 Bytes Free for the Explorer

to execute your Extended Basic program properly.

The reason you Must RUN and break_your program before checking its size is to
allow Extended Basic to perform the Pre-Scan routine. During Pre-Scan
Extended Basic reserves room for your variables. The string variables stay in
Vdp Ram so they don't matter. However, the Numeric variable's values are
stored in High Memory Expansion so you must bave enough space for these or
your Extended Basic program will not execute properly. NOTE: We don't really
recommend that you run large Extended Basic programs through the Explorer
because of the amount of time that it takes. The Explorer was meant to be
used with direct CALL's and small programs.

If your Extended Basic program is too large to work in Memory Expansion with
the Explorer you can use the XBMEMOFF file to turn off Memory Expansion and
load your program into Vdp Ram. By doing this you can execute an Extended
Basic program that has a RUNNING size of up to 12,876 bytes with CALL
FILES(1). This also has an added advantage in that you can easily follow the
Extended Basic interpreter's accesses to your program by having the
Explorer's Memory Window set on Vdp Ram and in Dynamic mode. (see Memory
Windows for more information). To use this file simply place your Program
name and drive location in line 2 of this file instead of the DSK1.XBSAMPLE
that is currently there. Also, your program MUST contain the CALL
LOAD("DSK1.XBEXP") statement so that IT loads the Explorer.

4

LOADING THE KXPLORER INTO THE

EXTENDED BASIC ENVIRONMENT Continued

A HEHORT FULL ERROR CONDITIO.

If, when you try to load the Explorer, you receive a MEMORY FULL errar
message an the screen you may be able to use the XBMEMFULL file to bypass
this condition. This file is a MERCE type file that contains a single line
(line number 1). This file will only work properly IF the Assembly Language
program that was previously loaded, and is causing this errar condition,
resides ENTIRELY in LOW MEMORY EXPANSION. If any part of it resides in High
Memory Expansion the Explorer may overwrite it when it is loaded.

This errar condition arises when the difference between the First Free
address and Last Free address in Low Memory Expansion is too small. So, this
file saves the current First Free and Last Free addresses in Low Memory
Expansion and then loads the the default values for these pointers, loads the
Explorer into High Memory and then restores the save values for these
pointers when the Explorer is started up.

Once again, this will NOT work if the Assembly Language program that was
previously loaded is NOT entirely in Low Memory Expansion or if any portion
of it resides in the Explorer's program space.

Here is a break down of this one line file:

CALL PEEK(8194,_0,_1,_2,_3):: Save the current First Free Address in O & 1
Save the current Last Free Address in _2 & _3

CALL LOAD(8194,36,250,64,0,

"DSK1.XBEXP",

8194 ,_0,_1 ,_2,_3)

Put default value of >24FA into FFA
Put default value of >4000 into LFA

Load the Explorer

Restores the saved values into FFA & LFA
When you start up the Explorer.

HOTE: The Extended Basic Versions (XBEXP & MXBEXP)) will only work in
Extended Basic. You cannot use this version with the Editor/Assembler or Mini
Memory modules.

5

LOADING THE EIPLOREB INTO THE

BASIC ENVIRONHERT

With either the Editor Assembler or the Mini Memory module or with the Myarc
Disk Controllers CALL for loading Assembly Language programs the Explorer can
be loaded into the Basic environment either from Command/Edit mode or from a
running Basic Program.

NOTE
CALL INIT does NOT have to be executed prior to loading the Explorer with
these modules unless you receive a MEMORY FULL error condition. Tbe CALL LOAD
statement in these modules automatically executes the CALL INIT if it hasn't
been previously executed. Also any references to DSKl.EXP should be replaced
with DSKl.MEXP to load the Explorer with the Myarc Disk Controller Card.

FB<»f C(JtHAND/EDIT MODE

Type in CALL LOAD("DSKl.EXP") and press enter. The Explorer will load and
pass control of your computer to you. When you start up the Explorer it will
return to the Command/Edit mode of Basic but now it will be in your control.
Once the Application Program screen has scrolled up 1 line and the cursor has
reappeared you can slowly type in anything that is valid for the Basic
Command/Edit mode and watch it work.

FR<»f A RUNNING PROGRAM

Place CALL LOAD("DSKl.EXP") into your Basic program, where you want the
Explorer to load and pass control to you, and then RUN your program. When
your Basic program reaches the line that contains this CALL LOAD the Explorer
will load and pass control of your computer to you. When you start up the
Explorer it will continue executing your Basic program where it left off but
it will be in your control so you can watch it work.

Type in OLD DSKl.BASAMPLE and LIST and RUN it to see an example of this type
of loading and program execution. After this program has finished executing,
the Basic interpreter will go through its DONE routine. This will scroll the
screen up one line and place •• DONE •• on the screen, then it will scroll
the screen up one more line and then load some default values into the Vdp
registers, restore the color table and character set and finally scroll the
screen up one more line and bring out the cursor. At this point Basic is back
in Command/Edit Mode and is waiting for you to type something in.

6

LOADING TRE EXPLORER INTO TRE

BASIC ENVIRONMENT Continued

BASIC PROGRAM SIZK

Unlike Extended Basic, the size of your Basic program is not critical because
Basic programs are ALWAYS loaded and executed from Vdp Ram. They are never
run out of Expansion Memory so ALL of Expansion Memory is free for Assembly
Language programs.

HEHOR! FULL ERROR CONDITION

This condition may occur if you have previously loaded an Assembly Language
program into memory. If this condition occurs you can easily clear it by
executing CALL INIT. Unfortunately this will also clear out all references to
the previously loaded Assembly Language program so you can not execute it
through the Explorer.

The Editor/Assembler -Mini Mem version of the Explorer (DSK1.EXP &
DSK1.MEXP) loads into High Memory Expansion and occupies approximately 18K
bytes of this memory area. It does not use Low Memory Expansion or the Mini
Mem Ram so these areas and approx 6K bytes of High Memory are left free for
your Assembly Language Subprograms.

7

LOADIRG THE EIPLORER INTO THE

EDITOR ASSEHBLER or MIRI MEHORY EHYIBONKEIIJTS

The Explorer can be loaded alone or along with a Non-Auto-Start Assembly
Language program or subprogram. The Explorer MUST be the LAST file loaded
because it will take control. Loading your own Assembly programs along with
the Explorer will allow you to use the Explorer as a very powerful debugging
aid.

Once again, the Explorer loads itself into High Memory Expansion and occupies
18K bytes of this area. This leaves 6K bytes free for your assembly program
in High Memory plus room for the XOP 1 instruction. This also leaves all 4K
of the Mini Memory Ram for your use and ALL BK of Low Memory Expansion. The
Explorer does NOT use any of the Editor Assembler Utilities so your program
can write over these or modify them to suit your needs. With a little fancy
AORGing in your own Assembly Language program you can easily load up to 18K
bytes and still have enough room for the Explorer.

EDITOR .lSSEHBLER EHYIRORKENT

Select 3 LOAD AND RUN

When this prompt appears

Type in

• LOAD AND RUN •
FILENAME
DSK1.EXP and press Enter

The Explorer will load and pass control of your computer to you.

MINI HEHORY ENVIRONMENT

Select 1 LOAD AND RUN

When this prompt appears

Type in

• LOAD AND RUN •
FILE NAME
DSK1.EXP and press Enter

The Explorer will load and pass control of your computer to you.

8

---------------------·---------------
LOADING TRE EXPLORER INTO

OTHER LOAD AND RON TYPE LOADER ENVIRONHENTS

The Explorer can also be loaded with either the Myarc Disk Controller Card's
CALL LR("DSK1.MEXP") for Load and Run Type files or from our Disk Manager for
the Corcomp Disk Controller. When the Myarc Disk Controller's CALL LR is
executed from Basic it does not require the Editor/Assembler or Mini Mem
modules to be plugged in. This leaves your module port free for Explorations
of Command Modules (see Explorations for more info). Also, when you select
Load and Run Assembly file from within our Disk Manager program you can have
any module you would like to Explore plugged into the cartridge port. With
this ability it opens up a wide variety of Explorations such as, Parsec,
Adventure, Personal Record Keeping, Munch Man, Number Magie and on and on and
on. There goes the sleepl

The Myarc CALL LR is executed from Basic so when you start up the Explorer it
will return to Basic. If you are trying to access a command module then set
the Explorer to execute the Power Up routine (WS = 83EO PC = 002~). This will
allow you to access the module through the normal menu screen when you get
there. Our Disk Manager loader is executed from within the Disk Manager
program and as such the Disk Manager is written over when it loads another
assembly language program. This means that there isn't any place to return
to. So, before you start up the Explorer, after loading it with this loader,
change the Cpu WS and PC to the values for the Power Up routine (see
Explorations for more info), this gives the Explorer someplace to go to and
allows you to select a module from the menu.

MIARC LOADER FR(M BASIC

Type in CALL LR("DSK1.MEXP") and press Enter.

DISK MANAGER LOADEB

Se le et

then select

Input

Input
Input

File Utili ties

2 Load and Run Assembly file

Drive No.
Disk Name
Free 100

EXPLORER
Used 75

File Name EXP
Program Name : X - Note: any character will do.

since the Explorer
Auto-Starts

9

FONCTION and CONTBOL KEYS

FCTN KEY

HEHORY VINDOW - Toggles the display between the 3 available Memory
Windows on the Explorer'a Main Screen.

2 HEHORY SIZE

3 DISASSEHBLY
SIZE

4 PAGE OP

5

6

7

8

9

o

SEARCH

PAGE DOVH

OPTIONS

REGISTERS

KDIT
FIELDS/HEH

BASIC BIAS
ON/OFF

ASCII/BEI

- Togglea the display aize of the Memory Window on the
Explorer'a Main Screen through ita 4 different aizes.

- Toggles the Next Inatruction Display at the bottom of
the Explorer's Main Screen between a display of 1 line
and 3 lines.

- Increases the start addreas of the current Memory
Window diaplayed by one full page (amount of increase
automatically varies with the size of the Memory
Window)

- Activates
through
displayed
search in

the search function and allows you to searcb
a specified address range in the currently

memory type, CPU, GROM or VDP (cgv). You can
Hex, ASCII or ASCII with Basic Bias.

- Decreases the
Window by
automatically
window)

start address
one full page
varies with the

of the current Memory
(amount of decrease
size of the memory

- Activates the Number Converter and Options Screen of
the Explorer.

- Activatea the Gpl/Vdp Statua and Vdp Write Only
Regiaters Screen of the Explorer.

' - Toggles the cursor between editing of the Explorer's
contro! fields and the Memory Window. (The contro!
fields are above the double line =). On the Number
Converter screen FCTN 9 will toggle you between the
current field that the cursor is on and tbe
Mathematical and Relational operations selection (ie:
Add, Subtract etc.)

- Toggles the Basic Biaa display of the Memory Window on
and off which offsets the ASCII display by >60 (96) so
you can see the characters aa they appear in the
Extended Basic and Basic environments. (Tbia doea NOT
affect the Hex valuea diaplayed.)

Toggles the Memory Window display between ASCII
characters and their Hexadecimal values. If the Basic
Bias is on, the ASCII display will be offaet by >60.

1 o

CONTROL KEYS

CTRL 1 SIHGLE
KlECUTIOif

CTRL 2 COHTIHUOOS
EIECOTION

CTRL 3 PRGH/STATUS
SCREEif

CTRL ~ IHTERROPTS
ON/OFF

CTRL 5 SOOHD OFF

FUHCTIOH and COHTROL KEYS Continued

- Instructs the Explorer to execute a single
instruction, as pointed to by the PC field, and to
update the entire Main Screen and Application
Program's Screen each time it is pressed and released,
according to the instruction executed.

- Instructs the Explorer to continuously execute
instructions according to the program flow and to
update the Main screen after every instruction (if it
is displayed) and the Application Program's Screen
until CTRL 2 is pressed again to stop it or until a
programmable Break Point is encountered.

- Toggles the current screen display between the
Explorer's Main Screen and the Application Program's
screen. (note the Explorer executes the program much
faster when the actual program screen is displayed)

- Toggles the Interrupt Enable/Disable flag (E D next to
the IM field). If the flag is setto E, enable, the
Explorer will execute the Interrupt routine(s) each
time the Interrupt Mask (IM) does not equal zero (ie:
LIMI 1 or LIMI 2 instruction or when you change it
yourself)

- Pressing and releasing this key will immediately turn
off the sound generator and zero out the sound
indicator at >83CE in CPU Scratch Pad Ram.

CTRL 9 SAVE OPTIOHS - Pressing this key while the Explorer's Options Screen
is displayed will write your color and H S options out
to the Explorer Disk in drive one. These saved Options
will automatically be loaded each time the Explorer is
loaded.

CTRL EXIT Pressing this key when the
continuous execution mode will
the computer's Title Screen
resumed and control is released

11

Explorer
EXIT the

is NOT in
Explorer to

(norma l operation is
back to your computer)

SPECIAL KEY

SHIFT TURBO

FUBCTION and CONTROL KEYS conti.nued

- When the Explorer is executing a program in Continuous
Execution mode (CTRL 2) with the Explorer's Main
Screen displayed you can press the SHIFT key to shift
it into TURBO for faster execution of the program.
Pressing this key stops the dynamic updating of the
entire Main Screen display and only updates the top
portion of the screen. Pressing SHIFT and the Enter
key, the Space Bar or the CTRL key at the same time
will allow the instruction counter to be dynamically
updated in TURBO Mode.

A FEV NOTES A.BOOT THE X:KYS

1. The Explorer executes its CTRL key strokes when you let UP on the key
not when it is pressed down. This allows you to press and hold CTRL 2
and then hold down a key that the Application program is looking for
and then let up on the CTRL and 2 keys and the Application Program
will then accept the other key you are holding down.

2. You can press CTRL 1 and then release the CTRL key but hold down the 1
key and the Explorer will be in auto repeat mode for Single Execution
or very slow continuous execution mode. However, if the Application
Program goes through the key scan the 1 key WILL BE detected.

3. You can also press CTRL 1 and the Shift keys and then release the CTRL
1 keys and the Explorer will go into Turbo mode until you release the
Shift Key.

4. While the Explorer is executing a program (CTRL 2) all of the keys on
the keyboard, except CTRL 2 - 5, function normally as far as the
Application Program being executed is concerned. (Also see "Key Scan
and the Explorer")

5. FCTN QUIT (FCTN =) will only be recognized by the Application Program
being executed when the INTERRUPTS are enabled (CTRL 4) since this is
part of the level 1 interrupt routine.

12

STABTHIG IT UP

TITLE SCREEN
Once the Explorer is loaded you will be greeted by the EXPLORER's Title
screen. This screen will only appear when the program is first loaded. At
this point you can press ANY key to bring up the Explorer's Main Screen. Once
the Main Screen has appeared YOU are in control and ready for some
Explorations.

At this time it might be a good idea to play around with the various FCTN
keys. You might also want to play around with the Arrow Keys and Enter key to
get familiar with cursor's paths through the fields. But, DO NOT change ANY
values if you want to continue proper execution of the Application Program.
The Explorer has preset these values for you, according to the environment
that it was loaded into.

CTRL 3
To see where you left off on the Application Program's screen just press and
release CTRL 3. With the Application Program's screen displayed you can press
and release CTRL 3 again to bring the Explorer's Main Screen back up. (Note:
the Application Program executes Much faster with the Application Program
Screen displayed)

CTRL 1 or CTRL 2
With either the Explorer's Main Screen or the Application Program's Screen
displayed you can press and release CTRL 1 to execute a single instruction.
Pressing and releasing CTRL 2 will turn the Explorer ON and let it
continuously execute instructions until CTRL 2 is pressed and released again.

At this point and time just Explore and have fun. YOU CAN NOT HURT YOUR
COMPUTER! The worst thing that can happen, if you change some of the values,
is that you may lock you your computer and will have to shut it off and
reload the Explorer (please see next page fora few Warnings). A little
latter on in this manual is a section on Explorations. In this section we
will take you step-by-step through various items and document them as we go.

One last point before we leave this page. You may have noticed, if you loaded
the Explorer through a running Basic or Extended Basic program that the
screen color was set back to Cyan. Unfortunately, there is no way of checking
the screen color when the Explorer is loaded so the Explorer sets up default
values for the 8 Vdp Write Only registers. If you load the Explorer through a
running Basic or Extended Basic program you can easily correct this by
placing a CALL SCREEN(x) right after the CALL LOAD("DSK1.xxxxx"). Then when
you start up the Explorer it will continue execution of your program and set
the screen back to the color you want. Or, you can easily edit the V7 field
of the Vdp Register display area and change the screen color.

13

WARNING V A R N I R G VARNING

VARRIBG W A R R I H G

DOH 1 TS

Eveo tbougb tbe Explorer was made to be as Transparent as possible to tbe
operation of your computer and its peripberals tbere are a few items you
sbould be aware of.

1. Any TIMING critica! operations will NOT function properly. Because tbe
Explorer is operating your computer in Interpretive mode its speed of
operation is greatly reduced. Tbis meana tbat ALL Baud rate operations
sucb as RS232 and CS1 or CS2 will not work properly.

2. Since tbe transfer of datato and from tbe floppy disk controller is very
timing critica! tbese functions will not work properly. Tbe Explorer will
allow you to Explore rigbt up to tbe poiot wbere tbe controller is looking
for a device ready from tbe disk drive but it will not be received so an
error is returned. Tbe error is usually 06 - device not ready or no
diskette/drive. Tbis will not barm your drives or tbe floppy cootained
tberein but you will NOT be able to successfully execute OLD, SAVE or CALL
LOAD("DSKx.xxxx") type commands.

3. If you owo one of tbe RAM DISK type memory cards, we bave found tbat you
CANNOT make ANY Disk type accesses since tbese DSRs usually take cootrol
before tbe floppy disk controller DSR. Wben tbese devices take control
tbey usually do a 32K bank switcb and tbis pages tbe Explorer out of
memory and out of control. Unfortunately tbey do oot return back to us
properly since we are executing in Interpretive mode so everytbing gets
locked up. Tbe only tbing you can do if tbis bappens is sbut down and
reload.

4. Tbe Myarc Ram Disk Card (128K Card) also does a Baok switcb on Power Up
and on EVERY Interrupt, If you own one of tbese cards you will oot be able
to successfully go tbrougb tbe Power Up Routine or use tbe interrupts wbeo
tbe Explorer is in cootrol.

IHPORTABT IHPORTANT IHPORTANT IMPORT ART

5. If you bave a Hard Disk Drive booked up to your computer you can load
files tbrougb tbe Explorer since tbis device is always spinoing and in a
ready state. HOWEVER, THERE IS A 99.99% CHANCE THAT IT WILL WIPE OUT THE
FILE'S HEADER ON THE HARD DISK. We bave also bad it wipe out a few otber
files witb similar names and quite a number of times it made sucb a mess
of tbings tbat tbe only way to get tbe bard disk back io operation was to
REFORMAT ITJII Bye Bye filesll l

DO NOT LOAD FILES OFF TBE BARD DISK TBROUGB TBE KIPLORER UBLESS IOO DOH 1 T
CARE IF IT VIPES OUT IOUH BARD Dl.SK Ili - Don 1 t aay ve didn 1 t varo you l

14

Work Space
Register
values

MEMORY POINTER
c Rom or Ram
g = Grom or Gram
v = Vdp Ram
0000 = address
s Static
d = Dynamic

Tracking

Next instruction
to be executed.

KXPLORER'S HAIN SCREEN

CPU GROM VDP Binary display
Control Control Control of Cpu Status
Area Area Area Register

ws a e
pc o o
st st st o p x
bp FFFF bp FFFF bp o o o Interrupt mask

value.
rO 0000 r4 0000 r8 0000 r12 e enabled
r1 0000 r5 0000 r9 0000 r13 d = disabled
r2 0000 r6 0000 r10 0000 r11J (CTRL 4)
r3 0000 r7 0000 r11 0000 r15

v O 00 v2 00 v4 00 v6 Vdp Register
v1 00 v3 00 v5 00 v7 values

cOOOOs Gr o m Lib 9800 Instruction
==================================== counter in hex.
00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 Press FCTN 1 t o
00 00 00 00 00 00 00 00 00 00 00 display the other
00 00 00 00 00 00 00 00 00 00 00 2 Memory Windows.
00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 FCTN 9 t o ed i t

==================================== Memory or Fields
020D LI R13,>9800

The UP, DOWN, LEFT and RIGHT arrow keys and the ENTER key will move you
from field to field. FCTN 9 will toggle your cursor between editing
memory and editing fields. \olhile you are editing the fields or the
Memory block in hex you can leave your alpha lock key up or down and the
Explorer will automatically adjust your alpha keystrokes into their
proper upper or lower case entry. When you are editing the Memory block
in ASCII or ASCII with Basic Bias the Explorer will allow you to enter
alpha characters in either upper or lower case.

The cursor will not leave a field that is being edited until you press
one of the arrow keys or the Enter key. The exception to this is when
you press and hold the zero key, this allows you to easily zero out some
or all of the fields.

If you press an invalid key or try to input an invalid value, the screen
will change to the Error Colors while you are holding down the invalid
key. These colors can be set by you on the Explorer's Options Screen.

15

Cpu
ws 83EO
pc 0024
st 0000
bp FFFF

Cpu Controls. __ ___

ws - Vorkspace Pointer
This 2 byte field tracks and sets the Cpu's Workspace Pointer Register.
It contains the address of the first register in the currently selected
Workspace (main scftware register area far the Cpu). When you or the
Application Program change this pointer, the entire Cpu Register display
area (RO thru R15) will also change. Far most Grom based software
(Basic, X-Basic, Editor/Assembler, Mini Memory and most other
cartridges) this Field contains >83EO. Far the interrupt routines this
field contains >83CO and far user written Assembly language programs
this field can contain any valid even Cpu Ram address. As you change WS
the Explorer writes the values in RO - R15 aut to memory. There may be
times when you are changing the WS back to 83EO that the Sound Chip
comes an. This happens when the last digit in the WS field is not zero
because the Sound Chip resides at >8400. If this happens just press CTRL
5 to turn it Off.

pc - Prograa Counter
This 2 byte field tracks and sets the Cpu's Program Counter (instruction
pointer) Register and it points to the NEXT instruction to be executed.
Since the Cpu operates only an even addresses (words not bytes) the
least significant bit is always O. You can place an odd address in this
field but it will be rounded down to an even address internally. As this
value changes, the disassembly of the next instruction at the bottom of
the screen will also change.

st - Statua
This 2 byte field tracks and sets the Cpu's Status Register and returns
information an the LAST instruction executed that affected the Status
Register (see the binary Status display on page 21). The display block
in the upper right hand corner of the Main Screen screen (Status) is the
binary break down of this register. As this value changes, this binary
display area will also change and visa versa.

bp - Break Point
Since the Explorer's powerful machine language interpreter handles all
tracking of Cpu memory, Rom and Ram, you can set a Break Point for any
valid Cpu PC (program counter) address. Unlike other utility programs
this allows you to set Break Points in Rom (Read Only Memory) as well as
Ram. When the Cpu's PC register equals the value in the Break Point
field the Explorer will halt execution of the Application Program and
display the Explorer's Main Screen in the break point colors. Pressing
any key will restare the screen to its normal colors and release control
to you. (also see Break Points an page 20 far additional information)

1 6

Grom
ad 0123
by 00
st 00
bp FFFF

Grom Contrala~----------------------------------~--------------------------

ad - Grom Addreaa
This 2 byte field tracks and sets the current Grom address. Since Grom
is auto incrementing memory this address will automatically increase by
one each time Grom/Gram memory is accessed. The Grom in the 99/4A and
modules contain Data and the Graphics Programming Language (GPL) object
code which is interpreted and executed by the GPL interpreter in console
Rom. Grom is a memory mapped device which means that there are a couple
of ports (Cpu memory addresses) that are used to transfer 1 byte at a
time to and from Grom/Gram. When an Application Program or the GPL
interpreter changes this Grom address it must first write the most
significant byte of the Grom address followed by the least significant
byte. In the GPL interpreter these address setting instructions may
appear something like this:

MOVB R6,@>0402(R13) (move MSB of R6 to >9C02 (>0402+>9800))
MOVB @>83ED,@>0402(R13) (move LSB of R6 to >9C02 (>0402+>9800))

These instructions can be seen when the Cpu PC is at >0060. The Explorer
tracks and executes these Grom address writes without any problems.
However, if you stop the Application Program in the middle of a Grom
Address Write and manually change this field the next instruction will
change it again and unpredictable results will occur since the Grom
address will most likely be wrong. Do not change the Grom address unless
you are experimenting or know where you are setting it to.

by - Byte
This 1 byte field contains the LAST byte read from or written to
Grom/Gram. It does NOT contain the byte at the current Grom Address
since Grom auto increments its address.(see Memory Windows on page 26
for information on viewing the current byte in Grom memory)

at - GPL Statua Byte
This 1 byte field contains a copy of the GPL Status byte which is
located in Scratch Pad Ram at >837C. When you or the Application Program
change the byte at >837C this field will also change and visa versa. A
binary break down of the bits in this Status byte can be seen and edited
by pressing FCTN 8 - Registers. (see Registers Screen on page 45)

bp - Grom Break Poi.nt
Since the Explorer's powerful machine language interpreter handles all
tracking of Grom you can seta Break Point for any valid Grom address.
When the Grom address (AD) equals the value in the Break Point field the
Explorer will halt execution of the Application Program and display the
Explorer's Main Screen in the break point colors. Pressing any key will
restore the screen to its norma! colors and release contro! to you.
(also see Break Points on page 20 for more information)

17

Vdp
ad 0123
by 00
st 00
bp FFFF

Vdp Controls. __ __

ad - Vdp Address
This 2 byte field contains the current Vdp read/write address or write
only Vdp register being accessed. The specific Vdp operation taking
place is determined by the value written to >8C02, the port (Cpu memory
address) for the Vdp processors Write Address Register which is
reflected in this field.

>0000 - >3FFF
>4000 - >7FFF
>80xx - >87xx

a Read from Vdp Memory operation
a Write to Vdp Memory operation (address + >4000)
a Write to Vdp Register Operation

(ie: >81EO sets Vdp register 1 to >EO)
(>8320 sets Vdp register 3 to >20)

Because the Vdp memory address is auto incremented by the Vdp Processor
this address will increase by one after each Vdp read or write access.
Once again since Vdp is a memory mapped device there are a couple of
ports (Cpu memory addresses) that are used to transfer 1 byte at a time
to and from Vdp memory and the Vdp Chip. When an Application Program
changes this Vdp address it must first write the least significant byte
of the Vdp address followed by the most significant byte. These address
setting instructions may appear something like this:

SWPB R6
MOVB R6,•R15
SWPB R6
MOVB R6,•R15

(set up least significant byte)
(move LSB of R6 to >8C02)
(set up most significant byte)
(move MSB of R6 to >8C02)

The Explorer tracks and executes these set Vdp Address operations
without any problems. IMPORTANT - Do Not change the PC, WS or Vdp AD
fields in the middle of a set Vdp Address operation. This will cause
future set Vdp Address operations to be out of sync unti! a Vdp Read
data is executed, which will reset the Vdp chip and the Explorer to the
proper state.

by - Byte
This 1 byte field contains the Last byte read from or written to Vdp
Ram. It DOES NOT contain the byte at the current Vdp Address (AD) since
Vdp auto increments its address after each read or write. (see Memory
Windows on page 26 for information on viewing the current byte in Vdp
memory)

18

Vdp

st 00
bp FFFF - - - --

Vdp Controls continu~~--

st - Vdp Status
This field contains a copy of the Vdp Status register when the
Application Program screen was last displayed. This field is not updated
while the Explorer's Main Screen is up, since it would just be
displaying the Vdp Status of the Explorer and not the Application
Program. By toggling screens (CTRL 3) from time to time you can update
this field. You can not edit the value in this field since this Vdp
register is a READ ONLY register (except to place zero's in it).

bp - Break Point
Once again the Explorer's powerful machine language interpreter handles
all tracking of Vdp Memory. This adds a powerful function to the
Explorer which allows you to set some very specific break points for Vdp
accesses.

Break Point for a specified READ FROM VDP ADDRESS - >OOOO thru >3FFF
ie: BP 02EO - halts Explorer on Vdp Read at address >02EO

Break Point for a specified WRITE TO VDP ADDRESS = >4000 thru >3FFF
ie: BP ~2EO - halts Explorer on Vdp Write at address >02EO

Break Point for a specified WRITE TO VDP REGISTER = >80xx thru >87xx
ie: BP 81EO - halts Explorer when Vdp register 1 gets set to >EO

When the Vdp address (AD) equals the value in the Break Point field the
Explorer will halt execution of the Application Program and display the
Explorer's Main Screen in the break point colors. Pressing any key will
restore the screen to its norma! colors and release control to you.
(also see Break Points on the next page for more information)

19

Cpu Grom Vdp

bp 02B2 >> 6000 bp 4300

Programaable Break Points~---

Since you are in complete control of the Application Program you can
stop and start it at will. This could be considered as unlimited break
points. However, the Explorer will allow you to program up to three
different specific Break Points, one for each type of memory.

To program a Break Point, move the cursor to the BP field for any one of
the memory types and type in the address you would like the Explorer to
halt on. These Break Points will halt the Explorer when it is in
Continuous Execution Mode (CTRL 2), no matter which screen is displayed.
If the Application Program's screen is displayed, the Explorer will halt
execution and bring up the Main Screen. The screen will be displayed in
the Break Point colors with two greater than signs (>>) pointing to the
type of memory that caused the Break Point. At this time the Explorer is
waiting far you to press a key and acknowledge the Break point
condition. Once you press a key the norma! Main screen colors will be
displayed and the two >> signs will be replaced with the letters BP.

The Explorer was designed two allow you to use tbe Single Execution key
(CTRL 1) to get past a break point. This also means that when you are
Single Executing (CTRL 1) a program, the Break Points will not be
activated and the screen will not change to the Break Point colors.

To turn OFF the Break Point(s) simply place a value in this field tbat
should never be reached by that type of memory. We have found that FFFF
works very well for all types of memory. The Cpu's PC should never be
equal to FFFF since this is an odd address and it is also part of the
Load interrupt vector. Since Grom is a byte oriented memory mapped
device this could be a valid address but most of the modules that we
have seen only have valid Grom addresses up to F7FF. The exception to
this rule is a new German Extended Basic module which has a data table
that goes up to FFFF when you execute CALL APESOFT. In Vdp memory the
highest address set should never be above 87FF since this is the highest
valid Write to Vdp Register value.

20

Status
l a e c
1 o 1 o
o p x i m
o o 1 O e

Cpu Statua'---

These fields contain the binary representation of the Cpu's Status (ST)
register. Not all of the 16 bits in this register are active so only the
active bits are displayed here. These bits can be thought of as binary
On (1) and Off (O) switches. Also the interrupt mask field can contain
hex values in the range of 0-F to indicate the current Hardware
interrupt leve! allowed.

Active bits in the 9900 Cpu's Status Register:

L> A> EQ C
o o o o

OV OP X
O O O nu nu nu nu nu

l. - Logica! Greater Tban (L>)

Int Mask
o o o o

When this bit is set, equa! to 1, it indicates that the last instruction
executed that effected this bit in the Cpu's Status register resulted in
a logica! (unsigned number) greater than condition.

a - Arithmetic Greater Tban (A>)
When tbis bit is set it indicates that the last instruction executed
that effected this bit in the Cpu's Status register resulted in an
arithmetic (signed number) greater than condition.

e - Equal (EQ)
When this bit is set it indicates that the last instruction executed
that effected this bit in the Cpu's Status register resulted with the
words or bytes operated upon being Equa! or the word or byte being zero.

c - Carry (C)
When this bit is set it indicates that the last instruction executed
that effected this bit in the Cpu's Status register caused the most
significant bit of the word or byte operated upon to be carried out of
the operand into this bit in the Status register.

o - Overflow (OV)
When this bit is set it indicates the the last instruction executed that
effected this bit in the Cpu's Status register resulted in a too large
or too small condition for signed numbers.

p - Odd Parity (OP)
This bit is used in Byte operations. When set it indicates that the
that the parity of the destination byte operand of the last instruction
executed that effected this bit in the Cpu's Status register has an odd
parity. Odd parity means that the number of bits that are on in the byte
add up to an odd value. Example: 01001100 (3 bits on) is odd parity and
01001101 (4 bits on) is even parity.

21

Statua

x im
1 Oe

Cpu Statua continue~--

x - Extended Operation (l)
When this bit is set it indicates that that the Application Program flow
has been transferred to one of the XOP vectors to continue execution.
XOPs are Software controlled interrupts for the 9900 microprocessor. On
the 99/4A only XOPs O, 1 and 2 are implemented and on some 4A's only
XOPs O and 2 are. XOP vectors are located in Cpu Rom starting at >0040
for level O.

Level O)0040 >280A - Workspace for unreleased Debugger Card
>0042 >OC1C - Program Counter (PC) for XOP O

Level 1 >0044 >FFD8 - Workspace (WS) for XOP 1 (if implemented)
)0046 >FFF8 - Program Counter (PC) for XOP 1

Level 2 >0048 >83AO - Workspace (WS) for XOP 2
>004A >8300 - Program Counter (PC) for XOP 2

Levels 3 thru 15 are not implemented on the 99/4A.

1m - Interrupt Haak Value
The hex value in this field represents the least significant 4 bits of
the Cpu's Status register. These bits set the highest level of Hardware
interrupt allowed by the 9900 microprocessor. On the 99/4A an interrupt
can be triggered by an external peripheral device, the Vdp vertical
retrace (60 times a second) or the clock on the 9901 for CS1 & CS2. The
99/4A has only levels O & 1 and the non-maskable Load interrupt
implemented. Level O is the reset interrupt (power up routine). Level 1
controls the Cassette Timing, Peripheral Interrupt Routines, Auto Sprite
Motion, Auto Sound Processing and the Quit Key. Level 1 also executes
the User Interrupt Routine pointed to by the address in >83C4, if it
does not contain zero. The vectors that are in the level 2 position in
Rom are for a routine that blanks the screen after a certain amount of
inactive time, this is not an actual Hardware Interrupt Level. The
interrupt vectors are located in Cpu Rom memory starting at >OOOO.

Level O)0000 >83EO - Workspace (WS) for Reset (Power Up rou ti ne)
)0002)0024 - Program Counter (PC) for Reset

Level 1 >0004 >83CO - Workspace (WS) for Level 1 Interrupt
>0006 >0900 - Program Counter for Level 1 (most consoles)

Hardware Levels 2 thru 15 are not implemented on the 99/4A.

22

Status

- im
- Oe

Cpu Status (Interrupt Mask) continuedL_ ____________________________________ __

Unlike any other utility program currently available for the 99/4A, the
Explorer will execute interrupts during the normal flow of the
Application Program. Whenever the Application Program or you set the IM
field to a value that is greater than zero, (LIMI 1 thru 15 instruction)
and interrupts are enabled (CTRL 4) the Explorer will stop execution of
the current Application Program and begin execution of the interrupt
routine pointed to by the level 1 vectors. After completing the
interrupt routine the Explorer will continue execution of the current
Application Program where it left off.

To enable or disable interrupt execution press CTRL 4. The E or D
indicator after the im hex value will change accordingly.

Examples: i m
OE

i m

interrupt execution enabled

OD interrupt execution disabled

N~E

When interrupts are enabled and the Explorer is running with the
Application Program's screen displayed, you may notice that the
Peripheral card lights will blink on and off. This happens because the
interrupt routine is searching through the peripherals for their
interrupt routines. When the Explorer is running with the Explorer's
Main Screen displayed, the screen interrupt takes control before the
peripheral scan so these lights will not come on. Also, when the
interrupts are enabled the Application Program executes slower because
of the extra code in the interrupt routine. It is not necessary to
ALWAYS have the interrupts enabled for proper execution of the
Application Program.

23

rO 0000 r4 0000 r8 0000 r12 0000
r1 0000 r5 0000 r9 0000 r13 0000
r2 0000 r6 0000 r10 0000 r14 0000
r3 0000 r7 0000 r11 0000 r15 0000

Vorkspace Reglsters

rO - r15 - Cpu's Vorkspace Registers
This portion of the Explorer's Main Screen contains a copy of the
Application Program's current Workspace Registers. When the Explorer's
Main Screen is displayed these registers are automatically updated on
the screen after each and every instruction is executed. Any changes
that you make to these registers or the actual area of memory pointed to
by the Cpu WS field will affect the Application Program's workspace.

Generally speaking the workspace registers can contain most anything
that the programmer wants. However, there are a few registers that must,
or will, contain certain items for, or after, the execution of some
instructions.

rO - Holds shift count for a some of the Shift instructions

r11 - Stores the Return address for the Branch and
instruction and the Effective Address after an XOP.

Link (BL)

r12 - Holds the CRU base address during cru bit access instructions
(SBO, SBZ, TB, LDCR, STCR)

r13 - Stores the old Workspace Register (WS)
switch, like the BLWP or XOP instruction or
interrupt routines.

value after a context
the execution of the

r14 - Stores the old Program Counter Register (PC) value after a context
switch.

r15 - Stores the old Cpu Status Register (ST) value after a context
switch.

(see the Scratch Pad Ram Memory Map in the Appendixes for additional
information on the Interrupt workspace at >83CO and the GPL workspace at
>83EO)

24

vO 00
v1 EO

v2 FO
v3 OC

v4 F8
v5 86

v6 F8
v7 07

Vdp Registers __ __

These eight 1 byte fields track the TMS 9918A Video Display Processors's
eight Write Only Registers. These Write Only Registers are used by the
TMS 9918A to set up the various Vdp modes, graphics, text, bit map etc.,
and the various table locations, screen table, character table, sprite
attribute table etc.

vO - Bit Map mode & External Vdp Chip enable

v1 - 4K/16K Vdp Ram, Screen Enable/Disable, Vdp retrace Interrupt, Text
mode, Multi-Color mode, Sprite Size & Sprite Magnification

v2 - Screen Image Table base address - (times >400)

v3 - Color Table base address - (times >40)

v- - Character Pattern Table base address - (times >800)

v5 - Sprite Attribute Table base address - (times >80)

v6 - Sprite Pattern Table base address - (times >800)

v7 - Text mode foreground color (most significant nibble) and the Screen
color for all modes (least significant nibble)

You can edit any one of these fields and then press CTRL 3 to bring up
the Application Program's screen and immediately see what effect your
edit has had on the Application Program.

Pressing FCTN 8- Registers will display these registers with their
binary break down and the tables multiplied out to their proper base
addresses.

(Also see Registers Screen for more information on these registers)

25

Memory Pointer - cOOOOs --- ---- --------
00 00 00 00 00 00 00 00 00 00 00 ::) xx 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 Memory Window
00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00

Ue.ary Vindovs

The three Memory Windows are a very powerful part of the Explorer. These
Windows can be set to any valid address for the specified type of memory
(Cpu, Vdp, Grom/Gram) either by you or the Application Program. Pressing
FCTN 1 will toggle the Memory Window display between the three Memory
Windows. These Windows can be any combination of Cpu, Grom or Vdp memory
types as well as static or dynamically tracked. Using the Memory Edit
function of the Explorer allows you to easily examine (any area) and
change (Ram, Gram) areas of memory as you wish. These areas of memory
can be displayed in Hexadecimal, ASCII or ASCII with the Basic Bias. Tbe
Memory Window has a Memory Pointer and Mode Indicator above it that can
be edited by you. This Memory Pointer will also update itself as you
move the cursor around in the Memory Window to indicate the exact
address that the cursor is sitting on.

cOOOOs - Kemory Vindov Pointer
This pointer is actually three different fields that consist of the
following items:

c-----
This indicates which type of memory is displayed in the memory block.
You can place any one of the following three alpha characters in this
field and the memory block will instantly update itself and display that
type of memory:

-0000-

c Cpu Memory (Rom/Ram)
g Grom/Gram Memory
v Vdp Ram Memory

Hhen the cursor is NOT in the memory block or when the Explorer is in
Continuous Execution mode, this indicates the current start address for
tbe memory block displayed. When the cursor is in the memory block this
indicates the exact address that the cursor is sitting on. The valid
ranges for tbe different types of memory are as follows:

>OOOO - FFFF for Cpu Memory
>0000 - FFFF for Grom Memory
>0000 - 3FFF for Vdp Memory

...
26

....... ,
-----s

00 00 00 00 00 00 00 00 00 00 00 00
xx 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 OD

Hemory Windows continu

-----s
This indicates the MODE for the memory block. The Static mode (S) will
leave the memory block exactly where you place it. The Dynamic (D) mode
allows the memory block to follow the Application Program's access to
the type of memory displayed as follows:

c----d
If the Type indicator is a C (Cpu Rom/Ram memory) and the mode
indicator is a D (dynamic) the memory block will automatically
follow the Cpu's PC register.

g----d
If the Type indicator is a G (Grom/Gram memory) and the mode
indicator is a D (dynamic) the memory block will automatically
follow the Grom Address (AD).

v----d
If the Type indicator is a V (Vdp Ram memory) and the mode
indicator is a D (dynamic) the memory block will automatically
follow the Vdp Address (AD).

NOTE: When the displayed Memory Window Mode is Dynamic the address
that is being tracked starts on the second row of the Memory
Window. This allows you to see the 12 bytes prior to the current
tracked address.

-----d --- ---- --------
00 00 00 00 00 00 00 00 00 00 00 00

Actual byte a t---][][00 00 00 00 00 00 00 00 00 00 00
tracked address 00 00 00 00 00 00 00 00 00 00 00 00

To change the Mode for the displayed Memory Window simply place an S or
D in this field. Each one of the three Windows can have their own Mode.

27

FCTII 1 FCTII 2 FCTB 3 FCTB Il

FCTII 6 FCTII 9 FCTII O FCTII

He.ory Vindov & He.ary Editor leysL--

The Following Keys Effect The Memory Window Display

FCTII 1 - Toggles the display to one of the 3 different Memory Windows.

FCTII 2 - Changes the size of the Memory Window display to one of the 4
main sizes.

FCTN 3 - Changes the size of the Next Instruction display area which
affects the size of the Memory Window display.

FCTN ~ - Increases the start address of the Memory Window by one full
Page (Window). The amount of increase automatically compensates
for the various Memory Window sizes.

FCTB 6 - Decreases the start address of the Memory Window display by one
full page (Window). The amount of decrease automatically
compensates for the various Memory Window sizes.

FCTN 9 - Toggles you in and out of
another way, it toggles
editing of fields.

the Edit Memory Mode. Or, to put it
you between editing of memory and

FCTN O- Toggles the Basic Bias On and Off. When this Bias is On, the
words "BASIC BIAS" will be displayed in the middle of the top
double line (=). The bias ONLY effects the ASCII display of the
Memory Window by offsetting the ASCII display with >60 to match
the Basic environments. This Bias is most useful for editing
the Screen Image area of Vdp Ram when you are in the Basic or
Extended Basic environments. With this Bias you can also see
the various ERROR messages in Grom for the two Basic languages.

FCTB - Toggles the Memory Window display between Hexadecimal values
and their ASCII characters.

28

-0000- --- ---- --------
00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00

Me.orJ Editor

The Explorer contains a very powerful and easy to use Memory Editor.
To enter the Memory Editor when the cursor is in one of the fields at
the top portion of the screen (above the double line =) just press FCTN
9. To exit the Memory Editor (when the cursor is in the Memory Window)
you also press FCTN 9. The FCTN 9 key on the Main screen toggles you
between editing the fields and editing memory.

This Memory Editor allows you to examine any area and type of memory in
your computer system. It was designed with future expansion in mind in
that it treats ALL areas of Cpu memory as if it is Ram and ALL areas of
Grom memory as if it is Gram (Auto Incrementing Graphics Ram the
complement to Grom). By this we mean that the Explorer will allow you to
attempt to write to any area of memory. After you have typed in the
value or character into a memory location the Explorer attempts to write
that value to the memory location and then rereads and redisplays the
current Memory Window. If the location was Ram or Cram the Memory Window
will reflect the change, if the location was Rom or Grom the change will
not be displayed. With this feature any future Ram or Gram additions or
modifications to your system can easily be edited. (Note: There
currently isn't any GRAM in our systems)

The size of the Memory Window/Edit Area can be changed at any time by
simply pressing FCTN 2. There are 4 main sizes available. So, when you
have reached the largest size (full screen) and you press FCTN 1 again
the Memory Window will automatically drop back down to the smallest
size.

The Type of memory displayed (Cpu, Grom, Vdp) can be changed at any time
by pressing FCTN 1 which brings in the next MemOI'Y Window you have set.
Or, you can leave the Memory Edit mode and place the cursor at the start
of the Memory Pointer field (cOOOOs) and input a C,G or V there.
NOTE: If your Windows are in Dynamic (D) Mode pressing FCTN 1 will
display the area of memory that is being tracked. If you do not want the
address to change as you toggle between Memory Windows (FCTN 1) simply
change them to Static (S) Mode.

29

OP RIGBT

SHIFT OP SHIFT DOVIi SHIFT LEFT SHIFT RIGBT

He.ory Editor continu~--

The Explorer's Memory Editor is a FULL SCREEN type of editor. This
allows you to move the cursor around in the Memory Window with the four
arrows keys (FCTN Up, Down, Left & Right arrows). As you move the
cursor around in the Memory Window the address in the Memory Pointer
(cOOOOs) will update itself and indicate the exact address that the
cursor is currently sitting on. Also ALL of the keys in the Memory
Editor will auto repeat if you hold them down.

Pressing the UP arrow key when the cursor is sitting on the Top row of
the Memory Window will allow you to scroll the Memory Window address and
display down 12 bytes (1 row). Conversely, pressing the DOWN arrow key
when the cursor is on the Bottom row of the Memory Window will allow you
to scroll the Memory Window address and display up 12 bytes (1 row).

Pressing the LEFT arrow key when the cursor is sitting in the upper left
hand corner (first byte of the Memory Window) will allow you to scroll
the Memory Window start address and display down 1 byte. Conversely,
pressing the RIGHT arrow key when the cursor is sitting in the lower
right hand corner (last byte of the Memory Window) will allow to scroll
the Memory Window address and display up 1 byte.

The Explorer also has a unique feature in its Memory Editor in that you
can lock the cursor on a given byte and drag the memory display around
in the Window boundaries. To lock the cursor on a given byte (address)
just press the FCTN and SHIFT keys down at the same time as you press
the arrow keys. This allows you to drag a given byte to any location in
the Window. This is very useful for positioning a given byte in the home
(upper right hand corner) position of the Window.

We would like to recommend at this time that you play with the various
FCTN, Arrow and Shift keys of the Explorer's Memory Window and Memory
Editor. This will help you to become more familiar and comfortable with
its powerful features and to make future Explorations easier.

30

cOOOO- st 0000 fn 0000 --------
Search String --- 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00/Memory display
00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00

Search Function --------------------------

The Explorer also contains a very powerful and easy to use Search Function.
This function allows you to search through any type of memory, Cpu, Grom or
Vdp, in Hexadecimal, ASCII or ASCII with Basic Bias. It also allows you to
search forwards, low to high address range, or backwards, high to low address
range. To activate the Search Function simply follow these steps:

1. Select the type of memory you wish to search through by placing a C, G
or V in the Memory Pointer field or by pressing FCTN 1 unti! the proper
type of memory is displayed. You must do this PRIOR to activating the
Search Function.

2. Press FCTN 5 - Search - to activate the Search Function.

3. Input the Start Address in the ST (Start) field and the End Address in
the FN (Finish) field and then press Enter or the Down Arrow.

4. Select eit.her Hex display far a Hexadecimal search or ASCII display far
a ASCII search by pressing FCTN ASCII/HEX Toggle.

5. If you have selected ASCII, you can select either norma! ASCII or ASCII
with the Basic Bias by pressing FCTN O- Basic Bias On/Off.

6. Type in the Hex value(s) or ASCII letters, according to the display, and
then move the cursor back one space (left arrow key) to place it ON TOP
OF THE LAST CHARACTER OR BYTE in your search string, and now press ENTER
to start the search.

Example: gOOOO- st 2000 fn 57FF

T I B A S I ~ .

Pressing Enter with the cursor sitting ON TOP OF the C in 'BASIC' will
instruct the Explorer to search through Grom (G) memory from >2000
through >57FF far the first occurrence of 'TI BASIC' and to display its
start location in the Memory Window and Memory Pointer. If you place
your cursor on top of the I in 'TI' the Explorer will ignare the rest of
the search string and search far the first occurrence of 'TI' in the
selected Grom memory range.

31

g2152- st 2153 fn 57FF --------

T I B A s I ~
T I B A s I c B +

l l l l l
s

@

Searcb Function Continued

When the search string is found the Explorer will automatically display
that area of memory in the Memory Window. It will also update the Memory
Pointer to the address where your search string was found. It also
adjusts the Search Function Start Address (ST) to allow you to just
press Enter again to search for the next occurrence. If you are
searching forward through memory it will set the Start Address (ST) to
one address higher than the Memory Pointer value. If you are searcbing
backwards through memory it will set the Start Address (ST) to one
address lower than the Memory Pointer value.

If the search string is not found the Explorer will NOT update the
Memory Pointer, Memory Window or Start Address. If the first line of the
Memory Window, up to and including the cursor location, does not match
the search string display then your string was NOT found.

To change the ST or FN fields when the cursor is in the search string
area just press the Up arrow key. When you are finished witb the Search
Function just press FCTN 5 again to exit it. NOTE: This is the ONLY way
to leave the Search Function and to resume normal operation of the
Explorer.

When you exit the Search Function the Explorer will remember the search
string you input and the Start and Finish addresses where it left off.
So, the next time you enter the Search function tbese items will
automatically be displayed. However, it does not change the current
memory type to the one you searched tbrough before. This allows you to
easily search through Cpu, Grom and Vdp for the same item(s).

M~E

The Search Function is an independent function of the Explorer. When it
is activated most of the other functions of the Explorer cannot be
accessed (ie: FCTN 7 Options, CTRL 2 Continuous Execution etc.). Trying
to activate one of these functions will cause the screen to change to
its Error colors, which indicates that you need to leave tbe Search
Function (press FCTN 5 again) before accessing this other function.

\

32

Grom Lib 9800 00000000

Gro• Library & Instruction Counter ___ ___

Gro• Lib 9800 - Gro• Library Page
This field was added to the Explorer for two reasons. First to allow you
to watch the 4A's operating search through the Grom Library for a
particular CALL. And secondly for future expansion of your computer
system. There currently isn't a Grom Library Expansion box available for
your computer but there may be one in the near future and the Explorer
is fully set up to handle it and GRAM simulators.

You may have noticed at one time or another, when you removed or
inserted a module that the REVIEW MODULE LIBRARY message came up in your
menu. And, you probably have tried to make that selection to see what
happens. Unfortunately, since there wasn't a Grom Library Expansion box
hooked up, notbing happened. You can, however, watch TI Basic attempt to
search through the nonexistent Grom Library. To do this simply load the
Explorer into the Basic environment and start it up. When the cursor
reappears and you are in Command/Edit mode of Basic slowly type in an
invalid CALL such as, CALL MG and press Enter. As the computer searches
for this invalid CALL you will notice that this field is updated to each
of the Library pages until Basic can not find the CALL and returns the
• BAD NAME errar message. (There will be more documentation on this when
a Grom Library box is available)

00000000 - Inatruction Counter
This four Byte (eight nibble or 32 bit) field is the Instruction Counter
in hexadecimal that counts up to >FFFFFFFF before it resets itself. You
can edit this field at any time and set it to any value or reset it back
to zero. This field increments itself by one each time the Explorer
executes a 9900 Machine Language Instruction. It is displayed on the
Main Screen in hexadecimal, for purposes of speed, and it is also
displayed on the Options screen in Decimal fermat. This way you can
simply press FCTN 7 at any time to see the actual number of instruotions
(in decimal) executed so far. It is also handy as a quick hexadecimal to
decima! number converter for converting large hex numbers into their
decimal value. >FFFFFFFF equals 4,294,967,295 which is also the address
range of a true 32 bit computer - 4 Gigabytes.

33

DB46 MOVB R6,@>0402(R13)

----- or -----

Object -=======DB46
Code 0402

DB60

MOVB R6,@>0402(R13) Source
~Code

MOVB @>83ED,@>0402(R13)

Inatruction Disasseably __________________________ _

The last display area on the Explorer's Main screen is tbe Next
Instruction to be executed. This area cac be displayed io two sizes,
single lice or three lines. The single line display will always display
the complete Next instruction, no matter how many object code words make
up the instructioc. The three line display can display up to three
instructions at a time if the first two instruction are only one word of
object code in length.

As each instruction is executed this area is updated and the cext
instruction to be executed will be displayed. This display area
dynamically follows the Cpu's PC register and the area of memory that
the PC points to.

If you place the PC field on an area of Cpu Ram, say)2900, and tben
place the Memory Window at c2900s, you can edit the values in the Memory
Window and wat.ch the disassembly display change to tbe new instruction.

EXAMPLE: Cpu
Input -- ws 2800
Input --pc 2900

st
bp FFFF

Set --- c2900s

any value is ok

Grom Lib 98--

Type in --04 20 00 00

which
equals -- 0420 BLWP @>0000

By inputting the values indicated and typing in >04 20 00 00 into tbe
Memory Window you will set the next instruction to do a Branch and Load
Workspace Pointer @>0000. This will begin execution of the Power Up
routine wben you press CTRL 1 or CTRL 2. Go ahead acd press CTRL 1 and
note R13, R14 and R15 of the new Workspace.

34

EXPLORKR'S OPTIONS SCREEN

---------- Number Converter ----------

h ex FFFF + 0000 OOOOFFFF

dee 65535 + 00000 0000065535

bi n 11111111 11111111 car O ovr O
+ 00000000 00000000 + add a and

- sub o or
00000000 00000000 • mul x x or
11111111 11111111 l div n no t

Explorer Options

Cru Base 1100 o

Load Characters h
Execute Key Scan h

s step speed
h high speed

Colors text/scrn Counter
Statua Screen F4
Break Point 1A dOOOOOOOOOOO
Error Condition F6

The Explorer's Option Screen actually contains four sections, the Number
Converter, The Cru Base switch, the Options section and the decima! Counter.
The Number Converter has the same mathematical logic as the 9900
Microprocessor. The Cru Base switch actually performs two functions. First it
allows you to turn On (1) and Off (0) different Cru bits. Secondly it Reads
back the selected Cru Base (bit) and displays it. The Options section of this
screen allows you to configure the Explorer to your tastes and to save these
Options on the Explorer Disk.

To activate this screen just press FCTN 7 - Options - from either of the
other two Explorer Screens (Main or Registers), while the Explorer is NOT
Continuously Executing (CTRL 2) an Application Program. Once you have
activated this screen you can return to the Explorer's Main Screen by
pressing FCTN 7 again.

35

Operation
Indicator

h ex

Number Converter

FFFF + 0000 OOOOFFFF

65535 + 00000 0000065535

11111111 11111111 car O ovr O
+ 00000000 00000000 + add a and/ Operation

- sub o or Selection
00000000 00000000 • mul x xor Fields
11111111 11111111 l div n not

luaber Converter __ ___

The Explorer's Number Converter will convert Hexadecimal, Decimal and
Binary numbers and perform the mathematical and relational operations of
Add, Subtract, Multiply, Divide, AND, OR, XOR and NOT. The valid range
for the different number bases is >OOOO tbru >FFFF, O thru 65535 and
0000000000000000 thru 1111111111111111. This Number Converter operates
dynamically in tbat ALL of the Number Converter fields are automatically
updated as you type in EACH character, so type slow.

When this screen is active tbe action performed by the tbe FCTN 9 key is
changed. Pressing FCTN 9 takes your cursor from wherever it is on the
screen and places it on the + sign in the mathematical and relational
selection fields. When the cursor is already on one of these fields,
pressing FCTN 9 will place the cursor back to the field tbat it was in.

The mathematical and relational operations have the same logic as the
9900 microprocessor. What this means is that they calculate tbe same
result as the corresponding 9900 instruction. All of the mathematical
and All of the relational operations except NOT operate on two numbers.
The NOT relation works on a single number and the Explorer is set up to
NOT a value that is in the input field following the operation
indicator.

Tbe CAR O and OVR O indicators above the mathematical and relational
selection fields simulate the CARRY and OVERFLOW bits of the Cpu's
Status Register. These bits will be set or cleared on the various
operations according to the operation performed and its result.

36

NUHBER COHVERSIOII

MATBEKATICAL OPERATIOHS

Huaber Converter Continue~--

Nuaber Conversion
To perform just a straight number conversion simply type in the number
into the appropriate number base field. The Explorer will dynamically
convert the number as you type it in. The proper conversion will be
displayed in the the other two number bases's corresponding input
fields. By looking in these fields for the result instead of the fields
following the = sign you wjll not have to worry about the mathematical
or relational operation indicator.

Example - Convert >2006 into Dee and Bin

Input~006

Resul t........,_ dee 00000 +_3!! 198

bin 00000000 00000000
Result ~100000 00000110

Hatheaatical Operations

00000000 00000000
00100000 00000110

00002006

0000008198

car O ovr O
+ add a and
- sub o or
• mul x xor
l div n not

To perform a mathematical operation (add, sub, mul or div) input the two
values into their proper number base input fields and press FCTN 9. With
the cursor sitting on the + sign in the mathematical and relational
selection fields you can move it around to the proper operation. When
the cursor is on the proper operation simply press ENTER and that
operation will be performed. Once an operation is selected the Explorer
automatically executes it whenever you input values.

Example -Divide 16500 by 8198

h ex 4074

Inpu t-..........._ dee 16500 l 08198
,/ ,/

bi n 01000000 01110100 car O ovr O
l 00100000 00000110 + add a an d

- sub o or
Quotient 00000000 00000010 • mul x xor
Remainder 00100000 01101000 l div n not Select

So 8198 go es into 16500 2 times with a remainder of 104.

37

RELATIORAL OPERATIOHS

~r Converter Continu~--

Relational Operations
Performing a relational operation (AND, OR, XOR or NOT) is mueh the same
as performing a mathematieal operation. Input the two values into their
proper number base input fields and press FCTN 9. With the eursor
sitting on the + sign in the mathematieal and relational seleetion
fields you ean move it around to the proper relational operation. When
the eursor is on the proper operation simply press ENTER and that
operation will be performed.

Example - Perform >42EO AND >3FFF

Inpu t_~ ________ ...c._ ____ _, h ex 42EO a jfFF 000002EO ----- Result
/

dee 17120 a 16383 0000000736 ---- Result

bi n 01000010 11100000 ear O ovr O
a 00111111 11111111 + add cf and Seleet

- sub o or
00000000 00000000 • mul x x or

Result --------- 00000010 11100000 l div D no t

So this AND masks off the two high order bits and leaves us with >02EO

The NOT operation is a single number operation. So the Explorer expeets
the value for a NOT to be in the input fields AFTER the Operation
Indieator

Example - NOT >BCDE

Inpu t ""-~--h_e_x ____ n_,)CDE

Result

dee n 48350

bin -------- --------
n 10111100 11011110

00000000 00000000
-----01000011 00100001

00004321 ---Result

0000017185 ---Result

ear O ovr O
+ add a and
- sub o or
• mul x xor
l div n not Se le et

' /

So NOT turns Off the bits that are On, and On the bits that are Off

38

HKXADECIMAL TO C.I.LL PEEK or C.I.LL LOAD

CALL PEEK or CALL LOAD to BEXADECIMAL

Hu.ber Converter Continu~---

Bexadecillal to C.I.LL PEEir or CALL LOAD
Converting Hex numbers into their Decimal CALL PEEK or CALL LOAD
addresses is a simple matter if you keep in mind the following rule. IF
the Hex number is greater than >8000 then subtract it from Zero and look
at the result. IF it is less than >8000 just do a straight number
conversion. In this example the Hex number is greater than >8000 so we
will subtract it from Zero. To do this input four zero's in the first
Hex field, input B3EO in the second Hex field, press FCTN 9, move the
cursor down to - (sub) and press ENTER.

Example - Convert >B3EO into its Decimal CALL PEEK address.

Input, hex 0000 - 83EO
'~·--------------~/

00007C20

dee 00000 - 33760 0000031776 --Result

So >83EO can be peeked into with CALL PEEK(-31776,A,B)

C.I.LL PEEl or CALL LOAD to HexadeciBal
Converting CALL PEEK or CALL LOAD values into their Hex locations is
very similar to the above conversion. The rule to keep in mind here is -
IF the CALL PEEK or CALL LOAD value is NOT negative, just do a straight
number conversion. IF the CALL PEEK or CALL LOAD value IS negative then
subtract the value from Zero (negative number cor.version) and look at
the result. So lets convert the above result back into its Hex location.

Example - Convert CALL PEEK(-31776,A,B) into its Hex location.

hex 0000 - 7C20 000083EO -- Result

Input dee 00000 - 31776 0000033760

So CALL PEEK(-31776,A,B) is peeking into >83EO

NOTE: The Decimal input fields perform a range check as you input
values. So, if you try to input a Decimal value greater than 65535 the
screen will change to its Error Condition Colors.

39

Explorer Options ----

Cru Base 1100 o

Cru Base~---

Cru Base Swi t cb
The Cru Base function of the Explorer allows you Read and Set the
different Cru Bits in the 99/4A. Cru Bits are just a bit leve! method of
I/0 but they can be joined together to form bytes or words. In the
console they are used for interrupt detection, keyboard and joystick
input and the cassette controls. In the peripheral devices they can be
used for anything the hardware and software would like. In many cases
they are used as binary switches to turn on and off selected items. For
example, in the disk controller card there are designated bits
(switches) to select the proper drive, side and to strobe the motor on.

By setting the Cru Base field to a specified Cru address you can Read
the Cru bit in the bit field. Also, after the specified Cru address has
been set you can move the cursor to the bit field and input a 1 or a O
to turn On or Off the specified bit (depending on the particular
hardware).

The Explorer ALWAYS reads and redisplays the specified bit, however,
some Cru bits can be set but not read as being set. This is a property
of the hardware that the Cru Base address is set on. For example, if you
bave a TI RS232 Card you can turn it on by writing a 1 to Cru Base 1300.
But, the Explorer will read back a zero even though the card is on. Now
set the Cru Base address to 130E and input a 1 into the bit field. This
will turn on the RS232 Card light and the Explorer will read back a 1.
To turn the card off simply input a zero in the Bit field for Cru Base
130E and Cru Base 1300.

The value that is placed in the Cru Base address field is the same as
the one you would place in Workspace Register 12 (R12) for a TB O, SBO O
or SBZ O instruction. To obtain this address you multiply the Cru Bit
number that you want to Read or Set by 2 and add the Cru Base address to
it.
Examples: Read Cru Bit 11 in the RS232 Card.

2 • 11 = 22 22 = >16 >1300 + >16 = Cru Base 1316

What Cru Bit number turns on the RS232 light?
>130E - 1300 = >OE >OE = 14 14 l 2 = Bit number 7

In many locations in the 4A operating system you will find instructions
like - TB O JNE >xxxx These instructions are testing Cru bit
number O of the Cru Base that is in R12 of the Workspace. The test
result is reflected in the E (Equa!) bit of the Cpu Status register. If
the E bit is a 1 after the TB O instruction is executed the Cru bit was
set (1) if it is a O the Cru bit was not set (0). You can fool the
Application Program by changing the E bit immediately after the TB
instruction is executed.

40

LOOIING FOR DEVICE SERVICE ROOTINES

Cru 'Base Continu~---

Many of the peripheral cards and devices contain a Device Service
Routine (DSR). This is a fancy name for the 9900 Assembly Language
Object code that is burned into a Rom chip on the card or device. When
the card or device is turned on this DSR code is paged into Cpu memory
at >4000 tbrough >5FFF so the 9900 micro can access and execute it.

With the Explorer it is a simple matter to find out where all of the
DSRs are located in your system. TI set up the Cru Bases and peripheral
cards in such a way that each card resides on a >100 boundary starting
at Cru Base >1000. So the first DSR can reside at Cru Base >1000, the
next at >1100 followed by >1200 etc.

To find the different DSRs in your system follow these steps.
1. On the Main Screen set the memory pointer to c4000s with ASCII
display (Basic Bias Off).
2. Press FCTN 7 - move the cursor down to the Cru Base field and input
1000.
3. Move the cursor to the Bit field and input a 1.
4. Press FCTN 7 and look in the memory window. If its all dots there's

no DSR at this Cru Base. If there is something there use the FCTN 4
Page Up and FCTN 6 Page Down to look around.

5. Someplace near the beginning (>4016) you should find the different
DSR Link Names in the code (ie: DSK1, RS232, PIO, TP, etc.) or the
CALLs that the card may contain (CALL FILES etc). This and tbe Cru
Base map on the next page will help you identify which card's DSR you
are looking at.

6. When you are finished looking at this DSR press FCTN 7 and input a
zero in the Bit field to turn the card Off.

1. Move the cursor to the Cru Base field and input the next Cru Base
address (add >100 to the previous Cru Base address) and continue with
number 3 in tbese steps.

NOTE: The DSRs are ALWAYS turned on by writing a 1 to the lowest Cru
Base address for that device (ie: 1000, 1100, 1200, 1300 etc.). The
other Cru Base addresses in the range for the card are tbe 128 Cru bits
assigned to each peripheral space (ie: 1102, 1104, 1106 etc.). But most
of the peripheral devices do not use all 128 bits. They usually only use
6 - 24 bits. Also, the selected card's light may or may not come on when
you turn on the DSR. It depends on the hardware design.

41

CRO BASE .ASSIGMMKHT HAP

Cru Base Contlnued~--

Cru Base

0000 - 03FE
0400 - OFFE
1000 - 10FE
1100 - 11FE
1200 - 12FE
1300 - 13FE
1400 - 14FE
1500 - 15FE
1600 - 16FE
1700 - 17FE
1800 - 18FE
1900 - 19FE
1AOO - 1AFE
1BOO - 1BFE
1COO - 1CFE
1DOO - 1DFE
1EOO - 1EFE
1FOO - 1FFE

Cru Base Ass~nts

TI Assignment

Internal Console Use (see Appendix)
unassigned (not scanned by DSR Link)
unassigned - Production Tester
Floppy Disk Controller
Internal Modem
RS232 1 & 2 & PIO 1
unassigned
RS232 3 & 4 & PIO 2
unassigned
Unreleased HEX-BUS Adapter
TI Thermal Printer
EPROM Programmer
unassigned
Unreleased TI Debugger Board
Video Controller
IEEE ~88 Controller Card
unassigned
P-Code Card

Your System

The Cru Base addresses go up to >1FFE, Cru Base 2000 wraps around so you
are actually looking at 0000. To test this, input a Cru Base of 3100
(1100+2000) and write a 1 to the Bit field and your disk controller
light will come on. Don't forget to turn it back Off.

NOTE: To enable RS232 3 & 4 and PIO 2 requires a special modification to
your RS232 Card. The DSR Link names are in the Card but the hardware
must be modified to place it at Cru Base 1500 to access them. This
modification allows you to have 2 RS232 Cards in your system for a total
of 4 RS232 ports and 2 PIO ports.

Load Characters h
Execute Key Scan h

s step speed
h high speed

OptiònsL_ __ __

Load Cbaracters
The Load Characters Option of the Explorer will place character set
loading in one of two modes. The H mode loads the character sets at full
speed. This is very handy for Basic and Extended Basic since they
Reload the character set after each completed command in the
Command/Edit mode or at the completion of a running program. When the
mode is set to S the Explorer will track each byte of the character set
as it is moved out to Vdp Ram. After you have watched the lengthy
process of loading a character set a few times (S mode), we are sure
that you will appreciate the default H mode.

NOTE: The H mode has no effect when an Application Program, such as the
Power Up routine or the TE II Module, DOES NOT use one of the GPL
subroutines for loading the character sets.

Eiecute (ey Scan
The Execute Key Scan Option of the Explorer allows you to speed up the
key scan process by turning off the debounce delay loop. When this
Option is set to tbe H mode the Explorer will automatically zero out the
key scan's debounce delay loop counter and continue on with the key
scan routine. If this Option is set to the S mode the Explorer will NOT
zero out the debounce delay loop so inputting key strokes becomes a very
slow operation.

If you would like to watch the complete key scan routine simply place an
Sin this field. However, after a few times through the key scan we're
sure you will prefer the H mode for most Application Program execution.

Since the Explorer is operating your computer and Application Program in
interpretive mode the inputting of key strokes is slower than normal. To
properly input key strokes with the Application Program screen displayed
just hold down the desired key until the cursor disappears. When the
cursor reappears you can input the next key stroke. If you are inputting
two or more consecutive key strokes of the same character wait for a
second after the cursor reappears before pressing the key again. This
prevents the application programs auto repeat delay counter from
activating. When it does active it takes a long time before the cursor
disappears. If it does activate just let up on the key, wait a second
and then press it down again.

Colora text/scrn Counter
Status Screen F4
Break Point 1A dOOOOOOOOOOO
Error Condition F6

Color Optiona & Counter __ __

Colora
The Colors Option of the Explorer allows you to set your own Text and
Screen colors for the Explorer's Status screena (all acreena). You can
alao aet your own Break Point colora and Error Condition colora. The
Break Point colora are the colors that the Explorer changea the acreen
to whenever a Programmable Break Point ia encountered. The Error
Condition colors are the colors that the Explorer changea the acreen to
whenever you try to input an invalid value or presa an invalid key.

These colors are set in a 2 nibble field. The firat nibble ia the Text
color and the second nibble is the Screen color. The color values are
the same aa the onea used in Assembly Language (see table below) and
match the values that would be written to Vdp register 7 for Text Mode.
NOTE: If you type in the same value for the Statua Screen's Text and
Screen colors you will not be able to aee the Text any more. However,
the Explorer will not leave the field unti! you presa Enter or an Arrow
key so you can juat input a different value for the screen color and
your Text will reappear, if its not tranaparent (0)

Color Values
o Tranaparent 8 Medium Red
1 Black 9 Light Red
2 Medium Green A Dark Yellow
3 Light Green B Light Yellow
4 Dark Blue c Dark Green
5 Light Blue D Magenta
6 Dark Red E Gray
7 Cyan F White

Save Options - CTRL 9
After you have aet the the H S Options and Colors you can aave theae
settings to the Explorer Disk. The Explorer will then use these aettings
as the default aettinga whenever it is loaded. To Save your aettinga,
first make aure the Options Screen ia diaplayed. Then remove the write
protect tab from the Explorer diskette. Next place the Explorer disk
BACK IN DRIVE 1 and press CTRL 9. And finally, put the write protect tab
back on the Explorer disk. Your settings will not be aaved if the
Explorer disk is not in drive 1 or the write protect tab is on the disk.

Counter
This display area is the decima! conversion of the Hexadecimal Counter
on the Main Screen. You can not edit thia field, it waa placed here so
that you didn't have to convert the Hex counter youraelf.

KXPLOBEB'S BEGISTEBS SCBEEN

----------- Status Registers ------·-

hg h gr t end car ovf
Gs o o o o o o o o 00

in t 5rw c ne fifth sprite number
Vs 1 1 o o o o o o co

-------- VDP Registers -------

bit ex t
v O o o o o o o o o 00

16k se n in t txt l!Ùt sze mag
v1 1 1 1 o o o o o EO

v2 0000 0000 00 screen image 0000
v3 0000 1110 OE color table 0380
v4 0000 0001 01 char pattern 0800
v5 0000 0110 06 spri attribu 0300
v6 0000 0000 00 spri pattern 0000
v7 1111 0101 F5 txt/scrn clr

On the Explorer's Registers Screen you will find the hex value and binary
break down of the Gpl Status byte, the Vdp Status Register and Vdp Registers
O and 1. This screen also contains the hex value, binary value and the actual
table addresses for Vdp registers 2 through 6. For completeness Vdp Register
7 was also included here.

Not all of the bits in the Gpl Status byte and Vdp Registers O and 1 are
active so only the active bits are labeled. As you move the cursor around on
this screen the Explorer will automatically skip over the inactive bits.
Also, since, the Vdp Status is a Read Only Register you can not edit this
register it is here for the binary break down.

Even though all of the bits are not active in Vdp Registers 2 through 6 you
can still edit the inactive bits but they will not effect the Table address.
This was allowed since some Application Programs write values that turn on
the inactive bits even though they are ignored by the TMS 9918A Vdp
Processor.

45

---------- Status Registers -----

hgh grt end car ovf
Gs O O O O O O o o 00

Gpl Statua~----------- ---

The Gs display breaks down the Gpl Status byte into its binary
representation. This byte is not an actual hardware register, like the
Cpu Status and Vdp Status. It is instead controlled and used by the Gpl
interpreter software in console Rom. The actual location of this byte is
at >837C in Scratch Pad Ram. If you change the bits or the hexadecimal
value displayed here, the Explorer will automatically change the value
at >837C and the value on the Explorer's Main screen and visa versa.

The following bits are used by the Gpl interpreter:

l{gh - High
When this bit is set it indicates to the Gpl interpreter that a Gpl
Logica! Greater Than (unsigned numbers) condition exists.

Grt - Greater Tban
When this bit is set it indicates to the Gpl interpreter that a Gpl
Arithmetic Greater Than (signed numbers) condition exists.

Cnd - Condition bit
This bit is used by the Gpl interpreter for a variety of items. Its main
use is to indicate a True (1) or False (O) result of a test. These tests
are Gpl instructions that move one of the other bits in this byte to tbe
CND bit. It is this bit that the BRANCH ON SET (>60) and BRANCH ON RESET
(>~O) instructions test before branching. Also, the Key Scan routine
sets this bit if a key press is detected.

Car - Carry
When this bit is set it indicates to the Gpl interpreter that the most
significant bit of the word or byte being operated upon has been carried
out of the word or byte into this bit.

OYf - OYerflov
This bit gets set when a Gpl operation results in a too large or too
small condition for 2's compliment numbers.

46

----------- Status Registers --------

int 5rw c~c fifth sprite nurnber
Vs 1 1 O O O O O O CO

Vdp Status. __ ___

The Vs display is the binary break down of the TMS 9918A Vdp Processor's
Status Register. The value that is shown here represents the value
contained in that register when the the Application Prograrn screen was
LAST displayed. Since this register is a hardware Read Only register you
can not edit the bits or hexadecimal value. It is here to display the
binary break down which includes the following bits:

int - Vertical Retrace Interrupt
When this bit is set it indicates that the TMS 9918A has started the
vertical retrace period. Vertical retrace is when the raster scan
reaches the end of the active display area and then moves back to the
top of the screen. It is at this time that the Vdp chip generates the
Vdp interrupt for the 9901. Vertical retrace happens 60 times per second
so we have 60 Vdp interrupts per second on a 60 Hz system (50 per second
on a 50 Hz system).

5rv - 5 or more sprites on a row
This bit is set by the Vdp chip whenever there are 5 or more sprites on
a row and the INT bit is setto O (not checked during vertical retrace).
Since sprites are not allowed in Text mode this bit has no meaning when
Text mode is active.

cnc - Coincidence
This bit is set by the Vdp chip whenever two or more sprites have at
least one overlapping pixel. The Vdp chip checks for overlapping pixels
as it generates the pixels on the screen, so this check occurs 60 times
a second (60Hz). (Note: No sprites in Text mode.)

fifth sprite number
Whenever the 5rw bit is set, and you are not in Text mode, these 5 bits
contain the number of the fifth sprite on the row. If 5rw is not set or
if you are in Text mode these bits have no meaning and usually contain
garbage.

47

------------ VDP Registers -------

bit ex t
v O o o o o o o o o 00

16k scn in t txt mlt sze mag
v1 1 1 o o o o o EO

v2 0000 0000 00 screen image 0000
v3 0000 1110 OE color table 0380
v4 0000 0001 01 char pattern 0800
v5 0000 0110 06 spri attribu 0300
v6 0000 0000 00 spri pattern 0000
v7 1111 0101 F5 txt/scrn clr

Ydp Vrite Only Registers

vO-

The next 8 Vdp Registers are the Vdp Write Only Registers. This means
that your software can write to these registers but it can not read
them. The first two, VO and V1, contro! the various Vdp modes. The next
five, V2 through V6, contro! the various table locations in Vdp Ram and
the last one, V7, controls the Text Mode text color and All modes screen
color.

Bit - Bit Map
This binary switch enables and disables Bit Map Mode (1 or O) when TXT
and MLT in V1 are Off.

Ext - External Ydp
This binary switch enables and disables the External Vdp chip
synchronization option of the TMS 9918A. You can enable this bit but
since there isn't an External Vdp chip hooked up to synchronize with
your Application Program's screen will go out of sync. Since you are in
contro! you can play with this bit without hurting the Application
Program.

48

16k scn int txt mlt sze mag
v1 1 1 O O O O O EO

Vdp Vrite Only Registers Cootioued, ______ __

vl -
16K - 16K Vdp Ra.
When this bit is set the TMS 9918A Vdp Processar handles the Dynamic Ram
refresh for ~108 (8K) or ~116 (16K) DRam chips. When this bit is zero
the TMS 9918A refreshes the 4027 (4K) DRam chips. The 99/4A contains
4116 DRams, the 4108 and 4027 DRams are not used in our consoles.
IMPORTANT NOTE: If this bit is zero and the SCN (Screen Enable) bit is
also zero the 4116 Vdp Dram chips ~ill not be refreshed properly. This
causes the values in many areas of Vdp memory, including the screen
image, to decay to zero when the Application Program screen is toggled
in (CTRL 3).

sco - Screeo Enable/Disable
When this binary switch is zero (disable) the Application Program screen
will be blank and only the screen color will show. Many of the
Application Programs blank the screen image while they are building
their screens. To watch an Application Program build its screen just
turn on this bit.

iot - Vdp Ioterrupt Eoable/Disable
When this binary switch is On (1) the Vdp chip will generate a Vdp
Interrupt signal for the 9901 whenever the raster scan is at the end of
the active display area (60 times a second for 60Hz).

txt - Text Mode
Turning this binary switch On places the Vdp Processar in Text Mode (40
columns) when the BIT in VO and MLT in V1 are zero.

mlt - Multi-Color Mode
Turning this binary switch On places the Vdp Processar in Multi-Color
Mode when the BIT in VO and TXT in V1 are zero.

sze - Sprite Size
This switch selects the Sprite Size for the Vdp chip. When it is On (1)
all sprites are made up of 4 characters (16x16 pixels). When it is Off
all sprites are made up of 1 character (8x8 pixels).

mag - Sprite Hagoificatioo
This switch selects the Sprite Magnification for the Vdp chip. When it
is On the sprite pixels are magnified 2x. When it is Off the sprite
pixels are normal size.

49

Vdp

v2 0000 0000 00 screen image 0000
v3 0000 1110 OE color table 0360
v4 0000 0001 01 char pattern o6oo
v5 0000 0110 06 spri attribu 0300
v6 0000 0000 00 spri pattern 0000
v7 1111 0101 F5 txt/scrn clr

Vrite Only Registers ContiDu

This section of the Explorer's Registers Screen contains information
about Vdp registers v2 through v7. The Explorer automatically calculates
the start address for each of the different tables that are controlled
by v2 through v6. If you change the binary or hex values for these
registers the address for that table in the Application Program will
also change.

v2 - Screen Image Table
The least significant 4 bits (---- 0000) in this register control the
start location of the Screen Image Table. This is the area of Vdp Ram
that holds the characters you see on the screen. This start address is
equal to the value of the least significant 4 bits times >0400.

v3 - Color Table
All of the bits in this register control the start location of the Color
Table. The Color Table is the area of Vdp Ram that contains the
foreground and background colors for each of the active character set
groups. This start address is equal to the value in this register times
>0040. Note: In Bit Map mode this register controls the ENDING location
of the Color Table.

v~ - Character Pattern Table
The least significant 3 bits (---- -000) in this register control the
starting location of the Character Pattern Table. This area of Vdp Ram
holds the character definitions (CALL CHAR) for each of the active
characters. The start address is equal to the value of these 3 bits
times >0600. Note: Basic and Extended Basic set this table at >OOOO­
but the actual character definitions start at >03FO. This is really the
tbe start of the definition of character number 126 not 30 - so Basic
and Extended Basic Add 96 (>60) to the value of each character placed on
the screen to compensate for this offset in the table. This is how the
Basic Bias came to be and it was done by TI to conserve space in Vdp
Ram. Note: In Bit Map mode this register controls the ENDING location of
the Character Pattern Table.

v5 - Sprite Attribute Table
The least significant 7 bits (-000 0000) in this register control the
starting location of the Sprite Attribute Table. This Table holds the
Character number, Color, Dot Row and Dot Column position of each active
sprite. The start address is equal to the value of the least significant
7 bits times >0060

50

v2 ------ -----
v3
v4 -------
v5 ---- -------
v6 0000 0000 00 spri pattern 0000
v7 1111 0101 F5 txt/scrn clr

Vdp Vrite Only Registers Contiou~---

v6 - Sprite Pattern Table
The least significant 3 bits (---- -000) in this register contro! tbe
starting location of the Sprite Pattern Table. Note: In Bit Map mode
this register controls the ENDING location of the Sprite Pattern Table.
This table holds the character definitions for the characters that make
up the sprites. In Basic and Extended Basic this table also starts at
zero. So, this table and the Character Pattern Tables are identica!.
What this means is that a sprite that is made up of character number 65
is actually made up of an A. So if you redefine the A (CALL CHAR(65, ...)
the sprite will also change. In Assembly or Forth you can place tbis
table in a different location so tbat the sprite definitions and the
character definitions can be independent of each other. Since this table
overlaps the Character Pattern Table it is also subject to the Basic
Bias. So if you execute a CALL SPRITE(U1,65 ...) you will find >Al (161)
in the Sprite Attribute Table for sprite 81 not >~1 (65).

In this Table and the Character Pattern Table there are 6 bytes per
character. So to find the start address for a given character number
just multiply tbe character number times 6 and add the tables starting
address to it. If you are in the Basic or Extended Basic environment
don't forget to add the Basic Bias (>60 or 96) to the character value
before you multiply it times 6.

Examples: Basic or Extended Basic "A"
65 + 96 = 161 161 • 6 = 1266
1288 = >0506 >0506 + >OOOO = >0506 char pattern for "A"

Editor Assembler or Mini Mem "A"
65 • 6 = 520

520 >0206 >0208 + >0600 = >OA06 char pattern for "A"

V1 - Text and Screen Color
This register sets the color cf the text when Text Mode is active and
the color cf the screen in ALL Modes. In this register the most
significant nibble (0000 ---- or >O-) sets tbe text color. The least
significant nibble (---- 0000 or >-O) sets the screen color. When you
execute CALL SCREEN(8) the Basics subtract one from 8 and write a 1 for
the screen color. For some reason TI wanted the colors to start at 1
instead cf O in tbe Basics so ALL the color codes are offset by -1
before they are written te the Color Table or this register.

51

TBB IITERRUPT BOOTIH

As we mentioned earlier the Explorer WILL execute the Interrupt Routine along
with the normal program flow if interrupts enabled. The Explorer executes the
interrupt routine whenever tbe Interrupt Mask does not equal zero so this is
a simulated interrupt and not an actual Hardware interrupt. The interrupt
routine in the 99/4A performs the following functions (in this order):

First a LIMI O is executed to disable any other interrupts - since the
interrupts perform a context switch the old LIMI value along with the
status is in R15 of the Interrupt Workspace (83CO). Note: The Explorer
automatically sets the Interrupt mask to zero when RTWP is executed.

Next the Workspace is changed to the GPL Workspace (83EO) and R12 is
cleared.

The Cassette interrupt timer flag in R14 is checked to see if it is On.
If it is the interrupt routine hops down to the Cassette Timing routine
at >1404 to continue which does NOT service the rest of the items.

If the Cassette interrupt flag was not set Bit 2 of the 9901 is checked
for a Vdp interrupt. If it was a Vdp interrupt instead of an External
interrupt (generated by a peripheral device) the routine continues at
VDP INTERRUPT.

EITERRAL IRTERRUPT - If it was an external interrupt (peripheral) the
routine turns on the cards one at a time starting at Cru Base 1000 to
check for interrupt routines. If the card contains an interrupt routine
(like the RS232 card) it is executed. Then the card is turned off and
the next card is checked until the Gru Base = 2000 (end of peripheral
devices). Then it hops down to END and leaves the interrupt routine. So,
an External interrupt does NOT service the rest of the items.

VDP IRTERROPT- First bit 2 of the 9901 is reset (turned off), then 83C2
is moved into R1 and the most significant bit is checked. If its On then
the routine hops down to VDP STATUS and skips Auto-Motion, Auto-Sound
and the QUIT key.

AUTO-SPRITE MOTION - The Auto-Sprite Motion bit in R1 is checked and if
it is On this routine is skipped. Otherwise the interrupt routine moves
B37A (highest sprite number in auto motion) into R12. If it is zero the
rest of the routine is skipped otherwise the routine moves the sprites
to their new location according to the Sprite Motion (0780) and Sprite
Attribute Tables in Vdp Ram.

AUTO-SOUND PROCE:SSING - The Auto-Sound Processing bit in R1 is checked
and if it is On this routine is skipped. Otherwise the interrupt routine
checks the Most significant byte in 83CE. If its zero the rest of the
routine is skipped if its not the location of the sound table is checked
(Vdp Ram or Grom) and the next byte of the table is moved to the sound
chip and 83CE is decremented.

52

THE INTERRUPT ROUTINE Continued

QUIT KEY - The QUIT Key bit in R1 is checked and if it is On this
routine is skipped. Otherwise the FCTN and = Keys are scanned. If they
are being pressed down it performs a software reset (BLWP @>0000 - Power
Up routine)

VDP STATUS - If the most significant bit in 83C2 was set the interrupt
routine would have hopped down to here to continue execution. At this
point the Vdp Status byte is copied to 837B

The Workspace pointer is set to 83CO and the Screen Time Out Counter is
then incremented by TWO. Next it is checked, if it is NOT zero the rest
of this routine is skipped. Otherwise this routine, which is also
pointed to by the Level 2 interrupt vector, is executed. This routine
uses the copy of Vdp Register 1 which is stored at 83D4 (R10 of the
Interrupt Workspace) to blank the screen by masking out the SCN bit in
Vdp Register 1.

The Workspace pointer is set back to 83EO and the Interrupt Timer at
8379 is incremented by the value in the most significant byte of R14.

The User Interrupt Vector (ISR Hook in 83C4) is moved into R12 and if
its not zero the User Interrupt routine is BRANCH and LINKed to. (R11 of
83EO contains the return address). After it is completed it sets the
workspace back to 83EO and returns with aRT (B •R11) instruction.

END - R8 of the Gpl Workspace (83EO) is cleared, the workspace pointer
is set to 83CO and a RTWP is executed.

53

KIPLORATIONS

In this section of the manual we will take you through a few Explorations on
the operation of the 99/4A. Keep in mind that since the Explorer is a machine
language interpreter the Application Programs run slower. The Explorer
operates the computer at about 1/300 its origina! speed, with the Application
Program's screen displayed and interrupts disabled (CTRL 4). With interrupts
enabled the speed can decrease to about 1/1000 the origina! speed. With this
in mind best case tells us that something that normally takes 1 second will
now require approx 300 seconds to complete. This is very evident when you are
executing the Basic languages because they are now going through three levels
of interpretation. The Explorer interprets the machine language which is the
Gpl interpreter interpreting the Gpl object code which contains the Basic
interpreter which is interpreting the Basic commands and/or program. And this
is why we recommend that you use the Explorer on the Basics with direct CALLs
and small programs. The heart of the Explorer, the machine language
interpreter, has been optimized for speed and efficiency but whenever
something is executed interpretatively it slows down. However, we felt that
the wealth of information the Explorer returns because of its interpreter was
worth it. So lets get started, but please follow the Explorations in order.

First we will look up a few values in your computers memory. TI has
released a number of different version of the 4A so we want to be sure
that you use the right values. Most of the consoles have the same Rom
but the Grom has under gone some minor changes. Only the real early 4A
consoles have a slightly different Rom.

1. Load the Explorer into the Extended Basic environment.

2. Set tbe WS field under Cpu to 0000. With the WS set here the Workspace
registers contain the data that is in Cpu Rom memory at >0000. We had
you use the WS instead of the Memory Window because it is easier to see
the Vectors in word form.

3. The registers currently contain the following information:

RO The Workspace Pointer (WS) for the Power Up Routine
R1 The Program Counter (PC) for the Power Up Routine
R2 The Workspace Pointer (WS) for the Level 1 Interrupt Routine
R3 The Program Counter (PC) for the Level 1 Interrupt Routine

R4 The WS for a routine that blanks the screen
R5 The PC for the above routine
R6 Data - Console clock speed and "AA" for checking validation bytes
R7 The opcode for the Branch instruction (start of Assembly key scan)

RB The Cpu BP address to use for halting the Explorer on a Key Scan
R9 Data - zero and eight

For the first Exploration just remember•the value in R8 (02B2). A little
latter on we will use the values in RO & R1.

54

KEY SCAN AND TBE EXPLORER

You already have one value that we need but we will need to SEARCH for
one more. The value that was in R8 on the previous page is a good value
to use for the Cpu Break Point for any Key Scan. You see, there is a
slight difference between the entry point for the Key Scan that an
Assembly Language program uses and the entry that the Gpl Interpreter
uses. But, they both pass through the R8 address. Note: Most consoles
contain >02B2 as the address in R8 when the WS is set at >0000.

Now lets find the second value that is handy to know for Key Scan
operations. This value will be the PC address when a key press has been
detected and the proper Gru Bits from the keyboard have been converted
into their key code Hex value. But the Hex value has NOT been moved out
to >8375 in Scratch Pad Ram yet, it is still in RO of the Workspace. By
setting your Break Point here you can change the value in RO and fool
the Application Program into thinking that a different key was pressed.
This is handy if you want to input CTRL 2 through CTRL 5, which are used
by the Explorer for special controls.

1. Set your Memory Pointer to c----s. Any address will do since we are
going to activate the Search Function.

2. Press FCTN 5 to activate the Search Function and input 0000 as the ST
address and 1FFF as the FN address.

3. Make sure your Memory Window display is in Hex mode (FCTN =)

4. Place your cursor in the Search String input area and type in 70 20.

5. Press the left arrow key once to place the cursor on top of the O in 20
and then press Enter.

6. When the Explorer finds this value REMEMBER the Memory Pointer address.
For most consoles it should be >043E.

7. Press FCTN 5 to turn off the Search Function and Press FCTN 7 to bring
up the Number Converter.

8. Input >043E (or your Meffiory Pointers address) into the first Hex input
field and >0006 into the second Hex input field.

9. If the Operation Indicator is not a + then press FCTN 9 to place the
cursor on the + and press Enter.

10. The value after the = in the Hex result area is the Cpu Break Point
address we were looking for. >0444 for most consoles.
Now write these two values (addresses) down for future reference.

___ _:?)j)_l_ __ ----- _Q':lj~j__ --
Key Scan BP (0282) Key Press Detected (0444)

55

lEI SCAW AND TRE KXPLORER Continued

Now that you have these two values (addresses) you can easily use them
as Break Points in your Explorations. But you should be aware that the
Application Program is not always looking for a key press when the >02B2
is reached. Sometimes the Application Program is just resetting the
keyboard (9901) to a known state. You can count on the second address
(>O~~~) as always indicating that a key press has been accepted. If you
want to use CTRL 2 - CTRL 5 in executing your Application Program simply
set the Cpu Break Point to the second address. When the Break Point is
reached you can replace the key code in the most significant byte of RO
witb the appropriate key code from the following table:

CTRL 2 = >B2 CTRL 3 = >B3 CTRL ~ = >B4 CTRL 5 >B5

So now lets see how those addresses work.

1. Set your WS back to 83EO, make sure your PC is at 006A, set the Cpu BP
at 02B2 (~r your value) and press CTRL 2 and CTRL 3.

2. The Explorer will now start to return to the Command Mode of Extended
Basic. It will reach the Break Point before the screen scrolls but this
is just Extended Basic resetting the keyboard. Just press any key to
release the Break Point condition and press CTRL 2 and then CTRL 3 to
start it back up.

3. When the Break Point is reached again Extended Basic is in Command mode
and is looking for a key press. Press any key to release the break point
condition.

4. Set your Memory Pointer to g----d with FCTN 1 so you can watch the key
scan grab the key code out of of Grom O.

5. Set the Cpu BP at >044~ (or your value), press and hold down CTRL 2 and
then press and hold the "L" key.

6. Release tbe CTRL and 2 keys at the same time but hold down the "L" key
unti! the Break Point is reached.

1. The Explorer will then execute the key scan and Break when the key is
detected and decoded, watch R4 when the key is detected. The most
significant byte in RO is the key code for "L" and should be >4C. Change
it to >4D, the "M".

B. Now press CTRL 3 and then press CTRL 2 to start up the Explorer.
Extended Basic will now place an "M" on the screen instead of the "L".

NOTE: If you use the CTRL 1 - Single Execution - through the key scan
the CTRL key may be detected, so if you were holding down the "L" key it
would be decoded as CTRL L instead. The code that actually reads the
keyboard cru bits is STCR R4,8 INV R4 (SEARCH for opcodes 36 04 05 44
in console Rom for this Bréak Point, it should be at >0346.)

56

TRE POWKR OP ROUTINE

For this Exploration it doesn't matter what environment the Explorer is
loaded into. Also, if the Explorer is already loaded, it doesn't matter where
its at in the Application Program because we are going to restart the
computer.

The Power Up routine can be executed at anytime by simply following
steps 1 & 2 and starting up the Explorer. What we are going to do though
is set a few Break Points along the way. Remember the RO and R1 values
we obtained when the WS was at 0000, well its now time to use them.

1. Set the WS at B3EO (RO value) if it is not already there.

2. Set the PC at 0024 (R1 value).

3. Set the Grom BP at OOEB

4. Move the cursor down to the RO field and press and hold the zero key to
clear out the WS. (This is not necessary for proper execution of the
Power Up routine but we wanted you to see the first few instructions
work)

5. Set the Memory Window to g----d and set the Instruction Counter to zero.

6. Set the disassembly to a 3 line display (FCTN 3) and make sure the
interrupts are disabled (CTRL 4).

7. Now press CTRL 1 a few times and watch the Workspace as the instructions
start to set it up.

B. When the PC reaches 0060 the Gpl interpreter is about to set the Grom
address to the value in R6 (0020). These are the set Grom address
instructions we talked about in the Grom Controls section of the manual.
Press CTRL 1 and watch the Grom address and Memory Window as each byte
of the address is passed to the Grom Write Address port (9800 + 402 =
9C02).

9. After the address is set it will clear the Gpl Status CND bit (PC=006A)
and then Set the Interrupt Mask to 2 and then to O. If you had
interrupts enabled (CTRL 4) the Explorer would go out and execute the
interrupt routine right after the IM was set to 2.

10. The Grom address of 0020 is the start of the Gpl Power Up routine so now
lets turn it on, CTRL 2 and then CTRL 3 and let it reach our Break
Poi n t.

57

TRE POVER UP ROUTINE Continued

11. When the Break Point is reached (approx 9 seconds) just press any key to
release the Break Point condition. This Break Point was set to allow you
to turn the screen on. Four times previous to this break point the power
up routine reset Vdp register 1 with the SCN bit off but now it will
leave it where we set it.

12. You can turn the screen on for Graphics mode (32 column) by either
writing EO to v1 or by pressing FCTN 8 and moving the cursor down to the
SCN bit in v1 and turning it on. Then press FCTN 8 again to get back to
the Main screen.

13. Set the Grom BP to 6000, set the Vdp BP to 4300 and start up the
Explorer again (CTRL 2 CTRL 3). The Power Up routine will now start to
clear out the first 4K of Vdp Ram. Our Vdp Break Point will be reached
in approx 20 seconds.

14. When this break point is reached clear the break point condition by
pressing any key and set the Vdp BP to 5000. Next Set your Memory
Pointer to vOOOOs and the display to ASCII (FCTN =) with Basic Bias Off.

15. Press FCTN 9 to put your cursor in the Memory Window (Editor) at 0000
and type in "0123~56789ABCDEFGHIJKLMNOPQRSTUVWXYZ". Next press CTRL 3 to
see the Application Program's screen. You may or may not be able to
something on the screen at this time depending on what is in Vdp Ram
where the tables are currently set at. We had you do this so you could
watch the Power Up routine load the Title screen character set. The
Power Up routine does not use the built in subroutines to do this so the
Load Characters H S option has no effect.

16. The Power Up routine still has to clear the rest of the first 4K of Vdp
Ram so it will be approx 98 seconds before the character set starts to
load. The Vdp BP of 5000 will Break the Explorer before this happens so
you can go take a break. The loop counter in RB, which should be at
0001, counts down the number of bytes yet to be cleared. You can bypass
this clearing operation by setting RB to 0001 but the Color Bars on the
title screen may contain garbage because their character definitions
haven't been cleared out. (Don't reset RB for this Exploration)

17. When the Vdp BP of 5000 is reached clear the Break point condition and
set the Vdp BP to FFFF' (turn it off). The Power Up routine still has a
couple of items to do before it loads the character set. First it will
load the color table and then it will scan the keyboard a few times to
set it to a known state. This takes approx 5 seconds. Then it will load
the character set. If you want to watch this happen on the Main Screen
set the Memory Pointer to v----d in Hex display mode and the Explorer
will dynamically track the bytes as they are written to Vdp Ram.

58

TBK POWEB OP BOOTINE Continued

18. Press CTRL 2 CTRL 3 and watch the Title screen character set load. While
it is loading you can press CTRL 3 to toggle between the Main Screen and
the Application Program's screen. After the character set is loaded the
Power Up routine will clear the screen and start to build the Title
screen. The Grom BP of 6000 that we set earlier will Break the Explorer
when the Title screen is fully built.

19. When the Explorer reaches the Grom BP clear the break point condition
and set the Grom BP to FFFF also set the Cpu BP to 02B2 (or your key
se an break point).

20. Set the Memory Pointer to v0128s in ASCII display mode. Press FCTN 9,
type in your name and the press CTRL 3 to see YOUR new Title screen. Now
lets play with the Vdp registers a little. Press CTRL 3 to bring up the
Main screen again.

21. Press FCTN 8 to bring up the Registers Screen. Move the cursor down to
the BIT switch in vO and enter a 1 (turn it On). Now press FCTN 8 and
then CTRL 3 to see the Title screen in Bit Map mode.

22. Press CTRL 3 to bring up the Main Screen, press FCTN 8 and turn Off the
BIT switch. Move the cursor to the TXT switch in v1 a~d turn it on.
Press FCTN 8 and then CTRL 3 to see the Title screen in Text Mode.

23. Press CTRL 3 and then FCTN 8, turn Off the TXT switch and turn ON the
MLT switch. Press FCTN 8 and CTRL 3 to see the Title screen in
Multi-Color mode.

24. Press CTRL 3 and then FCTN 8, Leave the MLT switch ON and move the
cursor back to the BIT switch and turn it On. That's right Bit Map
Multi-Color code - the one that TI forgot to tell us ~bout! Now press
FCTN 8 and CTRL 3 to see the Title screen in the new mode. One other new
mode is Bit Map Text mode - which is Bit Map mode with the screen trying
to display 40 columns. We haven't actually used these new modes for
anything but they might be fun to play around with to see what the
results would be.

25. When you are done playing with the various modes set the BIT, TXT and
MLT switches Off to set the Title screen back to its normal Graphics (32
column) mode. If you know the values to place in vO and v1 you can also
set these modes from the Explorer's Main screen by editing these fields.

26. Take a look at the Instruction counter and press FCTN 7 to see it in
Decimal. Ours says 105,272 Machine Language Instructions have been
executed so fari And that does not include and interrupt routine
execution since we disabled it (CTRL 4). Press FCTN 7 again to bring up
the Main Screen.

59

TBE POWEB UP BOUTINE CootiDued

27. Press CTRL 2 to start up the Explorer again but leave it on the Main
Screen. In a few seconds your Disk Controller light will come on. What
has happened is the Power Up routine has started its peripheral card
scan and it is looking for cards that contain Power Up Routines. The
Disk Controller contains a Power Up routine that sets up Vdp Ram to a
default of CALL FILES(3). IMPORTANT- If you are using a Myarc RAM DISK
card the Explorer will lock up at this point because the card does a 32K
Bank Switch when its internai Power Up routine starts.

28. The TI DSR and our DSR (corcomp card) clear out Vdp Ram from 37DB to
3FFF and then place some values at 37D8 to signify that a Disk
Controller is in the system and that space is reserved for 3 disk files.
The Myarc Disk Controller DSR clears out its own DSR Ram at 5000 to 57FF
and then writes a few bytes to Vdp Ram 37DB.

29. After this clearing is finished the TI and Myarc cards continue with a
normal Power Up. Our DSR stays in control and builds the 9900 Disk
Controller Title screen and this is where the Power Up routines start to
differ. At this point the TI and Myarc cards release control back to the
Gpl interpreter, our DSR stays in contro! until you select Basic or a
module from the menu or press the space bar. This probably wasn't the
smartest thing to do since it doesn't allow a Power Up routine in the
module to be executed prior making a selection. Only a few modules have
Power Up routines in them like the TEII and if you press the space bar
twice to bring up the norma! TI menu instead of the 9900 DC menu the
power up routines are executed.

30. At this point the TI and Myarc cards have released control back to the
Gpl interpreter to continue on with a little house keeping. Our DSR is
still in contro! and, like the other cards, it will soon be looking for
a key press.

31. When the Explorer reaches the Cpu Break Point of 02B2 that we set
earlier clear the Break Point condition. If you have our DSR (corcomp
card) set the Cpu BP to FFFF, start up the Explorer, CTRL 2 CTRL 3 and
press the space bar. When the screen starts to clear press CTRL 2 CTRL 3
and set the Cpu BP back to the key scan BP, 02B2. Then start the
Explorer back up CTRL 2 CTRL 3. When the Cpu BP is reached again all of
the Power Up routines will be in the same place no matter which Disk
Controller card you have.

32. Clear the Break Point condition, set the Cpu BP to FFFF and start up the
Explorer, CTRL 2 CTRL 3. At this time the Power Up routine is in a loop
waiting for a Key press before it continues on. Go ahead and press a
key.

60

THE POVER UP ROUTIHE Continued

33. After the key is pressed the console Power Up routine will scan the
module that is plugged into the Grom port for a module Power Up routine.
If it has one (most don't) it is executed and if it returns, instead of
taking control, the console Power Up routine will build the menu (with
the SCN bit turned off again) and then turn on the screen and wait for
you to make a selection.

34. For now select 1 - TI Basic by pressing and holding the 1 key for a
second or so (the screen will start to clear). The Power Up routine is
still in control and it will now clear the screen. Normally at this time
there is a BEEP sound generated but we have the interrupts turned off so
this will not happen. But, the BEEP routine places a value of 0100 in
83CE and it loops and waits for this to be changed to zero by the
interrupt routine before it continues. Toggle to the Main Screen (CTRL
3) and look at R3 if it contains 83CE then your are in this loop. If it
doesn't contain 83CE then you are not there yet but you will soon be.

35. When R3 contains 83CE you ca n get ou t of the lo o p by simply pressing
CTRL 5 - this turns off the sound generator and zeros out 83CE. You
could also stop the Explorer, set the Memory Pointer to c83CE- and zero
it out your·self but, CTRL 5 is much simpler because you can leave the
Explorer running. NOTE: IF you make a selection from the 9900 Disk
Controller menu (our DSR), other that the Space Bar, it will not go
through this loop so you do not have to worry about clearing out the
sound indicator at 83CE.

36. The Power Up routine will now clear out Vdp Ram from 1000 to the disk
buffer space at 37D7. Once again R8 is the counter so you can bypass
this lengthy process by placing 0001 in it. Why 0001 and not 0000,
because the instruction flow decrements RB and then jumps if its not
zero. If it decrements 0000 you end up with FFFF and that's not zero so
it will really mess things up. This is a GOOD rule to remember any time
you change loop counters- always set them to at least 0001.

37. Once Vdp Ram is cleared or the counter reaches 0000 the Power Up routine
clears parts of Scratch Ram, sets up the color table and releases
control to Basic. You'll notice the Grom address to be in the 2000
through 57FF range (Groms 1 & 2) when this occurs. So that ends the
Power Up routine and begins the next Exploration of TI Basic.

61

EIECOTING A BASIC CALL

There are 3 different ways to get into the Basic environment. The first and
easiest is to load the Explorer there through CALL LOAD("DSK1 .EXP" or MEXP)
with the Editor Assembler or Mini Memory modules plugged in. The second way
is to go through the Power Up routine as we did in the previous Exploration.
And the third way is to set the Explorer up to directly execute Basic. (see
Direct Execution of Other Hodules). If you have just completed the previous
Exploration then you are are already part way into the Basic environment. If,
on the other hand, you are about to start your Explorations again then load
the Explorer into the Basic environment.

Start up the Explorer, CTRL 2 CTRL 3, and let it run until the screen
scrolls and the cursor reappears. You are now in Basic's Command/Edit
mode and it is waiting for you to type something in. When you type
remember that everything is being executed interpretatively so things
happen slower.

Kxecuting A Basic CALL

1. After the cursor has reappeared press CTRL 2 and CTRL 3 to stop the
Explorer and bring up its Main Screen. Now lets take a look at the
format fora BASIC Subprogram Header (X-Basic is different).

2. Set the Memory Pointer to g----s. Press F'CTN 5 to activate the Searcb
Function and input 2000 for ST and 57FF for FN. 2000 - 57FF is the Grom
address range for the Basic Interpreter. Put your cursor in the Search
String input field with the display in ASCII and Basic Bias Off. Type in
COLOR, press the left arrow key once to put the cursor on top of the R,
and press Enter.

3. When the cursor reappears and COLOR is found press FCTN 5 to exit the
Search Function. Then press FCTN 9 to put the cursor in the Memory
Window. With the cursor sitting in the home position (first byte) of the
Memory Window press the left arrow key 5 times. This will place the
beginning of the Subprogram Header in the home position of the Memory
Window. Now press FCTN = to display it in Hex, and here's what you have:

first word
second word
next byte
following bytes

4038
5713
05
434F4C4F52

pointer to next subprogram header
entry point for this subprogram
length of this subprogram's name
COLOR - this subprogram's name

We are most interested in the second word or the Entry Point for the
subprogram. This will allow us to set a Grom BP to halt the Explorer
when Basic first starts to execute the subprogram. Previous to Basic
arriving at this location it performs a few overhead type items which we
will discuss in a moment.

62

EXECOTING A BASIC CALL Continued

4. Now lets Search far SCREEN, the one we are going to execute. Make sure
tbe Memory Pointer is set to Grom memory. Press FCTN 5 to activate the
Search Function and reset ST back to 2000. Put your cursor in the Search
String input field with the display in ASCII and Basic Bias Off. Type in
SCREEN, ma ve the cur·sor o n top of the N, and press Enter.

5. When SCREEN is found press FCTN 5 to exit the Search Function. Then
press FCTN 9 to put the cursor in the Memory Window. With the cursor
sitting in the home position press the left arrow key 5 times and set
the display to Hex, now here's what you have:

first word
second word
next byte
following bytes

0000
37BF
06
53435245454E

no more subprogram headers
entry point far this subprogram
length of this subprogram's name
SCREEN - this subprogram's name

6. Press FCTN 9 to get your cursor aut of the Memory Window and move up to
the Grom BP field and type in the Entry Point address (37BF) far SCREEN.

7. Set your Memory Pointer to v----d or press FCTN 1 to bring up that
Memory Window. Then press CTRL 2 and CTRL 3 to start up the Explorer.

8. SLOWLY type in CALL SCREEN(7). By slowly we mean press down the letter
key and hold it unti! the cursor disappears. When the cursor reappears
press down the next letter. When you get to the second L in CALL wait
far a second after the cursor reappears before you press the L key
again. If you press it too soon Basic will try to go into Auto-Repeat
mode but before it repeats the key it has a LARGE delay loop. If the
cursor doesn't disappear within a second or so after you press the
second L just let up an the L key for a bit to get aut of this Auto
Repeat delay loop and then press it down again.

9. You may be wondering why the cursor doesn't blink. This is because the
interrupts are turned Off. The Interrupt routine controls the counter
tbat a lot of Application Programs use to blink the cursor and with the
interrupts Off this counter never changes.

10. After you have the complete CALL SCREEN(7) typed in press CTRL 2 CTRL 3
and set the Cpu Break Point to the Key Detected Break Point (0444) then
press CTRL 2 and CTRL 3. Next press and hold Enter until the cursor
disappears and the Explorer Breaks. Clear the Break Point condition and
set the Cpu BP to the Key Scan Break Point (02B2) and zero aut tbe
Instruction Counter field. Press CTRL 2 CTRL 3 to start it up again. Now
here's where that overhead starts that we talked about.

63

KXECUTING A BASIC CALL Continued

11. Basic will now go through its CRUNCH routine. This routine parses the
line you just typed in a word at a time and places the word in the
CRUNCH buffer at 0320 in Vdp Ram. So first it will place CALL in the
buffer and then it will scan through the reserved word list in Grom
until it finds it. It then takes the token code for CALL (9D) and places
it in the CRUNCH buffer where the C is.

12. After it bas crunched CALL it will set up the Crunch buffer witb the
codes for an unquoted string of x characters (CB xx) and move the word
SCREEN out there. As each character of SCREEN is moved tbe x char value
is updated. Then it will place the token for "(" (B7) and then the
tokens for another unquoted string of 1 character (CB 01) followed by
the 7 and finally the ")" (B6). By toggling your screen (CTRL 3) back
and fortb you can look in the Dynamic Vdp Memory Window and watch this
all happen. Also since you are in contro! you can stop the Explorer at
any time and examine different areas of memory and then start it back up
again. You may want to change your Memory Wiodow to Dynamic Grom or Hex
for awhile. Note: The characters on the Application Program screen have
the Basic Bias added to them but the items in the Crunch buffer do not.

13. When it has completed its crunching Basic will scroll the screen up one
line and then begin executioo of the CALL routine. CALL will in turn
scan the peripheral DSRs and then Grom for SCREEN. Once SCREEN is found
and its start address (entry poiot) is obtained it will save the return
address, set up the start address and the Explorer will Break.

1~. At this point release the Break Condition. You can now single step
through the SCREEN subprogram or just turn on the Explorer and let it
go. The SCREEN subprogram is approx 1,6B5 machine language instructions
long.

15. After the SCREEN subprogram is complete Basic will return and execute
the following housekeeping routines. Reload the character sets - reset
the screen color back to Cyan - reload the color table - reset Vdp
registers 2, 3 & 4 and then reset the keyboard, the Explorer will Break
at this point but just start it back up again.

16. After it has performed its housekeeping it will scroll the screen up one
line and bring out the cursor. When the cursor reappears you are back
where we started in Command/Edit mode and the Explorer will Break. Clear
the Break Point condition and press FCTN 1. Tbat•s rightl 71,265
Instructions have been executed to perform a CALL SCREEN (without a
vari&ble or interrupts) in Command mode.

You can use this Exploration for any Basic CALL. After seeing this it
really makes one appreciate what goes on behind the scenesl

EXECUTING AN EXTENDED BASIC CALL

The Explorer that operates in the Extended Basic environment is slightly
different in two ways. First it has its own special loader for Extended Basic
and second when it is loaded it resides in a different area of High memory
Expansion. This version leaves 6K of Extended Basic's program space in High
Memory free for your programs. It is for these two reasons that you can not
use the Extended Basic version with the Editor Asse~bler, Mini Memory or
other Load and Run type Loaders. Also, since Extended Basic tries to load a
file off of DSK1 named LOAD we do not recommend that you select XB from the
menu (Power Up routine) unless you want to go through this lengthy process.

First load the Explorer into the Extended Basic environment Command/Edit
mode w i t h CALL INIT :: CALL LOAD("DSK 1. XBEXP"), or MXBEXP for the Myarc
card. Start up the Explorer, CTRL 2 CTRL 3, and let it run until the
cursor reappears.

Kxecuting Al Extended Basic CALL

1. When the cursor reappears stop Explorer and bring up its Main Screen.
Now lets take a look at the format for an EXTENDED BASIC subprogram
header which is different than a Basic or any other modules subprogram
headers. Set the Memory Window for Grom (g-----) and Search for SCREEN
in the module space (ST=6000 FN=FFFF)

2. Press FCTN 5 to leave the Search function and put the cursor in the
Memory Window (FCTN 9) and press the left arrow 3 times to bring in the
start of an Extended Basic subprogram header. Here's what we have in
Hex display for Version 110:

first word
next byte
following bytes
next word

A088
06
53435245454E
AC66

pointer to next subprogram header
length of this subprogram's name
SCREEN - this subprogram's name
entry point for this subprogram
(version 100 = AC5D)

As you can see the entry point for an XB subprogram header FOLLOWS the
name whereas in the other module's subprogram headers it precedes the
name length byte. This was done to keep the Extended Basic CALLa from
being executed in Basic which has a different Vdp memory map (no
sprites).

3. Now that we have the Entry Point for CALL SCREEN set the Grom BP to this
value (AC66- V110 or AC5D- V100), set tpe Memory Window to v----d and
start up the Explorer with the Application Program screen displayed,
CTRL 2 CTRL 3.

65

KXECUTIHG AH EXTENDED BASIC CALL Continued

8. Slowly type in CALL SCREEN(7). After you have the complete CALL typed
in stop the Explorer and bring up the Main screen. Set the Cpu BP to the
Key Detected Break Point (04~~) and start the Explorer back up.

9. Press and hold the Enter key unti! the Break Point is reached. Then set
the Cpu BP to the Key Scan address (02B2). Next zero out the Instruction
Counter and start up the Explorer with the AP screen displayed.

10. Extended Basic will now parse and crunch the CALL statement. It will
also move it out to the Edit Recall Buffer in Vdp Ram at >08CO. You can
use CTRL 3 to toggle between the screens and watch this happen. The
crunch buffer (>0820) characters DO NOT have the Basic Bias (>60) added
to them, but the characters on the screen (>0000 - >02FF) and in the
Edit Recall buffer (>08CO) do.

11. When it has completed its moving, parsing and crunching Extended Basic
will scroll the screen up one line and begin execution of the CALL
routine. CALL will first scan Extended Basic's Grom for SCREEN. When you
are in Command/Edit mode it will scan the peripheral DSRs and the Grom
Library if its not found in Extended Basic 1 s Grom. Once SCREEN is found
and its start address (entry point) is obtained it will set up the Grom
start address and the Explorer will Break.

12. At this point you can single step through the SCREEN subprogram or just
turn an the Explorer and let it go. The Extended Basic SCREEN subprogram
is approx 1,126 machine language instructions long.

13. After the SCREEN subprogram is complete Extended Basic will Return and
execute the following housekeeping routines along with resetting some
pointers: Reload the character sets - Reset the screen color back to
Cyan (v7) - Reload the color table - Zero out the sprite motion table -
Clear aut the sprite attribute table - Reset Vdp registers 1 through 6
and then reset the keyboard, the Explorer will Break at this point but
just start it back up again.

1~. After it has performed its housekeeping it will scroll the screen up one
line and bring aut the cursor. When the cursor reappears you are back
where we started in Command/Edit mode and the Explorer will Break. Clear
the Break Point condition and press FCTN 7. This time it was
only 32,651 machine language instructions to complete the CALL SCREEN
(without a variable or interrupts). How come only half as many as Basic
when Extended Basic has more housekeeping to do? (Hint - watch how
Extended Basic scrolls the screen)

66

KIECUTING OTBER ASSEHBLY LANGUAGE PROGRAHS

Through the Explorer you can run other Assembly Language programs. This gives
you a very powerful and simple to use d~bugging tool. It can also be used as
a learning tool since you can see the immediate results of each and every
instruction as they are executed. So, if the instruction says SRL R8,8 or XOP
•R0,2 you can see exactly what happens to the Registers, PC and WS right
after you press CTRL 1 .

To load another Assembly Language program with the Explorer just keep
the following items in mind.
• It must be a Load and Run - Non-Auto-Start type program. The PROGRAM

(Memory Image) type files Auto-Start so these will not work.
• It must be loaded BEFORE the Explorer and it must NOT reside in the

Explorer's memory space.

There is a file on the Explorer disk named PREASSEM. This file sets up a
couple of pointers for the Editor Assembler and Mini Memory Loaders.
These pointers are used by the loaders to determine where a program
should load and if it will fit. To use this file simply select LOAD AND
RUN from the menu and type in DSKl.PREASSEM. After this file has loaded
it will return back to the Load and Run prornpt. It has now set up the
pointers to reserve space for the Explorer.

Next load your Assembly program and then the Explorer. With PREASSEM
your program will not be allowed to load in the Explorer's memory space
and it will return a MEMORY FULL Error if it tries to. This means that
your program is too large to load into High Mernory Expansion along with
the Explorer. However, your program may load if it contains AORG
statements BUT it will not run properly if any portion of it resides in
the Explorer's memory space. If you do get a MEMORY FULL Error you will
need to reload PREASSEM before trying thv next file. Whenever there is
an Error during loading the module resets the pointers.

The Assembly file will not load with PREASSEM installed if it does not
contain any AORGs and it is larger than 6K bytes. By placing a couple of
AORGs in your source code and reassembling the file file you can load up
to 6K in High Memory Expansion and up to BK in Low Memory Expansion. If
you have the Mini Memory module plugged in you could also use its 4K of
Ram. This gives you a total of 18K of space for your Assembly file.

NOTE: You do not need to use PREASSEM if you know for sure that your
program is 6K or less in size. Using this file is just a simple way of
making sure that the Explorer doesn't write over your program. This does
not apply to AORG type programs since they do not use these pointers.

So Now lets load an Assembly Language program and run it through the
Explorer.

67

EIECDTIRG OTBER ASSEMBLI LARGOAGE PROGRAHS Continued

For this example we will use the DEBUG program that comes with the
Editor Assembler. This file is less than 6K in size so you do not need
to use the PREASSEM file first. NOTE: If you are using the Mini Memory
module you should REINITIALIZE it before you start.

1. Select LOAD AND RUN from the Editor/Assembler or Mini Memory menu and
load DEBUG.

2. When the cursor comes back load DSK1.EXP, or MEXP for the Myarc card.

3. Press any key to get past the Explorer's Title screen and bring up the
Main screen

At this point you can start executing your Assembly program with one of
two different methods.• The first method is the same as the one you
normally use for all Non-Auto-Start programs. The second method
simulates an Auto-Start program. Before you start this example write
down the Grom Address and set the Cpu BP to BOBE (the start address for
DEBUG)

Ron-Auto-Start Hetbod
1. Start up the Explorer with CTRL 2 CTRL 3. At this point the Application

Program Screen is the LOAD AND RUN screen of the module.

2. After the Application Program has clear off the DSK1.EXP file name and
the cursor has returned just hold down the ENTER key until the cursor
disappears to bring up the PROGRAM NAME prompt.

3. When the PROGRAM NAME prompt appears (in approx 27 seconds) slowly type
in YOUR Program's start name (DEBUG) and press Enter.

4. At this time the Editor Assembler module will do a few things before it
starts to execute your program. It checks the name length - Moves the
name from the screen into >83~A - Loads the color table with >13 -
Clears the screen - Sets Vdp Register 7 to >F3 - Scans the DEF Table for
the name - Saves the start address at >2022 - Loads the Workspace
pointer at >20BA - puts the start address in RO and BRANCHES •RO to
start the program.

5. At this point the Explorer will Break. Clear the Break Point condition
and write down the new Grom Address. We will talk about the Grom
Addresses in a minute. Now you can start the Explorer backup or use
CTRL 1 to see how the DEBUGGER begins. If you are learning Assembly
Language this program is a good example to use since you have the
documented source code for it on the E/A disk. Get a print out of it to
follow as you walk through the program with the Explorer.

68

KXECUTING OTHER ASSEMBLI LANGUAGK PROGRAHS Continued

When a program Auto-Starts it takes control right after it is loaded so
the module does NOT: Load the color table - clear the screen - set up V7
- Load the User Workspace pointer to 20BA for the E/A or 70B8 for the
Mini Mem and the Grom Address doesn't change.

SiBulated Auto-Start Ketbod
1. Set the Memory Pointer to e----sand using the Search Function in ASCII

display find your program's Start Name (DEBUG) in the REF DEF Table. The
start address for this table varies according to the number of DEFs in
your program. For the the Editor/Assembler loader use 2600 for ST and
~000 for FN. For the Mini Memory loader use 7600 for ST and 8000 for FN.

2. When you have found the Start Name leave the Search Function and place
the display in Hex mode. The structure of the REF DEF Table is: 6 Bytes
for the name, including trailing space characters, followed by 2 Bytes
that indicate the Start Address (PC). So for DEBUG the Hex display will
be as follows: 44 45 42 55 47 20 BO BE

D E B U G
The first 6 bytes are the name followed by BOBE which is the Start
Address (PC) for DEBUG.

3. Set the Cpu PC to BOBE and now you are ready to execute the DEBUGGER
as if it was an Auto-Start program.

GPLLNK And Tbe Gro• Address
TI has a minor problem with Auto-Start programs that use GPLLNK (Grom
subroutines). Right after a GPLLNK is executed the program Returns back
to the Module instead of continuing on. If you program in Assembly you
may have run into this at one time or anoth~r. We had you write down
the Grom addresses in the first example to show you how to overcome this
problem.

As you noticed a program that does not Auto-Start changes the Grom
address by +>63 bytes. So, to overcome the problem in your programs just
read the current Grom address when your program starts up, add >63 to it
and then reset the Grom address to this new address. By adding >63 to
the current address instead of just setting the address you will not
have to worry about which module (E/A or MM) loaded it. This is only
important if your program Auto-Starts and uses GPLLNK (Grom
subroutines). This also applies to the Explorer when you use the
Simulated Auto-Start Method. So when you use this method MAKE SURE you
change the Grom address to the new address for your module. Here are the
Grom addresses we have found, but they may be different in your modules.

Editor Assembler
>682F - Auto-Start - add >63 to it
Mini Memory

>68B3 - Auto-Start - add >63 to it

69

>6892

>6916

Non-Auto-Start address

Non-Auto-Start address

DIRECT KXECDTION OF HODULES

lf you own a Navarone Widgit or a Myarc or Corcomp Disk Controller you can
use the Explorer to execute modules other than Extended Basic, Editor
Assembler or the Mini Memory. With one of these Disk Controllers you can have
ANY module plugged into the cartridge port and use their Assembly Language
loader utilities (CALL LR for Myarc or the Load And Run Assembly File from
the Corcomp Disk manager). If you own a Widgit you can load the Explorer and
then select one of the other modules to Explore. However, we have found that
the Widgit has a nasty habit of SPIKING memory when the switch is moved so
this is NOT very reliable. When it does spike memory, the Explorer usually
goes out to lunch either right away or shortly after you start it up.

Once you have the Explorer loaded and the module you want to Explore on
line you can start executing it in two different ways. The first, and
longest, way is to go through the Power Up routine and then select the
module from the menu. ihe second way is to do a quick SEARCH, set the
address and begin executing the module. Since we have already discussed
the Power Up routine we will Explore the second method. For this example
lets Explore the Disk Manager 2 Command Module.

Bon-Auto-Start Gro• Hodules
1. Set the Memory Pointer to g-----and press FCTN 5- Search- and set ST

to 6000 and FN to F7FF (Grom module space) and then press Enter or the
down arrow to put the cursor in the Search string input field in ASCII
mode with Basic Bias Off.

2. Type in as much of the module's name as you can. This is the name that
appears on the menu. For some modules this may just be ENGLISH for
others its the name. Include punctuation where its needed (ie: quotes or
/). For our example we will type in "DISK MANAGE - don't forget the
quote or the space between DISK and MANAGER and press Enter (the cursor
is already on the last character of the search string).

3. When the cursor comes back and the search string has been found press
FCTN 5 to turn of the Search Function. Next place the cursor in the
Memory Window (edit) by pressing FCTN 9.

4. With cursor sitting in the home position (first byte) of the Memory
Window press the left arrow 5 times and then press FCTN = to display the
Hex values. This is the start of an Application Program Header and it
has the following format:

first word 0000 = next Application Program Header - no more
second word = 8134 Entry point for this Application Program
next byte OE Name length for this Application Program
next bytes = 2244 etc.= "DISK MANAGER"
Make a note of the Entry Point address.

5. Move your cursor to the Grom AD (Address) field and input the Entry
Point address (8134), make sure the Cpu WS is at 83EO and the PC is at
006A. You are now ready to begin direct execution of the DISK MANAGER 2
Command Module.

70

DIRECT KIECDTIOH OF HODULES Continued

Auto-Start Grom Hodules (AAFF)
Auto-Start Grom modules are the ones that do not bave a name on the Menu
they just start right up. Many of the Scott Forsesman modules are of
this type. Since they do not bave an Application Program header you use
a different method to directly execute these modules.

1. With Explorer loaded and the module on line set the Memory Pointer to
g6000- and look at the first word in Hex. It should be AA FF. The AA is
the validation flag for Grom Headers. If its not at this Grom space
check 8000, AOOO, COOO and EOOO until you find it.

The second byte is the version number. For most Auto-Start Grom Modules
this will be FF. The FF is version number -1 in two's compliment. When a
module has a negative version number it signifies that it has a Foreign
Language Translation routine in it. Scott Forsesman uses this routine to
take control and start up their modules.

2. The Foreign Language Translation routine starts at 6013 in the Grom
Module space (by default). So just set your Grom AD field to 6013, make
sure the Cpu WS is at 83EO and the PC is at 006A and start it up.

Auto-Start Grom Hodules (Pover Up Routine)
Ifa module isn't using the Foreign Language Translation routine it is
possible that it is taking control with its Power Up routine. A standard
Grom Module Header can reside at g6000, g8000, gAOOO, gCOOO or gEOOO and
it has the following format:

>xOOO
>x001
>x002
>x003
>x004
>x006
>x008
>xOOA
>xOOC
>xOOE

>AA Valid GROM Header Identification Code
>OO Version number
>OO Number of Application Program~
>OO Reserved - not used
>OOOO Address of Power Up Header
>0000 Address of Application Program Header
>OOOO Address of DSR Routine Header
>OOOO Address of Subprogram Header
>0000 Address of Interrupt Routine Header - none in GROM
>0000 Reserved for future expansion.

Replace the x (>x004) with the proper address (6,8,A,C or E). This
header format is also used for Rom modules (Cpu memory 6000-7FFF) and
DSR headers (Cpu memory 4000-5FFF with the DSR enabled)

1. Make a note of the value in gxOO~- the Power Up Header address, if it
is not zero. Set the Memory pointer to this address and make a note of
the second word. This is the start address for the Power Up routine.

2. Set the Grom address to this second word, make sure the Cpu WS is at
83EO and the PC is at 006A and start it up.

71

DIRECT KIECOTION OF HODULES Continued

Ron-Auto-Start Rom Hodules
These modules are ones that were produced by some of the third party
modules companies such as Atari Soft that generate a module name in the
Menu. The procedure for direct execution of these modules is as follows:

1. Set the Memory Pointer to c----- and press FCTN 5- Search- and set ST
to 6000 and FN to 7FFF (Cartridge Rom module space) and then press Enter
or the down arrow to put the cursor in the Search string input field in
ASCII mode with Basic Bias Off.

2. Type in as much of the module's name as you can, place your cursor on
top of the last character in the search string and press Enter

3. When the cursor comes back and the search string has been found press
FCTN 5 to turn of the Search Function. Next place the cursor in the
Memory Window (edit) by pressing FCTN 9.

4. With cursor sitting in the home position (first byte) of the Memory
Window press the left arrow 5 times and then press FCTN = to display the
Hex values. This is the start of an Application Program Header and it
has the following format:

first word xxxx
second word
next byte
next bytes

xxx x
xx

xxxx etc.=

Next Application Program Header
Entry point for this Application
Name length for this Application
(module's menu name)

Make a note of the Entry Point address (second word)

Program
Program

5. Move your cursor to the Cpu PC (Program Counter) field and input the
Entry Point address, make sure the Cpu WS is at B3EO and you are now
ready to begin direct execution of a Non-Auto-Start Rom Cartridge.

Auto-Start Rom Hodule
Most of these start up with the Power Up Routine, so:

1. Set the Memory Pointer to c6004-, make note of the first word (Power Up
Routine Header address), set the Memory Pointer to this address and make
note of the second word (Entry Point for the Power Up Routine).

2. Move your cursor to the Cpu PC field and input the Entry Point, make
sure the Cpu WS is at B3EO and you are now ready to begin execution of
the Auto-Start Rom Cartridge.

72

DIRECT EXECOTIOH OF HODOLES Continued

A Few Notes On Modules

1. If you hop directly into a module or TI Basic AFTER you have been
playing around with other items it is possible that:

A. The character set may not be right.
B. The Vdp registers are no longer set to the Power Up settings (see

Appendix)
C. A copy of Vdp Register 1 is NOT in >8304. This may cause your screen

to go blank when you press a key. The Key scan routine resets V1 with
whatever is in the most significant byte of >83D4 when a key is
pressed.

2. Some modules PRESUME that they are being executed right after the Power
Up Routine so they fail to clear the screen or set up colors and Vdp
Registers. If this occurs you will either have to set these items
yourself or go through the Power Up Routine to execute the module
properly.

3. MANY Modules use Auto-Sound processing and Auto-Sprite motion that is
generated by the Interrupt Routine so interrupts will need to be enabled
for proper execution.

4. MANY Grom Modules use the Vdp Interrupt Timer at >8379 as a delay timer
to compare values to before continuing. If R3 contains >8379 and you
don't seem to be getting anywhere then either: Change the value at
>8379 to one greater than the one that keeps showing up in RO or enable
interrupts so this counter increments itself.

5. Some modules wait for >83CE to be zero before they continue (Auto sound
processing completed). If R3 contains >83CE just press CTRL 5, this will
turn off the sound and zero out >83CE for you.

6. Some modules, like TI LOGO, want to use the memory space that Explorer
occupies and as such they will not execute properly.

Other then these few items the execution of modules is very similar to
executing Basic or Assembly Language programs. So have fun and DON'T
stay up too late!

73

1/f'i i i!J" 1
,, 'l v l 1'0

OVERALL SYSTEM MAP
+---+
/>0000 /CONSOLE ROM Interrupt Vectors, XOP Vectors, 8K Bytes
l GPL Interpreter, Floating Point Routines,
1>1FFF XMLLNK Vectors, Low-level cassette DSR etc.

+---+
/>2000 ILOW MEHORY EXPAHSIOR RAM 8K Bytes
l l Varies according to the loader used (Assembly).
I>3FFF Generally not used by Extended Basic programs.

+---+
1>4000 /DSR ROM Device service routines 8K Bytes
l l Determined by CRU bit setting
I>5FFF Disk Controller, RS232, P-Code etc.

+---+
1>6000 /CARTRIDGE PORT ROM (& Mini-Mem RAM) 8K Bytes
l l 12K of Extended BASIC ROM. Upper 4K @ >7000 - >7FFF
1>7FFF l is flipped to page in another 4K for a total of 12K

+---+
>8000 IRAM MEHORY HAPPED DEVICES VDP, GROM, SOUND & SPEECH 8K Bytes

>8000 duplication of scratch pad ram @ >8300 ->83FF
>80FF

duplication of scratch pad ram @ >8300 ->83FF

l
l
l
l

>8100
>81FF
>8200
>82FF
>8300
>83FF
>8400

duplication of scratch pad ram @ >8300 ->83FF l
1--l
l CPU SCRATCH PAD RAM' 256 bytes l
1--l

SOUND CHIP
>87FF /--
>8800
>8802
>8BFF
>8COO
>8C02

VDP READ DATA
VDP STATUS (MSBy)

VDP WRITE DATA
VDP READ/WRITE ADDRESS (to write set MSb of the MSBy to 01)

>8FFF l--
>9000
>93FF
>9400

SPEECH READ

SPEECH WRITE

>97FF l--
>9800
>9802
>9BFF
>9COO

l >9C02
1>9FFF

GROM/GRAM READ DATA
GROM/GRAM READ ADDRESS

GROM/GRAM WRITE DATA
GROM/GRAM WRITE ADDRESS

+---+
>AOOO l HIGH MEHORY EXPAHSIOH RAM 24K Bytes

>FFFF

l
l
l
l

Extended Basic High Memory Usage, Free space end
pointed to by CPU RAM PAD address >8386

Numeric values

Line number table

X-Basic program space

+---+

74

CONSOLE RCM HEHORY HAP (most consoles)

+---+
i>OOOO
1>0004
1>0008
l >OOOC
l >OOOE
l
1>0012
>0014
>0020
>0022

>0024
>0038
>0040
>0044
>0048
>004E
>0060
>0070

>0082

>OC36
>OC36
>OC38
>OC3A
>OC3C

>OC3E
>OC40
>OC42
>OC44
>OC46
>OC48
>OC4A
>OC4C
>OC4E
>O C 50
>O C 52
>O C 54
>O C 56
>O C 58
>OC5A
>OC5C
>OC5E
>OC60
>OC62
>OC64

>OC66
thru

>OC7A
>OC7C

l

Power Up Routine Vector - Level O Interrupt (Reset)
Level 1 - 9901 Interrupt Vector
Unused interrupt vector - points to screen timeout routine
Cpu clock speed for Baud rate generation and 'AA' for Validation'
Assembly Language Key Scan Entry Point (B @>02B2) - subtract 4

from the branch address to get the Gpl entry point.
Data - zero and eight
Instructions for the unreleased TI Debugger board
Branch and Link statement for BREAKPOINT check
Entry address of Breakpoint for RS232 and Basic

Subtract >10 from it to get the start of the key range check
Subtract >1A from it to get the start of the key debounce
Subtract >1C from it to get the end of the key routine

POWER UP ROUTIBE - start of console reset routine
More instructions for the unreleased TI Debugger board
XOP O vector - used by the TI Debugger board
XOP 1 vector - user defined - Not supported on early consoles
XOP 2 vector - user defined -
START OF GPL INTERPRETER
Set Grom/Gram address
Next Gpl instruction
= >OC36 Points to start of branch tables for Gpl instructions

GPL BRARCB YECTOR TABLES
0270 - Vector for Gpl miscellaneous instruction executor
061E - Vector for >20 - MOVE instruction
011A - Vector for >40 - BRANCH ON RESET instruction
010E - Vector for >60 - BRANCH ON SET instruction
Miscellaneous Instructions
0838 - Vector for >OO - RETURN instruction
083E - Vector for >01 - RETURN WITH CONDITION BIT instruction
027A - Vector for >02 - RANDOM instruction
02AE - Vector for >03 - SCAN (Key Scan) instruction
029E - Vector for >04 - BACK (Scrèen Color) instruction
0104 - Vector for >05 - BRANCH instruction
085A - Vector for >06 - CALL instruction
05A2 - Vector for >07 - ALL (Clear Screen) instruction
04DE - Vector for >08 - FORMATTED BLOCK MOVE instruction
OOF4 - Vector for >09 - HIGH instruction
OOF4 - Vector for >OA - GREATER THAN instruction
0024 - Vector for >OB - EXIT (Power Up) instruction
OOF4 - Vector for >OC - CARRY instruction
OOF4 - Vector for >OD - OVERFLOW instruction
18C8 - Vector for >OE - PARSE (Basic) instruction
0608 - Vector for >OF - XML instruction
1920 - Vector for >10 - CONTINUE (Basic) instruction
1968 - Vector for >11 - EXECUTE (Basic) instruction
19FO - Vector for >12 - RETRUN TO BASIC (Basic) instruction
082C - Vector for >13 - Unlisted - returns the Grom Base address

from a library l program call

>OCOC - Vector for >14->1E - Unlisted - points to routines for
the TI Debugger Board

>OC14 - Vector for >1F - Unlisted - points to routine for the
TI Debugger board - part of
its Breakpoint routine.

+---+

75

CONSOLE ROH HEHORY HAP Continued
+---+
:>OC7E

>OC7E
>OC80
>OC82
>OC84
>OC86
>OC88
>OC8A
>OC8C
>OC8E
>OC90
>OC92
>OC94
>OC96
>OC98
>OC9A
>OC9C
>OC9E
>OCAO
>OCA2
>OCA4
>OCA6
>OCA8
>OCAA
>OCAC
>OCAE
>OCBO
>OCB2
>OCB4
>OCB6
>OCB8
>OCBA
>OCBC
>OCBE
>OCCO
>OCC2
>OCC4
>OCC6
>OCC8
>OCCA
>OCCC

>OCCE
>OCDO
>OCD2
>OCD4
>OCD6
>OCD8
>OCDA

Gpl instructions with a negative opcode (Greater than >7F)
>0136 - Vector for
>013A Vector for
>0140 Vector for
>013E Vector for
>014~ - Vector for
>0162 Vector for
>016E Vector for
>OOEA - Vector for
>0186 - Vector for
>0188 - Vector for
>0184 - Vector for
>0182 - Vector for
>OCOC - Vector for
>OCOC - Vector for
>OCOC - Vector for
>OCOC - Vector for
>0188 - Vector for
>0186 - Vector for

ABSOLUTE instruction
- NEGATE instruction

>BO -
>B2
>B4
>86
>BB
>BA
>BC
>BE
>90
>92
>9~
>96
>98
>9A
>9C
>9E
>AO
>A~

- INVERT instruction
- CLEAR instruction

FETCH instruction
CASE instruction
PUSH instruction
COMPARE ZERO instruction
INCREMENT instruction

- DECREMENT instruction
- INCREMENT BY TWO instruction
- DECREMENT BY TWO instruction
- Unlisted (TI Debugger board)

Unlisted (TI Debugger board)
- Unlisted (TI Debugger board)

Unlisted (TI Debugger board)
ADD instruction

- SUBTRACT instruction
>01CE - Vector for >AB - MULTIPLY instruction
>01EA - Vector for >AC - DIVIDE instruction
>0190 - Vector for >BO - AND instruction
>0196 - Vector for >B4 - OR instruction
>019A- Vector for'>BB- XOR instruction
>019E - Vector for >BC - STORE instruction
>01A2 - Vector for >CO - EXCHANGE instruction
>OOD6 - Vector for >C4 - COMPARE HIGH instruction
>OODA - Vector for >CB - COMPARE HIGH OR EQUAL instruction
>OODE - Vector for >CC - COMPARE GREATER THAN instruction
>OOCC - Vector for >DO - COMPARE GREATER THAN OR EQUAL
>OOEC - Vector for >D~ - COMPARE EQUAL instruction
>OOE2 - Vector for >DB - COMPARE LOGICAL
>01BO - Vector for >DC - SHIFT RIGHT ARITHMETIC instruction
>01B4 - Vector for >EO - SHIFT LEFT LOGICAL instruction
>01BB - Vector for >E~ - SHIFT RIGHT LOGICAL instruction
>01C2 - Vector for >E8 - SHIFT RIGHT CIRCULAR instruction
>06D2 - Vector for >ED - COINCIDENCE instruction
>OCOC - Vector for >FO - Unlisted
>05CB - Vector for >F6 - INPUT/OUTPUT instruction
>004E - Vector for >FB - Unlisted (saves Grom address and base)
>OCOC - Vector for >FC - Unlisted

NOVE INSTRUCTION VECTORS (Block Move >20->3F)
These tables are used by the MOVE instructions.
They move blocks of memory (Data) from a designated source
to a designated destination.
The first three entries move bytes from the source.
The next four entries move bytes to the destination.

>0660 - CPU SOURCE
>0672 - GROM SOURCE
>0664 - VDP SOURCE
>0682 - CPU DESTINATION
>06B6 - GRAM DESTINATION
>06BA - VDP DESTINATION
>069B - VDP REGISTER DESTINATION

+-------- --+

76

CONSOLE ROM KEHORY KAP Continued
+-------- --+

>OCDC

>OCDC
>OCDE
>OCEO
>OCE2
>OCE4
>OCE6
>OCE8
>OCEA

>OCEB
>OCEB
>OCEE
>OCFO
>OCF2
>OCF4
>OCF6
>OCF8

>OCFA
>OCFA
>OCFC
>OCFE
>ODOO
>OD02
>OD04
>OD06
>OD08
>ODOA
>ODOC
>ODOE
>OD10
>OD12
>OD14
>OD16
>OD18

>OD1A
>OD1A
>OD1C
>OD1E

>OD20
>OD22
>OD24
>OD26
>OD28
>OD2A
>OD2C
>OD2E
>OD30
>OD32
>OD34
>OD36
>OD38

FORKAT INSTROCTION TABLE - The Formatted Block Move instruction
is a sub interpreter within the Gpl interpreter.

>050A - Vector for STRING ACROSS
>0508 - Vector for STRING DOWN
>0504 - Vector for REPEAT ACROSS
>0502 - Vector for REPEAT DOWN
>0534 - Vector for SKIP A CROSS
>0532 - Vector for SKIP DOWN
>053A - Vector for REPEAT BLOCK
>056C - Vector for SPECIAL - write color table or loads XPT,

IHPOT/OOTPOT INSTROCTIOI TABLE
>05D6
>05D6
>05E8
>05EA
>1346
>142E
>1426

- Vector for EXECUTE SOUND LIST
- Vector for EXECUTE SOUND LIST

Vector for CRU BIT INPUT
Vector for CRU BIT OUTPUT
Vector for CASSETTE WRITE ROUTINE (Low Level)
Vector for CASSETTE READ ROUTINE (Low Level)

- Vector for CASSETTE VERIFY ROUTINE (Low Level)

LOCATION OF ALL 16 XHL TABLES (Vectors)
>OD1A - Vector for - >OO - Floating Point Table
>12AO - Vector for - >10 - Pointer to XTAB
>2000 Vector for - >20 •
>3FCO Vector for - >30 •
>3FEO Vector for - >40 •
>4010 - Vector for - >50 •
>4030 Vector for - >60 •
>6010 - Vector for - >70 •
>6030 Vector for - >BO •
>7000 Vector for - >90 •
>8000 - Vector for - >AO •
>AOOO - Vector for - >BO •
>BOOO - Vector for - >CO •
>COOO - Vector for - >DO •
>DOOO - Vector for - >EO •
>8300 - Vector for - >FO •

FLOATING POIIT ROOTINES TABLK
)0000 -

The Rest through >8300 are
pointers to the other XML
Tables

YPT

>OF54 - Vector for - ROUND Check to see if FAC needs rounding
>OFB2 - Vector for - ROUNU Round FAC starting at digit

specified in ARG.
>OFA4 - Vector for - STEXIT Store status
>OFC2 - Vector for - OVEXP Over/underflow
>OFCC - Vector for - o v Part of OVEXP
>OD80 - Vector for - FADD Floating poi n t a dd
>OD7C - Vector for - FSUB Floating poi n t subtract
>OE88 - Vector for - FMULT Floating poi n t multiply
>OFF4 - Vector for - FDIV Floating poi n t divide
>OD3A - Vector for - FCOMP Floating point compare
>OD84 - Vector for - SADD Stack add
>OD74 - Vector for - SSUB Stack subtract
>OE8C - Vector for - SMULT Stack multiply
>OFF8 - Vector for - SDIV Stack divide
>OD46 - Vector for - SCOMP Stack compare

+---+
77

CONSOLE ROH MEHORY KAP Continued
+---+
l>12AO ITAB XHL TABLE

>12AO >11AE - Vector for - CSN Convert ASCII to floating point
>12A2 >11A2 - Vector for - CSNGR Grom entry for CSN routine
>12AIJ >12B8 - Vector for - CFI Convert floating point to integer
>12A6 >161J8 - Vector for - SYM Fetch BASIC symbol table entry
>12A8 >161JE - Vector for - SMB Fetch BASIC symbol table value
>12AA >161J2 - Vector for - ASSGNV Assign BASIC variable
>12AC >15D6 - Vector for - SCHSYM Search BASIC symbol table
>12AE >163C - Vector for - VPUSH Push value onto VDP stack
>12BO >1F2E - Vector for - VPOP Pop value from VDP stack
>1282 >OACO - Vector for - SROM Search ROM. Part of DSR routine
>12BIJ >OB21J - Vector for - SGROM Search GROM. Part of DSR routine
>12B6 >1868 - Vector for - PGMCH Get BASIC program character

>1C9C BASIC STATEHENT TABLE - Used by EXEC (Execute)
>1C9C >1A2C - Vector for - Spare
>1C9E >1A2C - Vector for - ELSE
>1CAO >1A2C Vector for Reserved
>1CA2 >1A2C - Vector for - Reserved
>1CAIJ >1BB6 - Vector for - IF
>1CA6 >1A8E - Vector for - GO
>1CA8 >1AFC - Vector for - GOTO
>1CAA >1AEO - Vector for - GOSUB
>1CAC >1B71J - Vector for - RETURN
>1CAE >19E6 - Vector for - DEF
>1CBO >19E6 - Vector for - DIM
)1CB2 >1A3C - Vector for - END
>1CBIJ >8000 - Vector for - FOR
>1CB6 >1BEA - Vector for - LET
>1CB8 >8002 - Vector for - BREAK
>1CBA >800IJ - Vector for - UNBREAK
>1CBC >8006 - Vector for - TRACE
>1CBE >8008 - Vector for - UNTRACE
>1CCO >8016 - Vector for - INPUT
>1CC2 >19E6 - Vector for - DATA
>1CCIJ >8012 - Vector for - RESTO RE
>1CC6 >8011J - Vector for - RANDOMIZE
>1CC8 >1C11J - Vector for - NEXT
>1CCA >800A - Vector for - READ
>1CCC >1A3C - Vector for - STOP
>1CCE >803E - Vector for - DELETE
>1CDO >19E6 - Vector for - REM
>1CD2 >1A92 - Vector for - ON
>1CDIJ >800C - Vector for - PRINT
>1CD6 >800E - Vector for - CALL
>1CD8 >19E6 - Vector for - OPTI ON
>1CDA >8018 - Vector for - OPEN
>1CDC >801A - Vector for - CLOSE
>1CDE >1A2C - Vector for - SUB
)1CEO >803C - Vector for - DISPLAY

>1CE2 TABLE USKD BY PARSE
>1CE2 >801C - Vector for - (

>1CEIJ >1A2C - Vector for - &
>1CE6 >1A2C - Vector for - Spare
>1CE8 >1A2C - Vector for - OR
>1CEA >1A2C - Vector for - AND
>1CEC >1A2C - Vector for - XOR
>1CEE >1A2C - Vector for - NOT

+---+
78

COHSOLE ROM HEHORY KAP Continued

+---+
I>1CFO
l >1CFO
l >1CF2
l >1CF4
l >1CF6
l >1CF8
l >1CFA

>1CFC
>1CFE
>1DOO
>1D02
>1D04
>1D06
>1D08
>1DOA
>1DOC
>1DOE
>1D10
>1D12
>1D14
>1D16
>1D18
>1D1A
>1D1C
>1D1E
>1D20
>1D22
>1D24
>1D26
>1D28
>1D2A
>1D2C

>1D2E
>1D30
>1D32
>1D34
>1D36
>1D38
>1D3A
>1D3C

>1E9C
>1EAA
>1F2E

LED TABLE OSKD BY PARSE
>1A2C - Vector for -
>1A2C - Vector for - <
>1A2C - Vector for - >
>801E - Vector for - +
>8020 - Vector for
>1A2C - Vector for - •
>1A2C - Vector for - l
>1A2C - Vector for -
>1A2C - Vector for - Spare
>8010 - Vector for - Quoted string
>1A5C - Vector for - Unquoted string (NUMERIC)
>1A2C - Vector for - Line number
>804A - Vector for - EOF
>8022 - Vector for - ABS
>8024 - Vector for - ATN
>8026 - Vector for - cos
>8028 - Vector for - EXP
>802A - Vector for - INT
>802C - Vector for - LOG
>802E - Vector for - SGN
>8030 - Vector for - SIN
>8032 - Vector for - SQR
>8034 - Vector for - TAN
>8036 - Vector for - LEN
>8038 - Vector for - CHR$
>803A - Vector for - RND
>8040 - Vector for - SEG$
>8046 - Vector for - POS
>8044 - Vector for - VAL
>8042 - Vector for - STR$
>8048 - Vector for - ASC

TABLE OSKD BY COIT (Continue)
>1D5C - Vector for -
>1D3E - Vector for - <
>1D4C - Vector for - >
>1DEC - Vector for - +
>1E18 - Vector for
>1E24 - Vector for - •
>1E30 - Vector for - l
>1E3C - Vector for -

VPUSH for GPL
VPUSH (XML >17)
VPOP (XML >18)

This map contains mostly Vectors (Entry Points) for the
various routines. By watching the address in the PC field
of the Explorer you can tell which of these routines is
being executed. You can also use these vectors to set the
Cpu Breakpoint (BP) to halt the Explorer on a given routine
so you can Step through it.

+---+

79

256 BYTES OF SCRATCH PAD RAM - XB USE

+--------+--+
>8300 1 XB TDU'ORARY STORAGK AREA

>8300
>8302
>830~
>8306
>8308
>830A
>830C
>830E
>8310
>8312
>831~
>8316 l

l
>8318

>8318
>831A
>831C
>831E
>8320
>8322
>832~
>8326
>8328
>832A
>832C
>832E
>8330 l

>8332
>833~
>8336
>8338
>833A
>833C
>833E
>83~0
>83~2
>83~~
>83~5

>83~6
>8348

This area of Scratch Ram is used by X-Basic and Basic as a
temporary holding area for the different routines.
temporary variable
temporary variable
temporary variable
temporary variable - Record Length on file access
temporary variable - Address of Sprite Atttribute List
temporary variable
temporary variable
temporary variable - increment value for Auto Num
temporary variable used in CALL LINK parameter passing
temporary variable - used by CHAR type statements
temporary variable - copy of VDP reg 1 for some commands
temporary variable - DSR Link flag for some commands

XB PERHINENT STORAGE AREA
This area of Scratch Ram is used for specific items by X-Basic
Used by LINK, LOAD & rtn control to Basic also String space bgn
Points to 1st free add in VDP RAM also String space end
Points to allocated str space - PAB Error - Temp string pointer
Start of current statement
Current Screen Address
Return error code from Assembly Language Code
VDP value stack base pointer
Return address from Assembly Language Code
NUD Table for Assembly Language Code.
Ending screen display pointer
Program text or token code pointer
Pointer to current line number in line number table
Start of Line number table pointer
End of Line number table pointer
Data pointer for read
Line number table pointer for read
Address of intrinsic Poly const~nts
Subprogram symbol table pointer
PAB address in VDP RAM (first link) PAB list
Symbol table pointer
VDP Ram free space pointer
Current char/token
Extended Basic Program RUN
Extended Basic System Flags

255

Bit O 1 Auto-Num
1 1 On Break Next
2
3 Tra ce

Crunch buffer destruction level
Last subprogram block on stack

Bit

STOP= O (w/o 'READY')

4
5
6
7

Edit Mode
On Warning Stop
On Warning Next

+--------+--+

80

256 BYTES OF SCRATCH PAD RAM Continued
+--------+--+
l >834A
l >834A
l >834B

>834C
>834E
>834F
>8350
>8352
>8353
>8354
>8356
>8358
>835A
>835C

>836C
>836D

'FLOATING POINT and DSR usage, 36 bytes
FAC (Floating point accumulator)
for floating point routines
this area holds a number in
radix 100 notation.

PAB I/0 OPCODE
PAB FLAG/STATUS
PAB DATA BUFFER ADDRESS
PAB LOGICAL REC LENGTH
PAB CHARACTER COUNT
PAB RECORD NUMBER
PAB SCREEN OFFSET
PAB OPTION LENGTH

FLOATING POINT ERROR CODE PAB DEVICE LENGTH
SUBRTN POINTER l DSR's pnts to 1st char after PAB in VDP

DSR

ARG (Floating point argument)
and DSR usage

FPERAD (float pnt err add in Grom ?)
Set to >08 for DSR call

DSR
DSR
DSR
DSR
DSR
DSR

--------+--+
>836E
>8370
>8372
>8373
>8374
>8375
>8376
>8377
>8378
>8379
>837A
>837B
>837C
>837D
>837E
>837F

INTERPRETER and FLOATING POINT GPL VALUE STACK POINTER
HIGHEST AVAILABLE ADDRESS IN VDP RAM
LSByte OF DATA STACK•POINTER = AO = (>83AO)
LSByte OF SUBROUTINE STACK POINTER = 80 = (>8380)
KEYBOARD NUMBER TO BE SCANNED Default =0
ASCII CODE DETECTED by SCAN routine also SGN for float/point
JOYSTICK Y-STATUS by SCAN routine also EXP for float/point
JOYSTICK X-STATUS by SCAN routine
RANDOM NUMBER GENERATOR RND's >O ->63
VDP INTERRUPT TIMER >O ->FF
HIGHEST SPRITE Q IN AUTO-MOTION >O ->20
COPY OF VDP STATUS REGISTER

(0-99)
(0-255)
(0-32)

GPL STATUS BYTE (Set to O for a DSR CALL) (>20 =Key Press)
CHARACTER BUFFER BYTE to VDP RAM screen table
POINTS TO THE CURRENT ROW on the screen
POINTS TO THE CURRENT COLUMN on the screen

--------+--+
>8380 THE DEFAULT SUBROOTINE STACK (Osed by GPL Routines)

>8380 Reserved For Basics interpreter
>8382 Reserved For Basics interpreter
>8384 Reserved Highest Address in Expansion Memory
>8386 Reserved Highest Free Address in Mem-Expansion
>8388 Reserved For the Basic interpreter Sub stack base
>8389 Reserved For the Basic interpreter Exp-Mem Flag
>838A RETURN ADDRESS STACK FOR GROM SUBROUTINES

>839E
>83AO

>83BF

(current Grom Address pushed to top of stack during Key Scan)

ITBE DEFAULT DATA STACK (Osed by GPL Routines)
this area holds various information according to the GROM
routine being executed.

+--------+--+

81

256 BYTES OF SCRATCB PAD RAM Continued
+--------+--+

>83CO
>83CO
>83C2

>83C4
>83C6
>83C8
>83CA
>83CC
>83CE 1

>83DO
>83D2
>83D4
>83D6
>83D8
>83DA
>83DC

>83DE

IHTERRUPT VORKSPACE REGISTERS
RO RANDOM NUMBER SEED 2 Bytes >O-FF >O-FF
R1 Bit O 1 disable ALL of the following

1 1 disable Auto Sprite Motion
2 1 disable Auto Sound Processing
3 1 disable The QUIT Key

Bits ~-15 not used
R2 ISR HOOK - Start address of User Interrupt Routine
R3 Reserved for Keyboard state and debounce info
R4 Reserved for Keyboard state and debounce info
R5 Reserved for Keyboard state and debounce info
R6 Pointer to Sound Table - also see >83FD
R7 Number of Sound Bytes for Auto Sound Processing (0100)
R8 Varies (>0000 for Cassette DSR Link)
R9 Varies
R10 CONTENTS OF VDP REGISTER 1 (used for key scan)
R11 SCREEN TIME OUT COUNTER (blanks when incremented to 0000)
R12 RETURN ADDRESS SAVED BY THE SCAN ROUTINE (Old R11)
R13 Return WS for context switch (RTWP)
R1~ Return PC for context switch (RTWP)
R15 Return ST for context switch (RTWP)

--------+--+
>83EO 'GPL VORKSPACE REGISTERS (ALL Registers used by GPL interpreter)

>83EO RO Varies NOTE: RO- R7, R11 and R12
>83E2 R1 Varies are modified by Key Scan
>83E4 R2 Varies
>83E6 R3 Varies
>83E8 R4 Varies
>83EA R5 Varies - Used by Interrupt Routine
>83EC R6 Varies - Used by Interrupt Routine
>83EE R7 Varies - Used by Interrupt Routine
>83FO R8 Cleared on Return from Interrupt Routine
>83F2 R9 GPL Interpreter use
>83F4 R10 GPL Interpreter use
>83F6 R11 RETURN ADDRESS for BL instruction and User Interrupt
>83F8 R12 Varies - Cru Base Addres~ for key scan and DSRs
>83FA R13 GROM/GRAM READ DATA port (9800)
>83FC R14 STATUS FLAGS

Bits O - 1 Control the cursor blink speed &
Auto sound processing. The value in this byte
increments the counter at >8379

l >83FD
l

Bit O
1
2
3

4 1 16K Vdp Ram
5

l
l
l
1>83FE

Cass Interrupt Timer
Cass Verify

R15 VDP WRITE ADDRESS port (8C02)

6 Multi-Color mode
1 Sound table location

1 = VDP O = Grom/Gram

+--------+--+

82

Eitended Basic LOV HEHORY KIPANSION after CALL INIT
+---+
lAddress l Value Description of address l

+---+
>2000 >205A XML link to name link routine pointer. l
>2002 >24FA First Free address in low mem-exp.
>2004 >4000 Last Free address in low mem-exp.
>2006 1 >AA55 Constant that indicates CALL INIT has been executed.
>2008 lDTILITY YECTOR TABLK (ie: BLWP @KSCAN)

>2008 l >2038 Utility workspace pointer for BLWP @NUMASG
>200A >2096 NUHASG Utility starting address.
>200C 1 >2038 Utility workspace pointer for BLWP @NUMREF
>200E >217E NUHREF Utility starting address.
>2010 >2038 Utility workspace pointer for BLWP @STRASG
>2012 >21E2 STRASG Utility starting address.
>2014 >2038 Utility workspace pointer for BLWP @STRREF
>2016 >234C STRREF Utility starting address.
>2018 >2038 Utility workspace pointer for BLWP @XMLLNK
>201A >2432 XHLLH[Utility starting address.
>201C >2038 Utility workspace pointer for BLWP @KSCAN
>201E >246E KSCAN Utility starting address.
>2020 >2038 Util~ty workspace pointer for BLWP @VSBW
>2022 >2484 VSBV Utility starting address.
>2024 >2038 Utility workspace pointer for BLWP @VMBW
>2026 >2490 VHBV Utility starting address.
>2028 >2038 Utility workspace pointer for BLWP @VSBR
>202A >249E VSBB Utility starting address.
>202C >2038 Utility workspace pointer for BLWP @VMBR
>202E >24AA VHBR Utility starting address.
>2030 >2038 Utility workspace pointer for BLWP @VWTR
>2032 >24B8 VVTR Utility starting address.
>2034 >2038 Utility workspace pointer for BLWP @ERR
>2036 >2090 ERR Utility starting address.

>2038 1UTILITT VORK SPACE STARTS BERE

>2057
>2058
>205A

>2090
>2096
>217E
>21E2
>234C
>2432

I>246E
1>2484
1>2490
I>249E
I>24AA
I>24B8
l

>24FA

RO-R15

End of work space

Start of XML link to name link routine.
(Finds the name in the REF/DEF Table)

Start of ERR Routine. (Return Error code to basic)
Start of NUMASG Routine. (Numeric Assignment)
Start of NUMREF Routine. (Numeric Reference)
Start of STRASG Routine. (String Assignment)
Start of STRREF Routine. (String Reference)
Start of XMLLNK Routine. (Link to system Utilities)
Start of KSCAN Routine. (Keyboard Scan)
Start of VSBW Routine. (VDP single byte write)
Start of VMBW Routine. (VDP multiple byte write)
Start of VSBR Routine. (VDP single byte read)
Start of VMBR Routine. (VDP multiple byte read)
Start of VWTR Routine. (Write to VDP register)
(NOTE: No GPLLNK or DSRLNK in X-Basic CALL INIT)

First Free Address in Low Mem-Exp. pointed to by >2002

- continued next page -

83

>3FFO
>3FF6
>3FF8
>3FFE

>3FFF

Kitended Basic LOV HEHORI EXPANSIOR Continued
•---·
• The REF/DEF Table resides at the end of •
• Low Memory Expansion. Each entry is 8 bytes long. •
• 6 for the Name and 2 for the starting address. •
• CALL INIT in X-Basic leaves this space empty. •

•---·
DEF Name (CALL LINK or BLWP @) 6 characters.
Start address of the above routine, 2 bytes.
DEF Name (CALL LINK or BLWP @) 6 characters.
Start address of the above routine, 2 bytes.

,END OF LOV MEHORI EXPANSIO•
+---+

Extended Basic HIGH HEHORI EXPANSIOR usage
+---+

>AOOO

>FFE7

'START OF HIGH MEH-EXPANSIO.
(If Mem-Exp is present then the value at >8389
will be >E7 while the program is running)

RUMERIC YALUE TABLE (in RADIX 100 notation)

Starting point of the Symbol table in VDP RAM is
pointed to by >833E while the program is running.
The Symbol table then points into the Numeric value
table for each of the variable names.

Highest Free Address in Mem-Exp. pointed to by >8386

LINE NOMBER TABLE - 4 Bytes per entry.

i Line # = 2 Bytes l Start Address of line = 2 bytes l
Line numbers are always stored highest # to lowest l
Starting address of this table is pointed to by >8330
Ending address of this table is pointed to by >8332
Current line number being referenced

in this table is pointed to by >832E

PROGRAH SPACE (Last line entered is at the top)

Start of program space = (value at >8332)+1
Programs reserved words have been converted to Token values
and the line numbers are removed from the beginning of
each line. The fermat for each line is as follows:

1st Byte
Following Bytes

Last byte

Number of bytes for the line
(Start Address) Actual line code with
Token values replacing reserved words.
)00

Highest address to be used in Mem-Exp. pointed to by >8384

>FFFC i Workspace Pointer for LOAD Interrupt
>FFFE i Start Address (PC) for LOAD Interrupt

(non-maskable interrupt,
~ DSK1.LOAD)

>FFFF iEND OF HIGH HEHORI EIPANSION
+---+

84

OVERALL VDP MAPS VITH BASIC AND EDITOR ASSEMBLER

Ad dr

>OOOO

>02FF

BASIC

+---------------------------+
SCREEN IMAGE TABLE
Start CHAR PATTERN TABLE
+96 Offset (>60 Bias)

END SCREEN IMAGE
+---------------------------+

>0300 l COLOR TABLE
>031F

+---------------------------+
>0320 l CRUNCH BUFFER
>036F l

>0370

>03FO
>03F8
>0400
>0408

>07FF

+---------------------------+
CHARACTER PATTERN TABLE
+96 Offset (>60 Bias)

>03C0-03DF Vdp Roll Out

768+8*character number=
address in decimal

Character number 30
Character number 31
Character number 32
Character number 33

etc.

+---------------------------+
>0800 PABS (Value Stack)

STRINGS

>35D7

>35DB

>3FFF

SYMBOL TABLES
NUMERIC VALUES
LINE NUMBER TABLE
PROGRAM SPACE

+---------------------------+
l
l

l DISK FILE BUFFERS
l
l

+---------------------------+

85

Ad dr

>OOOO

>02FF

>0300

>037F

>0380

>077F

EDITOR ASSEMBLER
+---------------------------+

SCREEN IMAGE TABLE
Default start of Sprite
Pattern Table

End Screen Image
+---------------------------+

SPRITE ATTRIBUTE TABLE

+---------------------------+
COLOR TABLE

>03C0-03DF Vdp Roll Out
>03E0-0~5F Value Stack

>0400 = char >BO in
sprite pattern

+---------------------------+
>0780 l SPRITE MOTION TABLE
>07FF

+---------------------------+
>0800 CHARACTER PATTERN TABLE

Standard Chars at

>OFFF

>1000

>35D7

>35DB

>3FFF

>0900 - >OAFF

Also used for PABs

+---------------------------+
FREE SPACE

Also used for Loader PAB

+---------------------------+
l
l

l DISK FILE BUFFERS

+---------------------------+

16K VDP RAM Extended Basic Use

+--------+--+
i >0000 VDP SCREEI IMAGE TABLE 768 Bytes

l
l
l
l

i>02FF

1 Byte per screen position. Character value offset by >60 (96)

(Row-1)•32+Col=Address
>02E2=New line Address

:--------+--+
i >0300 SPRITE ATIRIBUTE TABLE 112 Bytes
l 4 Bytes per sprite. (room for 28 sprites)
l
l

i >036F l i vert pos-1 i horz pos l char IJ+96 i early clock bit : color i
'--------+--+
>0370

>0371
>0372
>0376
>0378
>0379

>0382
>0384
>0386
>0388
>038A
>038C
>038E
>039u
>0392
>0394
>0396
>0398
>039A
>039C
>039E
>03AO

>03A5

>03AA
>03AC
>03AE
>03BO
>03B2

>03B6
>03B7
>03B8
>03BA
>03BC
>03BE 1

EXTENDED BASIC SYSTEJ4 AREA 128 Bytes

Auto Boot needed Flag
Line to start execution at
Saved symbol table 'GLOBAL' pointer
Used for CHR$
Sound Blocks

Saved Program pointer for continue and Text pointer for break
Saved Buffer Level for continue
Saved Expansion Memory for continue
Saved Value Stack pointer for continue
On-Error Line pointer
Edit Recall start address
Edit Recall end address
Used as temp storage place (FAC12)
Saved main symbol table pointer
Auto load temp for inside Error
Saved last Subprogram pointer for continue
Saved On-Warning/Break bits for continue
Temp to save subprogram table
Same as above • Used in SUBS
Merged temp for PAB Pointer
Random Number generator seed 2

Random Number generator seed

Input temp for pointer to Prompt
Accept temp pointer
Try Again
Pointer to standard string in VALIDATE
Length of standard string in VALIDATE

Size temp for record length. Also temp in Relocating Program
Accept "TRY AGAIN" Flag
Saved pointer in SIZE when "TRY AGAIN"
Used as temp storage place (FAC10)
Old top of memory for Relocating Program l Temp for INPUT
New top of memory for Relocating Program

:--------+--
i >03CO i Temp Roll Out Area 32 Bytes

i (part of scratch pad RAM is moved here for various operations)

i >03DC i Floating point sign
I>03EF :
+--------+--+

86

16~ VDP RAM Extended Basic Use Continued

+--------+--+
>03FO

>077F l
l

PATTERN DESCRIPTOR TABLE
SPRITE DESCRIPTOR TABLE

8 Bytes per character l 114 characters (30-143)

912 Bytes

>03FO
>03F8
>0400

Char 30
Char 31
Char 32

(The Sprite Motion Table uses the memory
space for character sets 15 & 16)

.--------+--+
i>0780 i SPRITE MOTION TABLE 128 Bytes l
l 4 Bytes/Sprite l
l l
I>07FF i vert velocity i horiz velocity i sys use : sys use l l
1--------+--+
l >0800 COLOR TA.BI..K 32 Bytes i
l 1 Byte/Character set i
l
l >081F foreground color : background color i

:--------+--+
l >0820 CRURCB BUFFER 160 Bytes i
l This area is used while crunching ASCII into token codes.
I>08BE

:--------+--+
i >08CO EDIT/RECALL BUFFER 152 Bytes l
l This area holds the info you type in on the command line.
i >0957 l

l

·--------+--+
>0958

>0967

>0968

i
1>37D7

VALUE STAC~ (Default Base Pointed to by >8324)

Used by the ROM routines SADD, SSUB, SMUL, SDIV, SCOMP etc.
Top of Stack Pointed to by >836E (GOSTJBS Stacked here)

The items in this area move according
to the size of the crunched program.

1181JO Bytes

The SYMBOL TABLES are generated (except the PAB) during
the Pre-Scan period after you type RUN. The strings are
placed in memory when they are assigned (ie: A$="Hello")

Without Mem-Exp

STRINGS

DYNAMIC SYMBOL TABLE & PABS

STATIC SYMBOL TABLE

LINE NUMBER TABLE

PROGRAM SPACE
(crunched program)

With Mem-Exp

STRINGS

DYNAMIC SYMBOL TABLE & PABS

STATIC SYMBOL TABLE

Numeric Values, Line Number
Table and Program Space moved
to High Mem-Expansion

The Line Number Table and the Crunched Program are saved to
disk like they reside in memory for PROGRAM "Memory Image"
type files.

+--------+--·------------+

87

16~ VDP RAM Extended Basic Ose Continued
+--------+--+

>37D8
>37D8
>37D9
>37DB
>37DC

>37DD
>37DF
>37E1
>37E2

>37E3
>37ED
>37EF
>37FO 1

>37F1
>37F3
>37Fll
>37F5

>37F7
>37FF

>38E3

>39E3

>39E9

>3AE9

>3BE9

DISK BOFFERING AREA Cor CALL FILES(3)
Validation code for the Disk Controller DSR (>AA)
Points to TOP of VDP memory (>3FFF)
CRU base identification (11 for CRU 1100)
Maximum number of OPENed files (>03 default)

File Contro! Block for 1st file OPENed 6 Bytes
Current Logica! record offset
Sector number location of File Descriptor Record

5 Bytes

518 Bytes

Logica! Record Offset (only used with VARIABLE records)
Drive number (high order bit set = Updated Data Buffer area)

File Descriptor Record (brought in from the disk 256 Bytes)
File Name
Reserved (>0000)
File Status Flags (file type and write protection)
Max number of Records per Allocation Unit (1 AU = 1 Sector)
Number of Sectors currently allocated (256 byte blocks)
End of File offset within the last used sector
Logica! record length (ie: FIXED 80 or VARIABLE 2511 etc.)
D of FIXED length records or D of sectors for VARIABLE length

(the bytes are reversed ie: LSBiMSB should be MSBiLSB)
Reserved (>0000 >0000 >0000 >OOOO)
Pointer Blocks - 6 nibble, 3 byte, clusters that point to

the Start Sector numbers and the highest logica! Record
Offset in the cluster. Change the nibble order from

iss2:ss11 lro1:ss3i lro3:ro21 to lss3:ss2:ss11 iro3:ro2:ro11
Data Buffer area 256 Bytes

File Contro! Block for 2nd file OPENed 6 Bytes
same pattern as above

File Descriptor Record 256 Bytes
same pattern as above

Data Buffer area 256 Bytes

File Contro! Block for 3rd file OPENed 6 Bytes
same pattern as above

518 Bytes

518 Bytes

>3BEF File Descriptor Record 256 Bytes
same pattern as above

>3CEF 1 Data Buffer area 256 Bytes

~--------+--+
i >3DEF i VDP STACK AREA 252 Bytes l
i >3EEA i Used by the Disk Controllar DSR l
1--------+--+

DISK DRIVE IRFO - Bytes l
>3EEB Last Drive Number accessed
>3EEC Last track access on Drive
>3EED Last track access on Drive 2
>3EEE i Last track access on Drive 3

1--------+--+
l >3EEF i (?? not used any more was for the 99/ll ??) 6 Bytes l
i >3EF4 i l
:--------+--+
i >3EF5 i VOLOHE IRFORHATION BLOC~ 256 Bytes l

(Copy of Sector O from the last disk accessed for a~) l
>3FF4 Contains Disk Name, type and bit map for used sectors. l

:--------+--+
i >3FF5 i FILE NAHE CCMPARE BUFFER 11 Bytes l
1>3FFF i Contains disk number and 10 character file name for last access.i

+--------+--+
88

COISOLE GROH CHIP O (Monitor)

+---+
1>0000 GROH BEADER
l >OOOO >AA Valid GROM Header Identification Code
l >0001 >02 Version number

>0002 >OOOO Number of Programs. none here
>0004 >0000 Address of Power Up Header none here
>0006 >0000 Address of Application Program Header none here
>0008 >1310 Address of DSR Routine Header
>OOOA >1320 Address of Subprogram Header
>OOOC >0000 Address of Interrupt Link none in GROM
>OOOE >0000 Reserved for future? expansion.

)0010

)0010
)0012
>0014
)0016
>0018
>001A
>001C
>001E
>0020
>0022
>0024
)0026
)0028
>002A
>002C
>002E
>0030
>0032
)0034
>0036

>0038
>003B
>0 0 3D

>003F
>0042
>0045
>0046
)0048

GPLLNI SUBROUTINE VECTOR TA.BLE
The values in these tables contain the instruction >40 (BR)
which is BRANCH if condition bit in status register is RESET
and the address is relative to the 6K GROM chip it resides in.
Actual address for GROM O = value - >4000 (ie: >43DC = >03DC)

>43DC LINK programs to link between programs and DSR's
>443C Return from LINK or DSR
>49A9 CNS - Convert number into a string
>4396 Load Title screen characters
>439E Load Regular upper case characters
>4446 Generate Basic WARNING message
>4449 Generate Basic ERROR message
>444C Begin execution of GROM Basic
>4052 GROM Power Up routine
>51FE INT - Convert floating point to Integer function
>4C82 - Exponentiation, raise a number to a power
>4D59 SQR - Square Root function
>4DB4 EXP - Exponential function
>4E64 LOG - Natura! Logarithm function
>4EF9 COS - Cosine function
>4F01 SIN - Sine function
>4F5F TAN - Tangent function
>4F80 ATN - Arctangent function
>43CE - Generate BEEP sound
>43D6 - Generate HONK sound

>054D12
>525E
>4417

BRANCH to GROM 2 >4D12 Get String Space routine
- Bit reversal routine

>052844
>0537B4
>60
>ODOO
>1100

- Special GROM entry point for Cassette DSR, points to
a GROM routine that calls an XML to execute the low
leve! Cassette DSR in the console ROM which returns
to the high leve! Cassette DSR in GROM.

BRANCH to GROM 1 >2844 Memory space check for PAB's
BRANCH to GROM 1 >37B4 GPL subprogram setup
DATA - Basics screen character offset
DATA - Speech Read address (>ODOO + >8300
DATA - Speech Write address (>1100 + >8300

>9000)
>9400)

>004A >43C2 Load Lower case characters
--- The following three were changed in the later version of

GROM - After approx 3/82 or LTA 1482
>004C >04B4 Address of the Title Screen character data table
>004E >06B4 Address of the Regular upper case character data table

l >0050 >0874 Address of the Lower case character data table l
+---+

89

CONSOLE GROM CHIP O Continued
+---+

l
l
l
l
l

>0052
>0396
>039E
>03C2
>03CE
>03D6
>03DC
>043C

>0446
>0~49
>044C

>044F
>044F
>0451
>0~59
>0479
>048~
>048F
>0~96
>04A7
>04B4
>06B4
>0874
>094D
>0950

>09AO
>09AO
>09A9
>OAE6
>OAEF
>OC6C
>OC77
>OC82
>OD59
>ODB4
>OE6~
>OEF9
>OF01
>OF5F
>OF80
>OFDB
>117B
>11FE

l
I>125E
l >1267
l
l
i>12A5
l
I>12CO
I>130F

GROM ROOTIH&S
POWER UP ROUTINE (displays the Title Screen)
LOAD TITLE SCREEN characters routine
LOAD REGULAR UPPER CASE characters routine
LOAD LOWER CASE characters routine
GENERATE BEEP sound routine
GENERATE HONK sound routine
LINK ROUTINES for linking between programs and DSR's
RETURN from link or DSR

>05284C
>05284E
>052010

BRANCH to GROM
BRANCH to GROM
BRANCH to GROM

DATA T!BLES
DATA >80 (Hex 80)

>284C WARNING routine
>284E ERROR routine
>2010 Execute Basic

DATA for VDP Register default values
DATA for Color Table default values for Title Screen
DATA for BEEP sound
DATA for HONK sound
DATA :1981:
DATA :TEXAS INSTRUMENTS:
DATA :HOME COMPUTER:
DATA for Title Screen Characters (CHR$(32-95))
DATA for Regular Upper Case Characters (CHR$(32-95))
DATA for Lower Case Characters (CHR$(96-126))
DATA :FOR:
DATA forTI LOGO loaded at CHR$(1) in the Pattern Dese. Table

FLOATING POIIT ROOTINES
Roll Out routine- moves part of Scratch Pad to VDP Roll OUt Areai
CNS - Convert Number into String routines l
Roll In routine- moves VDP Roll OUt Area back into Scratch Pad
Balance of CNS routines
V PUSH - Push a number from FAC onto the VDP Value Stack
V POP - Pop a number off the VDP value Stack to FAC

- Exponentiation, raise a number to a power
SQR - Square Root function
EXP - Exponential function
LOG - Natura! Logarithm function
COS - Cosine function
SIN - Sine function
TAN - Tangent function
ATN - Arctangent function
DATA and mise constants used by the Floating Point routines
Mise subroutines used by the Floating Point routines
INT - Integer function

BIT REVERSAL ROUTINE
DATA this is the >40 bytes that is moved into >8300 and used

by the Bit reversal routine.

DATA :REVIEW MODULE LIBRARY: (currently not used)

l \
\ Unused area contains >OOOO l

+---+

90

CONSOLE GROM CHIP O Continued
+---+

>1310
>1310
>1312
>1314
>1315
>1318
>131A
>131C
>131D

>1320
>1320
>1322
>1324
>1325

>1326
>131A

>1330
>1374

l >135D
>1387

>1387
>13CF
>13DA
>13DD
>13F2
>1~0E
>1 ~4~
>1~89

>1~99

>15~9
>1562

>1573
>15AO

>15AO
>16EO
>1700
>1730
>1760
>1790
>17CO

CASSETTE DSR - High Level - checks for OPEN errors, displays
screen messages for cassette operation etc.

PAB set up for DSR (see Editor/Assembler manual pages 291-304)
PAB+O -IlO Opcode (Open, Close, Load, Save etc.)
PAB+1 - Flag/Status (File-type, Mode of Operation & Data-type)
PAB+2 - VDP Data Buffer Address
PAB+~ - Logical Record Length
PAB+5 - Character Count (bytes) to be transferred
PAB+6 - Record Number (0-32767 not used for cassette I/0)
PAB+8 - Bias for ASCII characters (>60 in Basics)
PAB+9 - Length of the Device Name (>03 for CS1)
PAB+10- Start of the Device Name 'CS1' or 'CS2'
DSH Header(s)
>1318 - Pointer to next Device Name Header
>1326 - Start address for this Device
>03 - Name length for this Device
>435331 - DATA :CS1:
>OOOO - Pointer to next Device Name Header - no more
>132C - Start address for this Device
>03 - Name length for this device
>435332 - DATA :CS2:
SUBPROGRAH Beader
>0000 - Pointer to next Subprogram header - no more
>1573 - Start address for this Subprogram
>01 - Name length for this subprogram
>03 -DATA :03: (can not CALL CTRL C (CHR$(3)) from Basics)

Start of CS1 DSR (set up for CS1)
Start of CS2 DSR (set up for CS2)
Both CS1 & CS2 come here to start DSR
DO CASE Branch table for OPEN, CLOSE, READ Record, WRITE Record,

RESTORE/REWIND, LOAD, SAVE, DELETE(close)
ERROR and EXIT routines
CASSET'l'E ROUTINES
OPEN a file routine
READ a Record routine
WRITE a Record routine
Transfer data routine for READ and WRITE
LOAD a file routine
CLOSE a file routine
VERIFY cassette data routine
SAVE a file routine
CASSETTE SUBROOTINES - These subroutines display the messages
on the screen for cassette operation, turn on/off the cassette
motors, look for key presses and wait for the leader to pass.
Cassette Motor On >155E Cassette Motor Off
Wait for leader to pass
SUBPROGRAM >03 - Adds Bias >60 to the Cassette messages
DATA TABLES

Cassette operation messages
Joystick Codes for key scan
Small Character codes for key scan
Shift Table codes for key scan
FCTN Table codes for key scan
CTRL Table codes for key scan
Table for modes 1 & 2 for key scan

+---+
91

CONSOLE GROH CHIP 1
+---+

>2000
)2000
>2001
>2002
)2003
>2004
>2006
>2008
>200A
>200C
>200E

>2010
)2012
>2014
>2016
)2018
>201A
>201C
>201E

1>2020

>2022

>214D
>214F
>2151
>2152
>2156

I>215A
i>215C
1>2164
I>216C
i
i>216F
l

)216F 1

>2192
>2195

>21D6

>21E5

>2214

GRC»>J BKADEB
>AA Valid GROM Header Identification Code
)02 Version number
)01 Number of Programs.
)00 Reserved
)0000 Address of Power Up Header none here
>214D Address of Application Program Header
)0000 Address of DSR Routine Header
>4D1A Address of Subprogram Header (in GROM Chip 2)
)0000 Address of Interrupt Link none in GROM
>0000 Reserved far future? expansion.

GROH CHIP 1 VECTOB TABLE (>2000 offset)
>4417 Routine to begin execution of Basic program in GROM
>4195 Routine to clear flags & set up keyboard
>460B Routine to parse (scan) an inputted command line
>466C Routine to generate the SYNTAX ERROR message.
>467E Routine to restare cursor position after Errar
>4192 Secondary entry point far Basic Interpreter
>47F1 Routine that CALLs routines in GROM O to load characters
>436D Routine to move blocks of VDP RAM
>46AB Routine to reset the length byte far strings and numerica
ERROR HESSAGES DATA TABLE
The Errar messages in this table have a >60 (96) offset added
to them far Basic so use the Explorer's Basic Bias to see
these. (1st byte=length Next bytes=message)

APPLICATION PROGRAM Beader
>OOOO Pointer to next Application Program Header ..• none here
>216F Start address far this program (Main entry point)
>08 Name length far this program
>54492042 DATA :TI BASIC: (far the menu screen)
>41534943

>422B Vector far routine that erases the symbol table (>222B)
DATA far the cursor character pattern
DATA far the screen edge character pattern
DATA far VDP Registers 2, 3 and 4 (>FO OC F8)

START OF TI BASIC INTERPRETER
The input line is scanned far the entries at >2214 and branches
to them. If not one of these it executes the direct command
(ie: CALL CLEAR or PRINT B+C etc.).
Entry point far 'NEW' routine
Secondary entry point far Basic Interpreter
Routine to clear flags, set up keyboard & prepare far input

on the command line.
Edit Routine that CALLs other routines to stare the input from

the keyboard into the VDP RAM Screen Image Table.
Routine that CALLs another routine to scan the line just input

and convert it into token codes and stare it in VDP RAM
CASE branch table far:

RUN NEW
LIST BYE
OLD RESEQUENCE

CONTINUE
NUMBER
SAVE and EXIT'

+-------- --+

92

CONSOLE GROH CHIP 1 Continued
+---+

l
l

>222B
>2245
>2240
>2268
>228C
>229F
>22A7
>22AA
>2342
>2360

>2377
>2417
>2457
>266C
>267E
>26AB
>27E3

>27F1

1>2828
l >2828

>282A
>282C
>282E

>2830
>2832
>2834
>2836
>2838
>283A
>283C
>283E
>2840
>2842
>2844

>2846 l

>2848
>284A
>284C
>284E
>2850
>2852
>2854
>2856
>2858
>285A

TI BASIC IHTERPRETEB Cont.
Entry point for routine that erases the Symbol Table
Entry point for 'LIST' routine
Entry point for 'RUN' routine
Entry point for 'CONTINUE' routine
Entry point for 1 NUMBER 1 routine
Entry point for 'SAVE' routine
Entry point for '0L0 1 routine
Entry point for 'RESEQUENCE' routine
Entry point for 'BYE 1 routine
Routine to move blocks of VOP RAM from a Lower address to

a Higher address as you input program lines.
>8300 VOP location to move FROM
>8302 = VOP location to move TO
>835C = Number of bytes to move

Entry point for 'EOIT' (program lines) routine
Routine to begin execution of Basic program
Routine to scan an inputted command line CALLed from >21E5
Routine to generate the SYNTAX ERROR message.
Routine to restore cursor position after Error
Routine to reset the length byte for strings and numerics
Routine that clears the screen, resets the cursor and edge

characters and then executes the following routine
Routine that CALLs routines in GROM O to load character sets,

then it resets the foreground and background colors
and resets VOP Registers 2, 3 and 4

YECTOB TABLE FOR KDIT & PRESCAB ROOTINES (>2000 offset)
>4FFF Prescan (builds symbol table and checks for errors)
>4F43 Generates Bad Line Number error message
>4C75 Routine to parse the input line for non space chars
>40FA Lists a program line to screen (converts token code

>4CA6
>4A42
>4C36
>4FC4
>4B06
>4F12
>4EF9
>4F50
>4C2B
>4FAF
>5493

>5450
>51E5
>522B
>4024
>4099
>4C84
>4CAO
>4CCO
>4C7A
>4A49
>4A4F

into ASCII, reserved words)
Gets a valid character from the input line
Main edit routine to read in a line from the keyboard
Starts auto number with our line l and increment.
Finds where the first token is stored in vdp ram for line
Oeletes and inserts program lines (moves memory around)
Checks for valid line number
Converts a line number from ASCII into Binary value
Locates a program line in vdp ram
Starts auto number with default values of 100,10
Converts line l from Binary to ASCII and displays it
Checks for room for symbol table or pab, this routine

may execute a garbage collection and try again
Checks for type of char 0-9 a-~ A-Z etc.
Places a variable in the symbol table
Puts dummy entries into the symbol table
Prints out the WARNING messages
Prints out the ERROR messages
Checks the GPL stack and moves a char into it
Increments the VOP pointer for the next char
Handles unquoted strings adds unquoted token & len to it
Gets first non space char from the input line
Secondary edit routine, allows different line length
Third edit routine, allows different starting cursor pos

+---+

93

CONSOLE GROM CHIP 1 Continued
+---+

>285C RESERVED WORD TOKEI TABLE l

>2A42
>2A42

>2A49

>2A4F

>2BD6

>2C2B
>2C75
>2C7A

>2C84
>2CAO
>2CA6
>2CCO
>2D24
>2D99

>2DFA

>2EF9
>2F12
)2F43
>2F5D
>2FAF
>2FC4
>2FFF
>31E5
>3450

>3493

First 10 words point to the start of reserved word groupings. l
Groups are broken up by number of characters (1-10) per
reserved word. The Token value follows the reserved word

LINE EDITOR
Routine that accepts keystrokes into a screen line. This is a

line editor, it knows Insert, Delete etc. This entry point
sets the default starting point and line length for Basic

Second entry point for the line editor. By setting the line
length in >835E before branching here you can change the
maximum line length

Third entry point for the line editor. By setting the line
length in >835E and the start point in >8361 before branching
here you can have your input start and stop any place on
the screen

Routine that moves memory around for inserting and deleting
program lines l

Routine that sets up the values for NUMBER (auto line numbering)
Routine that parses a line and gets the non space chars
Routine that gets the first non space char. Both this routine

and the one above CALL the routine at >2CA6
Routine that checks the stack and moves a char to it
Routine that incPements the VDP pointer and jumps to >2C84
Routine that checks for strings or numerics and handles each
Routine that handles unquoted strings, adds token & length to it
Routine that prints the WARNING message on the screen
Routine that prints the ERROR message on the screen. The pointer

to the length byte in GROM for the WARNING or ERROR message
is in the Scratch Pad at >8376

Routine that lists a program line on the screen. Starting point
for the line is in >8302

Routine that converts an ASCII line number into binary
Routine that checks for valid line number input
Routine that generates the BAD LINE NUMBER error message
Routine that finds a line from the line number table
Routine that converts line D from binary to ASCII & displays it
Routine that finds the first token of a program line in VDP
PreScan routine, scans line or program and builds symbol table
Routine that places the variable in the symbol table
Routine that checks char type 0-9, a-z, A-Z etc. Character that

is checked is at >8342. This routine sets the condition bit
in the GPL Status register if char is valid for variable name

Routine that checks for enough room for a symbol table entry
or a PAB. If there's not enough room between the symbol table
and the string space it tries to move the string space to a
lower address, this may execute a garbage collection. If
there still isn't enough room it generates the MEMORY FULL
error message. (Word at >834A = space needed in bytes)

HOTE: Most of the above routines use the FAC and ARG sections ofl
Scratch Pad RAM for parameter passing. Some of them will use l
the temporary space at >8300 - >8316. Usually whenever a l
a routine does anything with a single character the characterl
is at >8342. Also, most of the references to Scratch Pad are
with an offset of >8300.
ie: opcode BF 14 0008 = Double byte store 0008 at >8314

+---+

94

CONSOLE GROM CHIP 1 Continued
+---+

l

>3510
>3513
>3516
>3519

>351C

>3527
>352F
>3538

>360E

>362A

>3643

l
1>3708
l

>3748

>3767

>378E

>37BF
l
l
I>37D6
l

BRANCH TABLE FOR A FEW OF THE ERROR HESSAG&S
>05 5671 Branch t o 5671 - ILLEGAL STATEMENT
>05 567D Branch t o 567D - MEMORY FULL
>05 4D7C Branch t o 4D7C - BAD VALUE
>05 4D81 Branch t o 4D81 - STRING-NUMBER MISMATCH

ENTRY POINTS FOR A F8V OF THE CALL STATEHEHTS

CLEAR- Places the space character + bias (>60) in every screen
position by using the GPL statement of ALL :

DATA for SOUND >42,>0B,>12,>22,>00,>00,>00,>00
DATA for SOUND >01,>FF,>01,>04,>9F,>BF,>DF,>FF,>OO
SOUND - This routine handles the entire sound statement. First

it checks the duration, then it converts it into 1/60 seconds
because sounds are interrupt driven. Next it finds the first
frequency and divides it into 111834 (111834/freq) and passes
that value to a sound table it is setting up in VDP RAM. Next
it gets the volume and sets that up and then passes all the
values to the sound chip (>8400). Interrupt routine is in
the console ROM chip.

BCHAR - This routine and the VCHAR routine both call a
subroutine at >37D6 to parse the statement for X,Y,CHAR,#CHRS
and converts these into integer values. Then it puts them on
the screen using a FMT statement (Formatted block move) that
allows for writing over the border characters.

VCHAR - This is very similar to the above statement except that
it places the characters vertically. The number of characters
is at >834A, the character is at >8300, screen row is at
>837E and the screen column is at >837F.

CBAB - This routine converts the string into the proper values
for defining a character and moves these values into VDP RAM
at the proper character + bias (>60) location. Both FAC
(>834A) and ARG (>835C) are heavily used during this CALL.
This routine appears to set up a temporary string in VDP RAM
so it is possible that it could invoke a garbage collection
and if there isn't enough room it will generate a Memory Full
error message.

KEY - This parses the statement for the key unit, checks it for
the proper range, CALLs >3767 to move it to >8374 and then
executes the SCAN routine. After returning it checks the
Status and places the proper value into your variable. Next
it evaluates the keycode, converts it into floating point and
places it in your variable.

JOYST - This is very similar to the above statement except after
returning from >3767 it computes the proper X and Y values
by CALLing >5755 and then places them into your variables.

Subprograms to do parsing for left parenthesis and commas, range
checking for a range of 1-16, >O or a preselected range.

Subprogram to parse the row and column values out of a graphics
statement (ie: CALL HCHAR •..).

SCREEN - This subprogram sets the Screen and border color.
It uses the above subroutines to parse the statement and
then places the value into VDP register 7.

Subprogram to parse HCHAR and VCHAR statements for row, column
(by CALLing >378E), ASCII character value and number of
characters.

+---+

95

CONSOLE GROM CHIP 2
+---+

>4000
>4000
>4002
>4004
>4006
>4008
>400A
>400C
>400E
>4010
>4012
>4014
>4016
>4018
>401A
>401C

>401E
>40AF
>4051
>4053
>4055
>4057
>4059
>4058
>405D
>405F

>4160
>4174
>41CF
>41D7

>4227

>426C
>4344

>45E3

>4641

>46FC

J>474C
l
l
l
l

1>4828

VECTOB TABLE FOR FILE ROOTINES (>0000 Offset)
>426C DISPLAY routine
>4160 DELETE routine
>4227 PRINT routine
>4344 INPUT routine
>401E OPEN rou ti ne
>4174 CLOSE routine
>41D7 RESTO RE rou ti ne
>45E3 READ routine
>4956 GET DATA FROM GROM/GRAM or RAM
>41CF CLOSE ALL OPEN FILES routine
>46FC PROGRAM SAVE routine
>4641 PROGRAM LOAD routine
>474C LIST routine
>48FC OUTPUT RECORD routine
>4828 END OF FILE routine

OPEN ROOTIRB- This handles OPEN Ux:"device.xx",VARIA8LE xx, ... l
Case branch table for the following OPEN parameters:
>40A8 VARIA8LE
>4068 RELATIVE
>40D1 INTERNAL
>4070 SEQUENTIAL
>4095 OUTPUT
>409A UPDATE
>40A4 APPEND
>4080 FIXED

DELETE ROOTIRB - This handles the various DELETE functions
CLOSE ROOTIRB - This handles CLOSE #x or CLOSE #x:DELETE
CLOSE ALL FILES RODTIRB - This closes all open files
RESTORE BOOTIRB- This handles RESTORE (data), RESTORE xx (data)

RESTORE #x and RESTORE #x,REC x for files
PBINT ROOTIIE- This handles both screen and file PRINT. 8oth

this and the Display routine check for Internal or Display
type records and handle each accordingly.

DISPLAY - This handles the screen DISPLAY statement (no files)
INPOT ROUTIRB - This handles both the screen and file INPUT

it also checks data type against variable type
READ RODTIRB - This handles the reading of DATA into variables

it is not used for files. CALL's routines at >48CC - >4992
OLD RODTIRB- This is the OLD DSK1.xxxxx or OLD CS1 routine, it

sets up the PA8, Calls the DSR, Tests the Checksum, gets the
new addresses for the end & start of the line O table, makes
adjustments for different RAM size (4K?) and stores them at
>8332 & >8330 respectively. Adjusts the memory and updates
the line # pointers if different RAM size. 8oth OLD & SAVE
CALL routines at >4888 - >48C8

SAVE ROOTIRB- This is SAVE DSK1.xxx or SAVE CS1 1 it closes all
open files, clears all break points, stores the start and end!
pointers for the line # table, finds the number of bytes usedl
(>8370), passes it to the PA8 and calls the DSR fora SAVE.

LIST ROOTIRB - This lists out the program lines to the screen
or to the device specified. Unfortunately it generates a
Syntax errar if you use anything but a : after the device
name. ie; LIST "PI0":100-150 is OK but not "PIO",VARIA8LE 28

END OF FILE ROUTIRB - This is the EOF(x) function.

+-------- --+

96

CONSOLE GBOM CHIP 2 Continued
+---+

l
l

>4888

>48CC

>4956

>4993

>4B53

>4BFC

>4DOO
>4DOO
>4D02
>4D04
>4D06
>4D08
>4DOA
>4DOC
>4DOE
>4D10
>4D12
>4D14
>4D16
>4D18

l
1>4D1A

>4D1A
>4D1C
>4D1E
>4D1F
>4D24
>4D26
>4D28
>4D29
>4D2E
>4D30
>4D32
>4D33
>4D38
>4D3A
>4D3C
>4D3D

SUBROOTINES
OLD & SAVE SUBROUTINE - This gets the program name, initializes

many of the program pointers, deletes the symbol table, sets
up the PAB and returns.

READ & IIPUT SUBROUTINES - These find the symbol table entries,
check for Strings or Numerics, decide if its GROM or RAM
data and pass the Data item to the variable.
GET DATA FROM GROM OR RAM - Reads the next Data item from
GROM if the GROM Flag at >8389 is in >834D. If >834D is = O
then the next Data item is read from RAM.

OPEN, CLOSE & RESTORE SUBROOTINES - These parse out the file
number (ie: #1, if its there), check for the proper range
(> O and < 256), scan the PAB chain for the proper file.
If any of these items are not right it returns with an error.
On a Close the routine at >49E6 deletes the PAB and adjusts
the memory and PAB chain pointers.

PRIHT SUBROUTINES - These handle the outputting of data to the
screen orto a file. They check for valid separators (,; :)
and handle each accordingly. For screen output they add the
character offset (>60) to each character.
OUTPUT A RECORD - This is the subroutine that outputs a
a record to either the screen or an output device, depending
on the PAB (file DO = screen output)

VECTOR TABLE FOR BASIC EIECUTION
>56CD Screen Scroll Routine
>5120 Move a String from the Program area to the String Space
>4DBO Second entry point for executing a Basic Program
>56BB Subroutine to find line number after BREAK
>5613 Subroutine that sets the pointer for next Data item
>5645 Subroutine to convert line number into ASCII (Trace mode)
>4DBF Third entry point for executing a Basic program (CONT)
>4E38 Subroutine that BREAKs a running program
>4D8A First entry point for executing a Basic program (RUN)
>515C Subroutine that sets up room for a String
>55BB Subroutine that clears out a temporary String
>56E1 Subroutine to convert a String into a Number
>51A9 Garbage Collection subroutine.

SUBPROGRAH POIBTEB TABLE (For CALL xxxx ...)
>4D24 Points to next Subprogram
>3538 Entry point for this Subprogram
>05 Length of this name
>534F554E44 :SOUND:
>4D2E Points to next Subprogram
>351C Entry point for this Subprogram
>05 Length of this name
>434C454152 :CLEAR:
>4D38 Points to next Subprogram
>5713 Entry point for this Subprogram
>05 Length of this name
>434F4C4F52 :COLOR:
>4D42 Points to next Subprogram
>56EF Entry point for this Subprogram
>05 Length of this name
>4743484152 :GCBAR:

+---+

97

CONSOLE GB(Jf CHIP 2 Contioued
+-------- --+

>4D42
>~D44
>4D46
>4D47
>4D4C
>4D4E
>4D50 1

>4D51
>4D56
>4D58
>4D5A 1

>4D5B
>4D5F
>4D61
>4D63
>4D64
>4D67
>4D69
>4D6B
>4D6C
>4D71
>4D73
>4D75
>4D76

>~D7C
>4D81
>4D86
>4D88
>4D8A

>4DBO

>4DBF
l
>4E38

>4E5B

>4E84
>4E86
>4E88
>4E8A
>4E8C
>4E8E
>4E90
>4E92
>4E94
>4E96
>4E98
>4E9A
>4E9C
>4E9E
>4EAO

SUBPBOGRAH POIBTEB TABLE Cont.
>~D~C Points to next Subprogram
>360E Entry point for this Subprogram
>05 Length of this name
>48~3~84152 :BCRAR:
>4D56 Points to next Subprogram
>362A Entry point for this Subprogram
>05 Length of tbis name
>5643484152 :VCHAR:
>4D5F Points to next Subprogram
>3643 Entry point for this Subprogram
>04 Length of this name
>43484152 :CHAB:
>4D67 Points to next Subprogram
>3708 Entry point for this Subprogram
>03 Length of this name
>4B4559 :IEY:
>4D71 Points to next Subprogram
>3748 Entry point for this Subprogram
>05 Length of this name
>4A4F595354 :JOYST:
>OOOO Points to next Subprogram (no more)
>37BF Entry point for this Subprogram
>06 Length of this name
>53435245454E :SCRKEN:
Generate 'BAD VALUE' Error Message
Generate 'STRING-NUMBER MISMATCH' Error Message
>56D4 - Branch to routine that sets up format for screen
>566C - Branch to CAN'T DO THAT Error
RUN - This is where a Basic program first starts to RUN. This

sets up the line number pointers, scrolls the screen up
1 line and falls through to the next entry.

EIECUTE - This starts execution of the program or if in Command
mode it executes the statement you just typed in.

Third Entry point for Basic program execution. This is where
the CONTINUE Command branches to.

Subroutine that BREAKs a running program. It prevents a break
while GROM is executing, sets up the BREAK message and
displays the line number.

•• DONE •• - This is the normal end of program subroutine.

VECTOR TABLE FOB BASIC RESEBVED VORDS
>4FB6 FOR
>5463 BREAK
>5479 UNBREAK
>5459 TRACE
>545E UNTRACE
>400E READ
>4004 PRINT
>50DB CALL
>5111 QUOTED STRING CONSTANT
>~OOC RESTORE
>50CB RANDOMIZE
>4006 INPUT
>4008 OPEN
>400A CLOSE
>4F99 ((Left Parenthesis)

+---+
98

CONSOLE GROM CHIP 2 Continued
+---+

VECTOB TABLE FOB BASIC RESERVED VOBDS Cont. l
>4EA2 >4FB2 + (Plus) l
>4EA4 >4FA8 - (Minus) l
>4EA6 >4ED1 ABS l
>4EA8 >4EDC ATN l
>4EAA >4EE2 COS
>4EAC >4EE8 EXP
>4EAE >4EEE INT
>4EBO >4EFA LOG
>4EB2 >4F26 SGN
>4EB4 >4F40 SIN
>4EB6 >4F46 SQR
>4EB8 >4F4C TAN
>4EBA >52BE LEN
>4EBC >53EA CHR$
>4EBE >4FOO RND
>4ECO >4000 DISPLAY
>4EC2 >4002 DELETE
>4EC4 >524A SEG$
>4EC6 >531A STR$
>4EC8 >5349 VAL
>4ECA >53A9 POS
>4ECC >5306 ASC
>4ECE >05 401C EOF

INOTE------- Rather than document each of the above items, which would
l l require another 4-6 pages of memory maps, we will talk about

l these routines in generai.

l
l
l
l
l
l
l
l
l
l
l
l
I>54CF
>5600
>5613
>5645
>565C
>56BB
>56EF
>5713
>5740
>5755

I>57AB
I>57CO

l First off, many of these routines end with the Opcode of >10
l this is the same as Basic's CONT, so the interpreter will go

back to >4DBF and grab the next statement in your Basic Program.
All of these routines use various parts of Scratch Pad RAM

with FAC (>834A) and ARG (835C) being used very heavily. There
is also a 24 byte segment at the top of Scratch Pad RAM (>8300
through >8316) used by Basic as temporary storage places
for many of its routines. Some of the routines will clear out
any values it has place into the FAC and ARG area or the Row,
Column and Character value area at >837D - >837F.

Most of the String handling routines require that FAC through
FAC + 7 (>834A- >8351) be set up prior to execution as follows:

>834A The Symbol table address that points to the string.
>834C >6500 for a string and >6400 for numerics.
>B34E The address in VDP RAM of the string.
>8350 The length of the string.

•>8352 - Sometimes the GROM Flag is temporarily stored bere
Subroutine to handle User Defined Functions (ie: DEF)
Subroutine to check for String or numeric and set register bits.
Subroutine to set the pointer for DATA items.
Subroutine to convert the Line number into ASCII.
Subroutine to print out an Error Message.
Subroutine to find line D after BREAK, UNBREAK or RESTORE.
GCHAR subroutine.
COLOR subroutine.
Subroutine to convert floating point to integer.
Subroutines used by CALL JOYST and CALL KEY.
Subroutine to check for the left parenthesis (.
Error Message subroutines.

+---+

99

CONSOLE CRU BIT KAP (9901)
+---+

i All of the Data for the 9901 on the 99/4A is inverted.
1--------------1 On or Set =O and Off or Reset = 1
ICru Basei Bit i--
1 Address l No. i Description

~--------l-----:--
>0000 l O i O = Internal 9901 Control 1 = Clock Control
>0002 1 Set by an External Interrupt (Peripheral Device)
>0004 2 Set by TMS 9918A on Vertical Retrace Interrupt
>0006 3 Set by Clock Interrupt for Cassette read/write routines

Also used for Keyboard Matrix Row 7

KEIBOARD 8 I 8 KATRII
Column o 1 2 3 4 5 6 7

+--+
)0006 3 Row 7 M N l Joy1 Joy2 Fire
)0008 4 Row 6 SPACE L K J H Joy1 Joy2 Left
>OOOA 5 Row 5 ENTER o I u y p Joy1 Joy2 Right
>OOOC 6 Row 4 9 8 7 6 o Joy1 Joy2 Down
>OOOE 7 Row 3 FCTN 2 3 4 5 1 Joy1 Joy2 Up
)0010 8 Row 2 SHIFT s D F G A
>0012 9 Row 1 CTRL w E R T Q

>0014 10 Row o x c v B z
+--+

l
1>0016 11 No t Used
1>0018 12 Reserved - High Level
I>001A 13 Not Used
i>001C 14 No t Used
l >001E 15 No t Used
l
l

1>0020 16 Reserved
1>0022 17 Reserved
1>0024 18 Bit 2 of Keyboard Matrix Column select (8x8 matrix)
>0026 19 Bit 1 of Keyboard Matrix Column select
)0028 20 Bit O of Keyboard Matrix Column select (MSB)

(se t up the column to read - R1 = OOxx thru 07xx
(LI R12,>0024 LDCR R1,3
(an d read the row bits (3-10) with
(LI R12,>0006 STCR R4,8 INV R4

>002A 21 Se t Alpha Lock
>002C 22 Cassette CS1 motor contro l On/Off
>002E 23 Cassette CS2 motor control On/Off
>0030 2~ Audio Gate enable/disable
>0032 25 Cassette T ape Out
>0034 26 Reserved
>0036 27 Cassette T ape In
>0038 28 •

• Not Used - causes lock up •
>OOFE 128 •

+---+

100

9900 MICROPROCESSOR INSTROCTIONS

Result
Status Bits compared

Inst L> A> EQ C OV OP x t o zero Description

A x x x x x yes Add words
AB x x x x x x yes Add Bytes
ABS x x x x x no Absolute Value
AI x x x x x yes Add word with Immediate value
ANDI x x x yes AND word with Immediate value
B no Branch (Goto)
BL no Branch & Link (Gosub- R11=Return Addr)
BLWP no Branch & Lo ad Workspace Pointer
c x x x no Compare words
CB x x x x no Compare Bytes
CI x x x yes Compare word with Immediate value
CKOF no External Clock Off - not o n l! A
CKON no External Clock On - not on l! A
CLR no Clear (make it >0000)
coc x no Compare Ones Corresponding
czc x no Compare Zeros Corresponding
DEC x x x x x yes Decrement
DECT x x x x x yes Decrement by Two
DIV x no Divide (unsigned)
IDLE no Idle - Wait for Interrupt - not on IJA
INC x x x x x yes Increment
INCT x x x x x yes Increment by Two
INV x x x yes Invert (same as NOT)
JEQ 1 no Jump if Equal (or Zero)(EQ=1)
JGT no Jump if Greater Than (A>=1)
JH 1 o no Jump if High (L>=1 an d EQ=O)
JHE 1 1 no Jump if High or Equa l (L>= 1 or EQ=1)
JL o o no Jump if Lo w (L>=O an d EQ=O)
JLE o 1 no Jump if Low or Equal (L>=O or EQ=1)
JLT o o no Jump if Less Than (A>=O and EQ=O)
JMP no Jump - always (unconditional)
JNC o no Jump if No Carry (C =0)
JNE o no Jump if Not Equal (EQ=O)
JNO o no Jump if No Overflow (OV=O)
JOC no Jump O n Carry (C =1)
JOP no Jump if Odd Parity (0P=1)
LDCR x x x x b yes Lo ad Cru Bits (Write Out Bits)
LI x x x yes Lo ad with Immediate value
LIMI no Lo ad Interrupt Mask Immediate
LREX no Lo ad External - not on IJA
LWPI no Lo ad Workspace Pointer Immediate

1 o 1

9900 HICROPROCESSOR INSTROCTIONS

Status Bits
Inst L> A> EQ C OV OP X

MOV x x x
MOVB x x x x
MPY
NEG x x x x x
NOP
ORI x x x
RSET
RT
RTWP x x x x x x x
s x x x x x
SB x x x x x x
SBO
SBZ
SETO
SLA x x x x x
soc x x x
SOCB x x x x
SRA x x x x
SRC x x x x
SRL x x x x
STCR x x x b
STST
STWP
SWPB
szc x x x
SZCB x x x x
TB x
X e e e e e e e
XOP e e e e e e x
XOR x x x

Result
compared
to zero

yes
yes
no
yes
no
yes
no
no
no
yes
yes
no
no
no
yes
yes
yes
yes
yes
yes
yes
no
no
no
yes
yes
no
yes
no
yes

Description

Move word
Move Byte
Multiply (unsigned)
Negate (same as Change Signor NOT+1)
No Operation - Pseudo (JMP $+2)
OR with Immediate value
External Reset - not on 4A
Return- Pseudo (B •R11)
Return with Workspace Pointer
Subtract words
Subtract Bytes
Set Bit to One
Set Bit to Zero
Set to Ones (make it >FFFF)
Shift Left Arithmetic
Set Ones Corresponding
Set Ones Corresponding Bytes
Shift Right Arithmetic
Shift Right Circular
Shift Right Logica!
Store Cru Bits (Read In Bits)
Store Status Register
Store Workspace Pointer
Swap Bytes
Set Zeros Corresponding
Set Zeros Corresponding Bytes
Test Bit
Execute
Extended Operation - Software Interrupt
XOR - Exclusive OR

b - Odd Parity bit is only affected on byte type Load Cru and Store Cru
instructions (8 bits or less).

e - The Execute instruction does not affect status bits, but the instruction
that the Execute instruction executes may. The XOP instruction sets the X
status bit and the instruction that the XOP branches to may affect the
status bits.

NOTE: If the Result is compared to zero it will set the E (Equa!) when it is
zero and clear the E bit in the Cpu Status Register when it is not zero. So
if the instruction is MOV RO,RO and RO contains zero, the E bit will be set
and the next instruction may be JNE >xxxx (Jump if Not Equa!) which, in this
case, has the same meaning as a Jump If Not Zero instruction would.

102

BREAI POINT VOlli: SHKET

CPU BP SETTIBGS

Key Scan Routine E/A and GPL

Key Press Detected & Decoded

Read Key Board Cru Bits

Start Execution Of Interrupt Routine

GB(II BP SETTINGS

Reset V1 to Watch Power Up

Power Up Title Screen Built

YDP BP SETTIBGS

Start Screen Scroll

End Screen Scroll (32 Column)

Start Write To Basic Crunch Buffer

Start Write To X-B Crunch Buffer

Reset Screen Color in Basics

1 o 3

02B2

o~~~

03~6

0900

OOEB

6000

0020

~300

~320

~820

8707

GROM START ADDR&SS & VDP REGISTEB

VORI SBEET

POWER UP ROUTINE
Cpu Grom
WS 83EO AD x xxx -----
PC 0024

v O 00 v2 FO v4 F9 v6 F8
v1 EO v3 OE v5 86 v7 F7

TI EXTENDED BASIC
Cpu Grom
WS 83EO _____ AD 6372 ____ _
PC 006A ------

vO 00 v2 00
v1 EO v3 20

MINI MEMORY
Cpu

v4 00
v5 06

Grom

v6 00
v7 07

WS 83EO ___ _ AD 6020 ____ _
PC 006A ___ _

vo 00
v1 EO

v2 00
v3 OE

v4 01
v5 06

v6 00
v7 F5

TERMINAL EMULATOR II - Title & Menu
Cpu Grom
WS 83EO ____ AD 6292 ___ _
PC 006A ___ _

vO 00
v1 EO

v2 00 v4 01
v3 OF v5 08

SPEECH EDITOR
Cpu Grom

v6 00
v7 CF

WS 83EO ___ _ AD 6075 ---------
PC 006A ----

vO 00
v1 EO

v2 FO
v3 OE

v4 F9
v5 86

v6 F8
v7 F7

TI BASIC
Cpu
WS 83EO
PC 006A

v O 00 v2 FO
v1 EO v3 OE

EDITOR/ASSEMBLER
Cpu
WS 83EO ____
PC 006A

v O 00 v2 00
v1 EO v3 OE

EASY BUG
Cpu
WS 83EO
PC 006A

v O 00 v2 FO
v1 EO v3 OE

AD VENTURE
Cpu
WS 83EO ____
PC 006A ----

v O 00 v2 00
v1 FO v3 OF

MUNCH MAN - Title
Cpu
WS 83EO ____
PC 006A ---

v O 00 v2 00
v1 EO v3 OE

104

Grom
AD 216F -------

v4 F9 v6 F8
v5 86 v7 F7

Grom ~
AD 6025 -~~: '

v4 01 v6 00
v5 06 v7 F5

Grom
AD 70B9

v4 F9 v6 F8
v5 86 v7 F7

Grom
AD 6798

v4 01 v6 F8
v5 86 v7 4B

Grom
AD 6020 ------

v4 01 v6 00
v5 06 v7 03

GROM START ADDRBSS & VDP RBGISTBR

WORK SHBET

PARSEC - Ti tle
Cpu
WS B3EO ______

PC 006A

v O
v1

Cpu
ws
PC

00
E2

v2 00
v3 OE

Grom
AD 601D ------

v4 01 v6 00
v5 06 v7 11

Grom
AD ____ _

vO v2 v4 v6
v1 __ v3 __ v5 __ v7 __

Cpu

WS ------­
PC------

Grom
AD _____ _

vO __ v2 __ v4 ___ v6 __ _
v1 --· v3 __ v5 __ v7 __

Cpu Grom

ws ------- AD ---------
PC ___ _

v O
v1

v2 __ vlJ __ v6 __
v3 __ v5 __ v7 __

Cpu

WS --------­
PC------

Grom
AD

vO v2 v4 v6
v1 __ v3 __ v5 __ v7 --·

105

PARSEC - Game
Cpu Grom
WS 83EO _____ AD 60B7 _____
PC 006A ------

v O 02 v2 06 v4 03 v6 03
v1 E2 v3 FF v5 36 v7 00

Cpu Grom

ws -------- AD---------
PC ---------

vO v2 v4 v6
v1 __ v3 __ v5 __ v7 __

Cpu

ws -----­
PC -----------

Grom
AD ___ _

vO v2 vlJ v6
v1 __ v3 __ v5 __ v7 __

Cpu

ws -----------
PC ---------

Grom
AD

v O
v1

v2 v4 v6
v3 --· v5 __ v7 __

Cpu Grom

ws ----------- AD ___ _

PC ----------

v o
v1

v2 v4 v6
v3 __ v5 __ v7 __

HILLERS GRAPHICS - LIHITRD WARRANTY

Millers Graphics warrants the Explorer program, which it manufactures, to be
free from defects in materials and workmanship for a period of 90 days from
the date of purchase.

During the 90 day warranty period Millers Graphics will replace any defective
products at no additional charge, provided the product is returned, shipping
prepaid to Millers Graphics. The Purchaser is responsible for insuring any
product so returned and assumes the risk of loss during shipping.

Ship to:
Millers Grapbics

1-75 V. Cypress Ave.
San Dt.as, California 91773

VARRANTY COVERAGK

This EXPLORER program is warranted against defective material and
workmanship. THIS WARRANTY IS VOID IF THE PRODUCT HAS BEEN DAMAGED BY
ACCIDENT, UNREASONABLE USE, NEGLECT, TAMPERING, IMPROPER SERVICE OR OTHER
CAUSES NOT ARISING OUT OF DEFECTS IN MATERIALS OR WORKMANSHIP.

WARRANTY DISCLAIMBRS

ANY IMPLIED WARRANTIES ARISING OUT OF THIS SALE, INCLUDING, BUT NOT LIMITED
TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN DURATION TO THE ABOVE 90 DAY PERIOD. MILLERS
GRAPHICS. SHALL NOT BE LIABLE FOR LOSS OR USE OF THE SOFTWARE OR OTHER
INCIDENTAL OR CONSEQUENTIAL COSTS, EXPENSES, OR DAMAGES INCURRED BY THE
CONSUMER OR ANY OTHER USE.

Some states do not allow the exclusion or limitation of implied warranties or
consequential damages, so the above limitations or exclusion may not apply to
you in those states.

LEGAL RBMBDIES

This warranty gives you specific legal rights, and you may also have other
rights that vary from state to state.

RKPLACKMENT AFTBR VARRANTY

After the 90 Warranty period has expired you may return any originai
defective diskette, along with a check for 4.00 to cover shipping and
diskette costs, and we will replace it.

- Revisited by TI99 Italian User Club (info@ti99iuc .it) in: April 2014

Downloaded from www.ti99iuc.it

MILLERS GRAPHICS
1475 W. Cypress Ave.
San Dimas, CA 91773

	explorer_manual-0000
	explorer_manual-0001
	explorer_manual-0002
	explorer_manual-0003
	explorer_manual-0005
	explorer_manual-0006
	explorer_manual-0007
	explorer_manual-0008
	explorer_manual-0009
	explorer_manual-0010
	explorer_manual-0011
	explorer_manual-0012
	explorer_manual-0013
	explorer_manual-0014
	explorer_manual-0015
	explorer_manual-0016
	explorer_manual-0017
	explorer_manual-0018
	explorer_manual-0019
	explorer_manual-0020
	explorer_manual-0021
	explorer_manual-0022
	explorer_manual-0023
	explorer_manual-0024
	explorer_manual-0025
	explorer_manual-0026
	explorer_manual-0027
	explorer_manual-0028
	explorer_manual-0029
	explorer_manual-0030
	explorer_manual-0031
	explorer_manual-0032
	explorer_manual-0033
	explorer_manual-0034
	explorer_manual-0035
	explorer_manual-0036
	explorer_manual-0037
	explorer_manual-0038
	explorer_manual-0039
	explorer_manual-0040
	explorer_manual-0041
	explorer_manual-0042
	explorer_manual-0043
	explorer_manual-0044
	explorer_manual-0045
	explorer_manual-0046
	explorer_manual-0047
	explorer_manual-0048
	explorer_manual-0049
	explorer_manual-0050
	explorer_manual-0051
	explorer_manual-0052
	explorer_manual-0053
	explorer_manual-0054
	explorer_manual-0055
	explorer_manual-0056
	explorer_manual-0057
	explorer_manual-0058
	explorer_manual-0059
	explorer_manual-0060
	explorer_manual-0061
	explorer_manual-0062
	explorer_manual-0063
	explorer_manual-0064
	explorer_manual-0065
	explorer_manual-0066
	explorer_manual-0067
	explorer_manual-0068
	explorer_manual-0069
	explorer_manual-0070
	explorer_manual-0071
	explorer_manual-0072
	explorer_manual-0073
	explorer_manual-0074
	explorer_manual-0075
	explorer_manual-0076
	explorer_manual-0077
	explorer_manual-0078
	explorer_manual-0079
	explorer_manual-0080
	explorer_manual-0081
	explorer_manual-0082
	explorer_manual-0083
	explorer_manual-0084
	explorer_manual-0085
	explorer_manual-0086
	explorer_manual-0087
	explorer_manual-0088
	explorer_manual-0089
	explorer_manual-0090
	explorer_manual-0091
	explorer_manual-0092
	explorer_manual-0093
	explorer_manual-0094
	explorer_manual-0095
	explorer_manual-0096
	explorer_manual-0097
	explorer_manual-0098
	explorer_manual-0099
	explorer_manual-0100
	explorer_manual-0101
	explorer_manual-0102
	explorer_manual-0103
	explorer_manual-0104
	explorer_manual-0105
	explorer_manual-0106
	explorer_manual-0107
	explorer_manual-0108
	explorer_manual-0109
	explorer_manual-0110
	explorer_manual-0111
	explorer_manual-0112

