

Texas Instruments TI-99/4A Computer

Beginner's BASIC

Beginner's
BASIC

LCB4180

A step-by-step guide that takes you from the "ground up" into an
adventure —the adventure of communicating with a computer in a
simple, yet powerful language.

Even if this is the first time you've seen a computer, you'll be able
to follow this easy-to-understand, hands-on approach.

Note: The instructions and sample programs in this book are designed for use
with the Texas Instruments TI-99/4A Computer. The information included will
be generally useful with other computers incorporating BASIC programming
language conforming to the American National Standard for Minimal BASIC.
However, the program instructions included here —especially those for graphics
and sound —will apply specifically to the TI computer.

This book was developed by

Don Inman
Ramon Zamora

Bob Albrecht

in cooperation with Texas Instruments Incorporated and
the Staff of the Texas Instruments Learning Center:

Jacquelyn Quiram
Bob O'Dell

Artwork and layout were coordinated and executed by

Schenck Design Associates, Inc.

ISBN 0-89512-028-3
Library of Congress Catalog Number: 79-65510

Copyright© 1979, 1981 by Texas Instruments Incorporated

Beginner's BASIC

Table
of Contents

INTRODUCTION Page
You and Computer Programming 5
TI BASIC [m 5
About this Book 6

CHAPTER 1: THE IMMEDIATE MODE

The PRINT Statement 8
The CALL CLEAR Statement 10
Error Messages 11
Error Correction 12
The LET Statement 13
The CALL SOUND Statement 17
Graphics (CALL VCHAR and CALL HCHAR) 20
Summary 25

CHAPTER 2: SIMPLE PROGRAMMING

A Printing Program 26
Program Structure '. 27
Commands - NEW, RUN, LIST 28
A Numerical Program 29
Editing the Program 31

Adding Program Lines 31
Removing Program Lines 32
The INPUT Statement 33

String Variables 35
The GO TO Statement 38
A GO TO Loop with CALL SOUND 39
A GO TO Loop with CALL COLOR 40
Error Messages 45
Summary 47

CHAPTER 3: MORE PROGRAMMING POWER

The FOR-NEXT Statement 48
A GO TO Loop 49
A FOR-NEXT Loop 49

CALL COLOR with a FOR-NEXT Loop 52
"Nested" FOR-NEXT Loops 53

Error Conditions with FOR-NEXT 56
Plain and Fancy Printing 57

Spacing with Commas 57
Spacing with Semicolons 60
Spacing with Colons 62
The TAB Function 63

Arithmetic Power 66

Order of Operations 67
Using Parentheses 67
Scientific Notation 69

The INT Function 69
Summary 72

Beginners BASIC

CHAPTER 4: FUN AND SIMULATIONS Page

The RND Function 73
The RANDOMIZE Statement 74

Other Random Number Ranges 75
A Two-Dice Simulation 78
Error Conditions with RND 80

Randomized Character Placement 80

The IF-THEN Statement . 83
Error Conditions with IF-THEN 85

Games and Music 85

A Number-Guessing Program 86
A Tone-Guessing Program 88
Color Up! 89
Random Notes 91

A Musical Interlude 92

The CALL KEY Routine 93

Summary 94

CHAPTER 5: COMPUTER GRAPHICS

Blocks of Color 96

The CALL SCREEN Statement 97

Patterns 98

Rectangles and Squares 98
"Holes" 103

Animation 104

Flashing Letters 104
Flashing Color Squares 105
Moving Color Squares 107

The CALL CHAR Statement 108

A Block Figure with CALL CHAR 114
Mr. Bojangles 118
The Giant 121

Summary 123

Appendix A: Musical Tone Frequencies 124

Appendix B: Character Codes 125

Appendix C: Color Codes 126

Appendix D: Mathematical Operations 127

Index 142

Beginner's BASIC

Introduction

You and Computer Programming

This book is your guide to an adventure —learning to program your Texas
Instruments computer. Even if you have never worked with a computer before,
you can use this book to teach yourself, your family, and your friends how to use and
enjoy your computer.

Computers are rapidly becoming an everyday part of our lives. We're very familiar with
bank statements compiled and printed by computers; we watch computerized
scoreboards at sports events —we even see computer-aided instruction in our
children's classrooms! Almost everything we eat, wear, and use has been handled at
some point in the manufacturing process by computer-controlled machinery.

By learning to program and interact with your computer, you'll be joining this
technological revolution of the Computer Age. You'll understand more about how
computers work, what they can (and can't) do. and why they are becoming so widely
used. Best of all, you'll be able to apply the power of your computer to the areas that
appeal to you —your business and finance, your hobbies, your family's needs and
interests.

And perhaps we'd better warn you —many people become fascinated with computer
programming as an exciting and entertaining hobby! So don't be surprised when you —
and all the family —find yourselves wanting to learn about and use your computer
more and more as time goes on.

What is computer programming? Nothing mysterious! Programming is simply
communicating with a computer —telling it what to do and when to do it. To program
your computer you'll only need to learn two things: the language your computer
understands, and the way you talk to it. No lengthy training periods or super-
sophisticated skills are required.

TI-BASIC

In order to communicate with any computer, you'll need to learn its language. The
language we'll be exploring here is a form of BASIC (short for Beginners All-purpose
Symbolic /nstruction Code). BASIC was developed by John Kemeny and Thomas
Kurtz at Dartmouth College during the middle 1960s. Although BASIC is only one of
many computer languages, it is one of the most popular in use today. It's easy to learn
and simple to use; yet it's powerful enough to do almost anything you'd want to do with
computers.

Some BASIC features may vary slightly from one type of computer to another. The
similarities, however, far outweigh the differences; in fact, you can think of these
different forms of BASIC as dialects of the same language. The dialect used by the
TI computer is called TI BASIC.

As you read this book and try out the examples on your own computer, you'll notice
one striking fact about BASIC: it's very much like English! You'll see words like
PRINT GO TO, RUN, and END. The meanings of these words in BASIC are almost
identical to the definitions you already know and understand. This fact is what makes
BASIC so easy to learn and fun to use.

Beginner's BASIC 5

Introduction

Now, how do you talk to the computer? Well, take a look at the keyboard. You see
there the letters of the alphabet, numbers, punctuation marks, and other special
symbols, many of which you've seen before on typewriter keyboards. Everything you'll
need to use to communicate with your computer is right there on the keyboard. You
"type" your instructions, and the computer "hears" them. It's essentially as easy as that!

About This Book

This book will guide you step by step through the process of learning TI BASIC. While
the book is not a complete textbook on BASIC programming, the material included
here will give you a good foundation for the continued development of your
programming skills. (Once you are familiar and comfortable with BASIC, you'll be
ready for the more advanced material found in the User's Reference Guide.)
Throughout the book, each explanation of a statement or command is followed by one
or more examples for you to try out. Also, you can —and should —experiment with
other examples of your own, to help you become thoroughly acquainted with the
capabilities of your computer. You'll find some special sections marked EXPERIMENT!
throughout the book. These are for you to try out on your own.

In the first chapter we'll explore some of the BASIC statements that can be performed
in what's called the Immediate Mode (that is, directly from the keyboard). Do you want
to add 3 and 5, or create sounds, or make designs (computer graphics) on the screen?
You can do all of these in the Immediate Mode, and you'll find out how to do them in
Chapter 1.

Chapters 2 and 3 take you on into programming. You'll learn how to "structure" a
program, issue "commands" your computer can follow, perform mathematics, use
graphics and sound more effectively, and create loops (program segments that repeat
themselves).

Then, in Chapters 4 and 5, you'll get further into some of the exciting things a
computer can do. Did you know that your computer can play games? Make music?
Draw colorful designs on the television screen? It can, and you can teach it how!

At the end of the book are several appendices of reference information you can use as
you develop your own programs. Of special interest to those who want and need to use
the computer a's a powerful computational device, Appendix D outlines the
mathematical operations and functions of the computer. You'll also find a convenient
alphabetized index of topics to help you look up features you want to review.

Now that you know what's ahead, let's waste no more words —let's get started in the
Immediate Mode.

Beginner's BASIC

1
CHAPTER
ONE The Immediate

Mode

In its Immediate Mode, your computer "immediately" performs each BASIC statement
you've typed in, as soon as you press ENTER. Because you can see an instant response
on the screen, the Immediate Mode is a good way to introduce and explore certain
BASIC language statements.

Before you begin learning BASIC, take a few minutes to review the operation of the
keyboard. You'll find a complete "key tour" in the User's Reference Guide.

When you are ready, turn on your computer. The display screen should look like this:

TEXAS INSTRUMENTS

HOME COMPUTER
READY-PRESS ANY KEY TO BEGIN

. © 1981 TEXAS INSTRUMENTS .

Press any key on the keyboard. The display will then show the master selection list.

{Note: When you're ready to leave TI BASIC, just type the word BYE and press the
ENTER key. The computer will then return to the main title screen.)

The examples shown in this book are printed in upper-case (large capital) letters. If
you want to reproduce the examples exactly as you see them here, press down the
ALPHA LOCK key. However, in most cases the computer accepts either upper-case or
lower-case letters.

Also, see Important Keyboard Information on the inside front cover of this book for
details about the function keys (CLEAR, left-arrowkey, right-arrowkey, etc.).

Beginner's BASIC

1
Press the 1 key to select TI BASIC.

The display now shows that the computer is ready for you to begin.

The flashing rectangle is called the cursor. It tells you that the computer is ready for
you to use. Whenever you see the cursor, you know that it's your turn to do something.
The prompting symbol marks the beginning of each line you type.

The PRINT Statement

The PRINT statement means exactly what it says. You merely type the word PRINT,
followed by a message enclosed in quotation marks, aryi the computer prints the
message when you press ENTER.

PRINTi'JTHIS IS A MESSAGED

End quotes

Remember to press the ENTER key after the ending quotation marks! This is the
computer's cue to perform what you have requested.

r

TI BASIC READY

>PRINT "THIS IS A MESSAGE'

THIS IS A MESSAGE

>•

"%

Beginner's BASIC

Let's try another PRINT statement.

Type this:

one space PRINT "HI,THERE!"

CHAPTER ONE:

The Immediate Mode

quotation
marks

{Note: If you accidentally press a wrong letter or symbol key, just use the left arrow key
to move the cursor back to the incorrect symbol. Then retype.)

Now press ENTER, and the computer will do just what you told it to do:

TI BASIC READY

>PRINT "THIS IS A MESSAGE"

THIS IS A MESSAGE

>PRINT "HI THERE!"

HI THERE!

Did you notice the way the lines moved up on the screen when you pressed ENTER and
again when the computer finished printing its line? This procedure is called scrolling.
The cursor tells you it's your turn now and shows you where the next line will begin.

Let's try another example. Type these words, but don't press ENTER just yet:

PRINT, "I. SPEAK BASIC. DO,YOU?"

(When you run out of room on a line, just keep typing —the computer will
automatically "scroll" to the next line.)

Beginner's BASIC

1
Now, look at the screen and check what you've typed. If there are any errors, just use
the left arrowkey until the cursor has reached the error. Then retype the line correctly
from that point on. (This is only one correction procedure —you'll learn others as you
go along in the book.) When everything is correct, press the ENTER key. You'll then
see:

r

TI BASIC READY

>PRINT "THIS IS A MESSAGE

THIS IS A MESSAGE

>PRINT "HI THERE!"

HI THERE!

>PRINT "I SPEAK BASIC. DO YO

U?"

I SPEAK BASIC. DO YOU?

>D

If you want to try some other PRINT statements on your own, go right ahead. Each
time you press ENTER, you'll see the lines on the screen scroll upwards. The top lines
will finally begin to disappear as the screen's capacity (24 lines) is reached.

The CALL CLEAR Statement

You've probably noticed that your video display has begun to look rather cluttered. If
you want to clear the screen for a less distracting appearance, you can use the words
CALL CLEAR.

CALL CLEAR wipes the slate clean for your next request, and your display will look
like this:

10 Beginner's BASIC

CHAPTER ONE:

The Immediate Mode

Note: As you work through this book, you'll see several BASIC statements that begin
with the word CALL. Your computer has been "taught" to do certain things by having
some special-purpose programs built into it, and a CALL statement tells the computer
to "call" the built-in program named in the statement.

Error Messages

Every computer programmer makes mistakes, so don't hesitate to try experiments of
your own as you go through the examples in this book. Errors will not hurt the
computer. It quickly recognizes things it can't do and gives you an error message and a
tone to tell you to try again. When mistakes happen, just identify the error and retype
the instruction correctly.

Some of the most common errors are typing a wrong letter and omitting a necessary
part of the statement. For example, here are a few mistakes your computer doesn't
like in a PRINT statement:

1. A misspelling in the word PRINT
2. A missing or extra quotation mark.
3. Extra spaces in the word PRINT.

Let's experiment with some intentional errors to become more comfortable with error
messages.

(1) Misspelling in the word PRINT

Beginner's BASIC

r

>PIRNT "THIS IS A MESSAGE"

* INCORRECT STATEMENT

>•

11

1
(2) Missing or extra quotation marks

r

>PRINT "THIS IS A MESSAGE

* INCORRECT STATEMENT

>D

(3) Extra spaces in the word PRINT

r

f Extra space \

*S.

S'RINT "THIS IS A Mf>P'RINT "THIS IS A MESSAGE"

* INCORRECT STATEMENT

>•

%

Press ENTER.

Experiment!

Try a few more messages with the PRINT statement, introducing intentional errors so
that you will become familiar with the error messages. (We'll discuss other error
messages at appropriate places throughout the book.).

Error Correction

There are several ways to correct typographical errors before you have pressed ENTER.

1. You can press ERASE to erase what you've typed on the line.

2. If you spot the mistake just after you've made it, use the left arrow key to move the
cursor back to the error, retype the line from that point on, and then press ENTER.
(Note that the characters are not erased as you backspace over them.)

12 Beginner's BASIC

CHAPTER ONE:

The Immediate Mode

3. If you've finished typing a line and you find a mistake near the beginning of the line,
use the left arrow key as above, retype the letter or word, use the right arrow key
to move the cursor back to the end of the line, and then press enter. Note
that the right arrowkey does not erase as it moves the cursor. If you need to erase a
character or word, use the space bar to advance the cursor over the character.

OR

You can just disregard the error and press ENTER anyway. The computer may give you
an error message, but it's very forgiving. Simply retype your line —correctly, this time
—and press ENTER again.

The LET Statement

The LET statement is used to assign a value to a variable. Variables are "names"
given to numbers or to phrases containing both numbers and letters (and certain other
characters). Although there are two types of variables, in this section we'll consider
only those variables that give names to numbers. These are called numeric variables.
A numeric variable is just a name given to a numeric value.

In the LET statement the word LET is followed by the variable (the name), then an
equals sign, and finally the numeric value you're assigning to the variable. Variables
can be up to 15 characters long, but they are generally kept fairly short for
convenience.

Let's try a few examples. Type in the following lines, pressing ENTER at the end of each
line:

LET A2=8

LET ALPHA=10

You can think of variables as labeled boxes that hold assigned values.

Beginner's BASIC

LET A=5 s^fe,
s^S^

A = 5

LET A2 = 8 ^fHI
A2 = 8

LETALPHA = 10 ^Oc

ALPHA = 1C)

13

1
Only onevalue at a time may be assigned to a given variable, but you can change a
value easily. Type these successive LET statements, pressing ENTER after each line.

LET A = 5

LET A = 8

The value of A is no longer 5. The 5 has been replaced by the value 8.

Now let's use PRINT statements to check the values we've entered. Clear the screen;
then type PRINT A and press ENTER.

Did you notice that this PRINT statement is different from the PRINT statements we
explored earlier? We didn't put quotation marks around the A. That's because we
didn't want to print the letter A; we only wanted to see the numeric value assigned to A.

Now, check for the values of A2 and Alpha. (Remember! Press the ENTER key at the
end of each line, even though it isn't shown in the illustration below.)

14

f

>PRINT A

8

>PRINT A2

8

>PRINT ALPHA

10

V
>D

Beginners BASIC

CHAPTER ONE:

The Immediate Mode

A single PRINT statement can also be used to print two or more things. Clear the
screen, and try these examples:

Now, try these:

r

>LET AL=6

>LET ALBERT=8

>PRINT AL;ALBERT
6

>•

The computer divides the display screen into two horizontal zones. When you use a
comma (,) between two (or more) variables in a print statement, you are telling the
computer to print the values in different zones. On the other hand, the semicolon (;)
instructs the computer to print the numbers close together.

If you want to print the variable's name along with its value, you can. Remember our
old friends, the quotation marks? Here's where we use them again:

>LET BILL=25

>PRINT "BILL=,,;BILL
BILL= 25

>D

(Did you remember to press ENTER at the end of each line?)

Beginner's BASIC 15

1
Now that you've learned to assign values to variables, what can you do with this new
skill? Let's find out. First, use the CALL CLEAR statement to clear the screen.

After variables have been assigned values by LET statements, the PRINT statement
may be used to perform arithmetic operations on the variables and to display the
results.

r

>LET W=4

>LET T=8

>PRINT W+T;T-W
12 4

>D J
You can also perform multiplication and division by using an asterisk (*) to multiply
and a slash mark (/) to divide. For example,

f

>PRINT W*T;T/W
32 2

>•

•^

Note: In TI BASIC, the LET statement is not the only way to assign a numeric value
to a variable. Your computer will also accept the assignment without the word LET:

16

>JACK=3

>JILL=5

>PRINT JACK*JILL

15

>D

^

Beginner's BASIC

CHAPTER ONE:

The Immediate Mode

In other words, the word LET is optional in TI BASIC; your computer will accept the
assignment either way.

Experiment!

Try other variable names and numeric values, and experiment with using the comma
and semicolon to separate variables in the PRINT statement. Try adding, subtracting,
multiplying, and dividing these variables in PRINT statements. Discover what
mistakes will cause error messages.

The CALL SOUND Statement

Here is another of the CALL statements. (Remember the CALL CLEAR statement
we discussed earlier? We hope you've been using it occasionally to "erase" the display
screen.)

Using the CALL SOUND statement, you can produce sounds over a range of
frequencies from 110 to more than 44,000 Hertz. One Hertz (abbreviated Hz) is equal
to one cycle per second. Thus the sounds you generate with your computer can vary
from 110 cycles per second (A below low C on a piano keyboard) to over 44,000 (well
above human hearing limits).

You can also control the duration and the volume of the sound. The time the sound

lasts (duration) ranges from 1 to 4250 milliseconds. One thousand (1000) milliseconds
equal one second, so the duration range could be stated as being from 0.001 to 4.250
seconds. Volume selections are scaled from 0 to 30. Zero and one produce the same
sound level and are the loudest. Thirty produces the quietest tone.

This example shows how to use the CALL SOUND statement:

f Press ENTER here. J

i Loudness J
I (volume) J

Notice that the three values that control the sound are enclosed in parentheses
following the words CALL SOUND. This example will produce a note of 440 Hz (A
above middle C) with a duration of 1000 milliseconds (one second) and a volume of 2
(quite loud!).

Try the example now to hear the tone quality of your computer.

Beginner's BASIC 17

1
You can play more than one tone in a single CALL SOUND statement. Let's add a
second note and see how this enhances the sound.

Note: Because the statement above containsexactly 28 characters (letters, spaces, and
symbols), the cursor will move down to the next line as soon as you type the close
parenthesis symbol. Be sure that you remember to press enter! (Notice that the
prompting symbol stays at the beginning of your line.)

You only had to type the duration value (the number code that determines how long the
sounds last) one time - at the beginning of the CALL SOUND instruction enclosed in
parentheses. Both of the sounds must last for the same length of time. On the other
hand, you can vary the loudness values. What would happen if you typed 5, instead of
2, for the second note's loudness? Try it!

Next, try a three-note chord:

f

>CALL S0UND(1000,440,2,659,2,
880,2)

(Part of this CALL SOUND statement extends to the second line, since TI BASIC
uses only 28 printing positions per line. This gives large, clear, readable text on the
screen.)

You can produce up to three tones and one "noise" simultaneously over a given time
duration. Noise is rather hard to define in words; it's best for you to experiment and
hear for yourself. Remember, one person's "noise" may be another person's "music"!

18 Beginner's BASIC

CHAPTER ONE:

The Immediate Mode

To produce noise instead of tones, replace the tone frequency with a negative integer
from -1 to -8.

Try these examples:

f

>CALL S0UND<1000,440,2,659,2,
880,2,-3,2)

You can also use variables, rather than actual values, in the CALL SOUND
statement. For example, let's use these variables:

T = time (duration)
V = volume (loudness)
C = 262 (Middle C on the piano)
E = 330 (E)
G = 392 (G)

So type in the following LET statements:
LET T=1000

LET V=1

LET C=262

LET E=330

LET 6=392

Now you're ready for the CALL SOUND statement. Type:
CALL S0UND(T,C,V,E,V,G,V)

and press ENTER.

Beginner's BASIC 19

1
Experiment!

Experiment with other values for duration, tone, volume, and noise within the required
range of values for each. (A list of musical note frequencies is included in Appendix A.)
You'll soon be able to create imaginative sound effects for use in your future programs.
The Immediate Mode is quite helpful for this type of experimentation.

Graphics (CALL VCHAR and CALL HCHAR)

One of the most exciting things you can do with your computer is to create colorful
designs right on the screen. With your computer's graphic capability, you can make a
design, draw a picture, create a gameboard, and so on.

In this chapter, we'll introduce you to two simple, yet important, graphics statements.
CALL VCHAR and CALL HCHAR are used to position a character or draw a line of
characters on the screen. Later chapters will show you how to choose and combine
colors and how to use graphics statements in programs.

Earlier we mentioned that TI BASIC uses 28 printing positions on each line. For
graphics, however, the computer allows 32 character positions on each line. Think of
the screen as a "grid" of square blocks made up of 32 columns and 24 rows.

COLUMNS

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

10

ROWS 12

14

16

18

20

22

24

1

3
'?•

5

7

9

11

13

15

17

19

21

23

Each square on the grid is identified by two values (called coordinates) —a row number
and a column number. For example, the coordinates 5,7 mean the fifth row and the
seventh column, and the coordinates 10,11 mean the tenth row and the eleventh column.

20 Beginner's BASIC

CHAPTER ONE:

The Immediate Mode

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

1

2

5,7^3
4""*"*

5 - I
6

7

8

9

10 -r •
11

12

13

14^

0,11 "^5
16

17

18

19

20

21

22

23

24

The first thing we want to try is to place a character in a particular square on the
screen. For the time being let's consider that a character is any one of the 26 letters of
the alphabet, the numbers 0 through 9, and certain other symbols, like the asterisk (*),
the plus and minus signs (+ and -), and the slash (/). (Later on, in Chapter 5, you'll
learn more about how to define other characters for graphics.) Each character is
assigned an identifying numeric value of its own, and the values for the full character
set are given in Appendix B.

By using either CALL VCHAR or CALL HCHAR, naming the two coordinates (row
and column), and identifying a character by its numeric value, you can place the
character in any spot you choose. Here's the form used for these two statements:

Open parenthesis J /"" ^ ^^\-^
(Close parenthesis)

) v.—y^-^CALL VCHAR(12,17,42)

Try this example, and you'll see an asterisk (*) appear near the center of the screen.

Beginner's BASIC 21

1
Let's try a few more examples. First, clear the screen by typing CALL CLEAR and
pressing ENTER. Now type:

CALL VCHARC15,10,67)

(Don't forget the parentheses in the statement —they're important!)

Now try the CALL HCHAR statement

f

>CALL VCHAR<15,10,67)

~>CALL HCHAR(16,10,67)

The order for entering the row number, the column number, and the character's
numeric value is the same for both CALL VCHAR and CALL HCHAR, and they both
do the same thing when you are positioning a single character on the screen.

If you want to draw a line of characters, however, you'll find that there is a distinct
difference between the functions of the two statements. CALL VCHAR causes a
vertical column of characters to appear, while CALL HCHAR draws a horizontal row
of characters. To draw a line with either statement, we must add a fourth numeric
value to the statement: the number of repetitions we want. This number controls the
"length" of the line.

22 Beginner's BASIC

CHAPTER ONE:

The Immediate Mode

Clear the screen (type CALL CLEAR and press ENTER), and let's try a vertical line.

Type this: ^^ ^-^""^\
roSw number \ (10th column J

CALL VCHAR(11,10,86,8)

Check for errors, and then press ENTER. The screen will look like this:

-^

>CALL VCHARC11,10,86,8)

>•

As we mentioned earlier, there are 24 horizontal rows of character blocks on the "grid'
of the screen. Therefore, you can only draw a vertical line (column) that is 24
characters long. What will happen, then, if you enter a repeat value greater than 24?
Let's try it.

Clear the screen and then type in:

CALL VCHAR<1,10,86,50)

When you press ENTER, the screen should show:

f vvv
vv

vv

vv

vv

vv

vv

vv

- \̂

Your statement] vv -•
vv

is partially J
vv

replaced by \ vv
the lines. J

>CALL

vv

VCVVR<1,10,86,50)

^-^v__^/ >L^_ _J
Beginner's BASIC 23

1
{Note: Graphics in the Immediate Mode onlyare affected by the scrolling of the screen.
That's why you don't actually see all 50 of the V's above - some have already scrolled
off the top of the screen.)

We also mentioned earlier that there are 32 vertical columns; therefore, it would seem
that we could draw a horizontal line 32 characters long. However, some display
screens may "clip off' the first two and last two columns (columns 1 and 2, 31 and 32).
The only way to know what your screen shows is to experiment. So let's clear the
screen and try drawing some horizontal lines.

Type in:

CALL HCHAR(17,1,72,50)

l number I

f

HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH

HHHHHHHHHHHHHHHHHH

>CALL HCHARC17,1,72,50)

\ J
Again the printing filled one line (horizontal, this time) and then started over on the
next line. Count the H's. If you see only 28 in the full line, columns 1 and 2, 31 and 32
do not show on your screen, and you should use only columns 3 through 30 to avoid
losing part of your graphic design.

So far, we've entered actual numeric values in our statements. However, you can use
the LET statement to assign numeric values to variables and then use the variables in
the CALL VCHAR and CALL HCHAR statements. Try this:

LET A=5

LET B=12

LET C=67

CALL CLEAR

CALL VCHAR(A,B,C)

Where did the "C" appear on the screen?

24 Beginner's BASIC

CHAPTER ONE:

The Immediate Mode

Experiment!

For a big finale let's fill the screen with asterisks (numeric code 42). Type these lines,
pressing ENTER at the end of each line.

CALL CLEAR
CALL HCHAR(1,1,42,768)

Continue to experiment on your own, trying different characters (see Appendix B) and
positions. For example, can you fill the screen with your first-name initial?

SUMMARY OF CHAPTER 1

This concludes our "tour" in the Immediate Mode, and you've been introduced to these
BASIC statements:

PRINT CALL SOUND

CALL CLEAR CALL VCHAR

LET CALL HCHAR

This chapter has given you a glimpse of TI BASIC and your computer's capabilities.
Now, you're ready to get into the real fun - learning to program your computer.

Beginner's BASIC 25

2
CHAPTER

TWO Simple
Programming

In Chapter 1, you used Immediate Mode statements to instruct the computer to do one
thing at a time. Each statement was performed immediately after you pressed the
ENTER key.

You typed print "hi there!" and pressed ENTER.
The computer printed Hi there!

Now you're ready to discuss programs, sets of statements which are not done
immediately. Instead, they are stored in the computer's memory, waiting for you to
instruct the computer to perform them.

A Printing Program

Let's begin byusing an old familiar friend, the PRINT statement, in a program. First
type the word NEW and press ENTER.

Now type the following program, pressing ENTER at the end of each program line:

10'PRINT'"ARE YOU READY"
20 PRINT "TO LEARN BASIC?"
30 END

one space

(As you type the program, notice the small "prompting" character that appears just to
the left of the printing area. This symbol marks the beginning of each program line you
type.)

In computer terminology, you have just"entered" a program. Nothing to it! Check the
program now to see if there are any typing mistakes. If there are, just retype the line
correctly, including the number at the beginning of the line, right there at the bottom of
the screen. Then press ENTER. The computer will automatically replace the old line
with the new, correct one.

When you're ready to see the program in action, type CALL CLEAR and press ENTER.
The screen will be cleared, but your program won't be erased - it's stored in the
computer's memory!

Now type RUN and press enter again.

26
Beginner's BASIC

k

>RUN

ARE YOU READY

TO LEARN BASIC?

** DONE **

>•

CHAPTER TWO:

Simple Programming

•\

Want to "run" the program again? Type RUN again and press ENTER.

<r

>RUN

ARE YOU READY

TO LEARN BASIC?

** DONE **

>RUN

ARE YOU READY

TO LEARN BASIC?

** DONE **

V
>D

"N

Each time you type RUN and press ENTER, the computer begins at the first statement
and follows your instructions in order until it reaches the last statement. END means
just what it says: the end, stop!

Did you notice that the display screen briefly turned green while the program was
running? The screen always turns green while a program is beingexecuted and then
changes back to its normal blue color when the program is finished.

Program Structure

Now that you've had a bit of programming experience, let's review some of the things
you did when you entered the program above. To refresh your memory, we'll get the
program back on the screen.

Beginner's BASIC 27

2
First, type CALL CLEAR {without a line number) and press ENTER to clear the screen.
Now type LIST and press enter again:

r

>LIST

10 PRINT "ARE YOU READY
20 PRINT "TO LEARN BASIC?"
30 END

>D

The program above consists of three statements or "lines." Each statement begins with
a linenumber, which serves two important functions:

1. It tells the computer not to perform the statement immediately, but to
store it in memory when you press ENTER.

2. It establishes the order in which the statements will be done in the
program.

As in the Immediate Mode, you pressed ENTER when you finished typing each program
line. Pressing ENTER defines the end ofthe program line, justas the line number
identifies the beginning of the line. It is also the computer's cue to store the line in its
memory. Pressing ENTER ar the end ofeach program line is essential - without it, your
line wil^not becorrectly stored by the computer.

PRINT "ARE YOU READY"

PRINT "TO LEARN BASIC?"
END

Also, you may be wonderingwhywe numbered the lines in increments of ten
(10,20,30,etc). Well, we could just as easily have numbered them 1,2,3. By using
increments of ten, however, or other spreads like 100,200,300, etc., we can go back
and insert new lines ifwe want to expand the existing program, and wedon't have to
retype the whole program! (We'll cover this clever trick when we discuss editing a
program.)

Commands-NEW, RUN, LIST

You've already used these commands, but you might like a little more definition of
commands in general and these three in particularat this point.

Commands are different from statements. They are not part ofthe program, and they
do not have line numbers. Instead, they instruct the computer to do specific tasks:

NEW -Instructs the computer to erase the program in its memory. (It also
clears the screen, but don't confuse it with CALL CLEAR, which
only clears the screen.)

28
Beginner's BASIC

CHAPTER TWO:

Simple Programming

RUN —Instructs the computer to perform (or "run") the program in its
memory.

LIST —Instructs the computer to show (or "list") on the screen the program
that is stored in its memory.

As you saw earlier, we use NEW onlywhen we want to prepare the computer for
storing a new program. Be careful in using NEW; when in doubt, use LIST first, so
that you can see the current program before you erase it.

LIST is a powerful aid for correcting or changing a program. It lets you get the
program right on the screen in front of you, where you can check for and correct any
errors in your program.

And you already know what RUN will do! It's the magic word that makes it all happen.

A Numerical Program

In addition to its printing or "message" capabilities, your computer also has a great
deal of "number power." You experimented with addition, subtraction, multiplication,
and division in the Immediate Mode in Chapter 1. Now it's time to try a mathematical
problem-solving program. Just to refresh your memory, review the keys that are used
to perform the four basic mathematical operations:

SHIFT + for addition

SHIFT — for subtraction

SHIFT * for multiplication
/ for division

As an example, we can easily construct a program that will convert kilograms to
pounds (1 kilogram = 2.2 pounds). The first thing we'll do is to clear the display and the
computer's memories by typing NEW and pressing ENTER. We'll use the variables K
(for kilograms) and P (for pounds) to help us remember which value is which, and we'll
begin our program by assigning values to these variables.

TvPe: 10 LET K=50
20 LET P=2.2*K

In this case, we are trying to find out how niany pounds are equal to 50 kilograms, so
we have defined K as 50. Notice that we have defined P as 2.2 XK. If we stopped here
and ran the program at this point, the computer would perform the conversion, but it
wouldn't show us the answer! So type in:

30 PRINT P

and press ENTER. Now, have we told the computer everything it needs to do? We've told
it the number of kilograms we want converted to pounds, we've told it how to make
the conversion, and we've told it to show us the answer. Yes, that's all we need, so
type:

40 END

and press ENTER. Your program should look like this:

Beginner'sBASIC 29

2
t

K

TI BASIC READY

>10 LET K=50

>20 LET P=2.2*K
>30 PRINT P

>40 END

>D J
Before you run the program, let's mention two features ofTI BASIC that may be
slightly different from other versions of the language. First, a prompting character (to
the left of the printing field on the screen) marks the start ofevery program line you
type. You'll see its function more clearly when you begin to enter program lines that
are longer than a single screen line. Second, the END statement in a program is
optional in TI BASIC. Since it is a conventional part of BASIC, however, we'll use it
in this example.

Now check the program for typographical errors. If there are any, retype the line
correctly, including the line number, and press ENTER. When you're ready, type RUN
and press enter.

TI BASIC READY

>10 LET K =

>20 LET P=

>30 PRINT

>40 END

>RUN

- 110

=50

=2.2*K

P

** DONE **

V >D

"\

J
Your answer is on the screen: 50 kilograms is equal to 110 pounds. Suppose, however,
that we want to find the number of pounds that are equivalent to 60 kilograms. Easy!
We can do it by changing onlyone line - line 10. Type:

10 LET K=60

and press enter. Now type RUN and press ENTER again.

30
Beginner's BASIC

CHAPTER TWO:

Simple Programming

>10 LET K=50
>20 LET P=2.2*K

>30 PRINT P

>40 END

>RUN

110

** DONE **

>10 LET K=60

>RUN

132

** DONE **

Editing the Program

What you have just done is called "editing" a program. The ability to edit or change a
program without retyping the whole thing is one you'll come to value highly as your
programming skills grow. To give you an idea of the great flexibility editing adds to
programming, let's experiment with a few more changes in the present program.

Adding Program Lines

We mentioned earlier that the reason we number program lines in increments of 10
(instead of 1,2,3, etc.) is to allow program lines to be added without retyping the whole
program. Before we experiment with a few examples, let's clear the screen and recall
our program.

Type: CALL CLEAR

LIST

f ~\

>LIST

10 LET K ==60

20 LET P==2.2*K

30 PRINT P

40 ENDL >D

(Notice that the prompting character doesn't appear to the left of lines printed by the
computer —only the lines you type are marked!)

We might want to add a CALL CLEAR statement to the program, so that we won't
have to keep clearing the screen from the keyboard each time we "run" the program.

Type:
5 CALL CLEAR

Beginner's BASIC 31

2
Now list the program again to see the new line (type LIST and press ENTER).

/>LIST
10 LET K=60

20 LET P=2.2*K

30 PRINT P

40 END

>5 CALL CLEAR

>LIST

5 CALL CLEAR

10 LET K=60
20 LET P=2.2*K

30 PRINT P

40 END

>D

Compare the two programs on the screen, and notice that the computer has
automatically placed the new line in its proper order. Run the program again to see the
effect of the added line.

Now let's add another line that will help to point out our answer. Type:
27 PRINT "THE ANSWER IS:M

and press ENTER. Whenyou run the program again, you'll see this:

THE ANSWER IS:

132

** DONE **

>D

-\

J
Removing Program Lines

Quite often it's necessary to remove a line or lines from a program. Deleting a program
line is a very simple procedure.

The program we have stored right now doesn't really have any lines we want to delete.
Just for practice, however, let's remove line 5.

First, clear the screen and list the program as it is now. Line 5 is the first line of the
program, a CALL CLEAR statement. To remove it, simply type 5 and press enter.

Then list the program again. Presto! Line 5 is gone!

32 Beginner's BASIC

r
Old program

>LIST

5 CALL CLEAR

10 LET K=60

20 LET P=2.2*K

27 PRINT "THE ANSWER IS

30 PRINT P

40 END

>5 *

>LIST

10 LET K=60

20 LET P=2.2*K

27 PRINT "THE ANSWER IS:"

30 PRINT P

40 END

>D

CHAPTER TWO:

Simple Programming

That's all there is to it. To remove a line, type the line number and press ENTER. The
computer will then delete the line from program memory.

Since we really need line 5 in this program, let's reenter it. Type

5 CALL CLEAR

and press ENTER.

The INPUT Statement

You've already seen that you can easily change the value of K by simply retyping line
10 to assign a new value. But suppose you had many values for K, and you wanted to
find the equivalent value of P for each one. It would get rather tiresome to retype
line 10 each time.

There is a better way to edit line 10. An INPUT statement causes the computer to
type a question mark and stop, waiting for you to type in a value and press ENTER. The
value you enter is then assigned to the variable contained in the INPUT statement.
For example, type

10 INPUT K

and press ENTER. Now run the program again.

r

?•

Beginner's BASIC 33

2
The question mark and cursor show you that the computer is waiting for you to "input"
a value for K. This time we'll let K =70, so type 70 and press ENTER. The computer
prints your answer:

r

K

? 70

THE ANSWER IS

154

** DONE **

>•

~%

Now you can run the program as many times as you like, changing the value of K each
time the computer prints a question mark and stops. Try the program several times
with different values for K.

The INPUT statement can also be used to print a "prompting" message (instead of a
question mark) that helps you remember what value the computer is asking for.
Change line 10 again by typing

10 INPUT MKIL0GRAMS?":K colon

and pressing ENTER. Now run the program again. First the program asks:

KILOGRAMS?

Let's let K=50 this time. Type 50 and press ENTER.

34

f

KIL0GRAMS750

THE ANSWER IS:

110

** DONE **

>D

-\

Beginner's BASIC

CHAPTER TWO:

Simple Programming

By now, your program looks like this:
5 CALL CLEAR

10 INPUT "KIL0GRAMS?":K

20 LET P=2.2*K

27 PRINT "THE ANSWER IS:"

30 PRINT P

40 END

Ifyou'd like, you can list it on the screen at this time and review the changes you've
made so far. When you're ready, we'll go on to look at one more change.

String Variables

You already know what numeric variables are: numeric values assigned to names
(variables), like "K=50." A string variable is a combination of characters (letters and
numbers, or other symbols) assigned to a name. String variables differ from numeric
variables in these ways:

1. The variable name must end with a $.
2. The alphanumeric characters in the "string" must be enclosed in

quotation marks.
3. "Strings" of numbers cannot have arithmetic operations performed with

or upon them.

Let's try a couple of examples in the Immediate Mode before changing the program.
(Note that this does not interfere with the program stored in memory!)

Clear the screen (CALL CLEAR) and enter this:

LET N$="JACK SPRAT"

PRINT N$

Now type:

LET W$="'ATE NO FAT."

PRINT N$;W$

Beginner's BASIC

>LET N$="JACK SPRAT"

>PRINT N$

JACK SPRAT

>D

%

35

2

>LET N$="JACK SPRAT"

>PRINT N$

JACK SPRAT

>LET W$=" ATE NO FAT."

>PRINT N$;W$
JACK SPRAT ATE NO FAT.

>D

V,
Let's make your conversion program a little more personal by using a string variable.
Type these two lines: ^-*^~^

f colon J

8 INPUT "NAME, PLEASE?":B$

26 PRINT "0K,v";B$

(Clear the screen and list the program again so you can see how the new lines fit in.)

When you run the program this time, the two INPUT statements will stop the program
twice:

The computer asks
NAME, PLEASE9D

KILOGRAMS7D

Let's try it. Type RUN and press ENTER.

r

You type in
Your name and then press ENTER.
The number of kilograms and then press
ENTER.

\V NAME, PLEASE7D

We'll type in Alpha (that's a nice name) and press ENTER. Then we'll see

36 Beginner's BASIC

r

NAME,, PLEASE7ALPHA

\. KIL0GRAMS7D

CHAPTER TWO:

Simple Programming

~%

Again let's type 70 for the number of kilograms. Press ENTER again and you'll see:

r

NAME, PLEASE7ALPHA
KIL0GRAMS770

0K/ALPHA
THE ANSWER IS:

154

** DONE **

String variables can save a lot of typing when you're usinga message (a name or a
prompting statement, for example) more than once in a program.

Now list your program and review these latest changes. We've given you a lot of
information, and we've given it pretty quickly. This would be a good time for you to do
a little experimenting on your own, trying out some of the things you've learned.

Experiment!

Want a challenge? Try writing another conversion program —one that converts a
temperature in degrees Fahrenheit (F) to degrees Celsius (C). The conversion
formula is

Degrees C =5/9 (Degrees F-32)

Don't forget to use INPUT statements and CALL CLEAR at appropriate places! Hint:
Let C=5/9*(F—32) —the parentheses must be there in your program!

Beginner's BASIC 37

2
The GO TO Statement

So far, you've been developing programs that operate from beginning to end in a
straight sequential order. There are many situations, however, in which you want to
interrupt this orderly flow of operation. Look at the following program, but don't enter

itvet: 10 CALL CLEAR
INPUT K

K

20

30

40

50

60

PRINT

PRINT

K=K+1

GO TO 30

Here we "send" the program back to line 30 by using a GO TO statement in line 60.
The GO TO statement causes the actions performed by lines 30, 40, and 50 to be
repeated over and over again, setting up what's called a loop. (Notice that we don't use
an END statement. That's because the program will never get beyond line 60! It
won't stop until you tell it to by pressing CLEAR. This is called an "endless loop.")

Let's enter the program now. First, type NEW and press ENTER to erase the computer's
memory, and then type these lines:

10

20

30

40

50

60

CALL CLEAR

INPUT K

PRINT

PRINT

K=K+1

GO TO

Before you run the program, we'll examine a diagram called a flowchart, explaining
how the program works.

Program Line Operation

10 CALL CLEAR

20 INPUT X

30 PRINT K

40 PRINT

50 K=K+1

60 GO TO 30

38

Clears the screen

Stops and waits for
initial value of K

Prints the current

value of K

Prints nothing; just
gives you a blank line

Reassigns a new value to
K (the old value + 1)

Transfers the program
back to line 30

Beginner's BASIC

CHAPTER TWO:

Simple Programming

Now run the program, putting in 1 for the beginning value of K. Watch how quickly the
computer counts —almost too fast to follow! That's why we added the blank line (line
40). This line spaces out the numbers a bit so that you can see them better.

Let the computer count as long as you want to. When you are ready to stop the
program, press CLEAR. You'll see *BREAKPOINT AT (#) on the screen, indicating
where the program stopped. Run the program as many times as you want, using
whatever number you wish as the initial value for K (50,100,500,etc).

GO TO can be typed as GOTO in your program. The computer isn't fussy about that.
If you try to send the program to a non-existent line number, however, you'll get an
error message.

Suppose, for example, we type in

60 GO TO 25

and press ENTER. Try it, run the program, and see what happens! You'll see this error
message:

* BAD LINE NUMBER IN 60

So correct the line by typing and entering

60 GO TO 30

and run the program again.

Can we change the program to make it count by 2's, or 5's?You bet we can! By making
one program change, let's make the computer count by 2's: Type:

50 K=K+2

and press ENTER. Now run the program, typing in 2 when the computer asks for the
starting value of K.

Experiment with the program for a while, making it count by 3's, 5's, 10's, etc.

A GO TO Loop With CALL SOUND

GO TO loopshave many applications, of course, beyond simple counting. We could use
a loop, for example, to practice a musical scale.

Before we start the program, you might want to review the CALL SOUND section in
Chapter 1 (see page 17) to help you remember how the CALL SOUND statement
performs in the Immediate Mode. (It behaves essentially the same way in a program.)

When you're ready to start the program, type NEW and press ENTER. Our first task in
the program will be to assign values to the variables we'll use. Type these lines:

Beginner's BASIC 39

2
10 LET T=300

20 LET V=2

/30 C=262
40 D=294

50 E=330

60 F=349

70 G=392

80 A=440

90 B=494

100 HIC=523

Now you're ready for the CALL SOUND statements to tell the computer when to play
each note:

200 CALL

300 CALL

400 CALL

500 CALL

600 CALL

700 CALL

800 CALL

900 CALL

S0UND(T,C,V)
S0UND(T,D,V)
S0UND(T,E,V)
S0UND(T,F,V)
S0UND(T,G,V)
S0UND(T,A,V)
S0UND(T,B,V)
S0UND(T,HIC,V)

Finally, set up the loop with a GO TO statement:

950 GOTO 200

Check the program now for errors, and correct any that you find. When everything is
correct, run the program. Again, this is an endless loop. (Notice that the screen
background stays light green until you stop the program.) You'll have to press CLEAR
to stop it.

Experiment!

Practice building other musical scales and patterns, using the note frequencies listed in
Appendix A.

A GO TO Loop with CALL COLOR

Up to now, you've seen only three colors in BASIC on your display screen. (Maybe
you've only noticed two —but there really are three.) First, while you're entering a
program, the screen background is cyan (a light blue color), and the characters (letters
and numbers) that you're typing are black. Then, while the program is running, the
screen becomes a light green color. When the program stops, the screen returns to
cyan with black characters.

40 Beginner's BASIC

CHAPTER TWO:

Simple Programming

These are only three of the sixteen colors available with your computer, and the way
you control the colors in a program is through the CALL COLOR statement. Let's try
a program with a CALL COLOR statement and a slightly different GO TO loop. Clear
your old program from the computer's memory (NEW; press ENTER), and type these
lines:

10 CALL CLEAR

20 CALL C0L0R(2,7,12)
30 CALL HCHAR(12,3,42,28)
40 GO TO 40

Now run the program, and the screen should look like this:

Our program prints twenty-eight asterisks across the screen. The asterisks are dark
red. In the area where the asterisks are displayed, the screen color is a light yellow.
The rest of the screen remains light green.

(Line 40 puts your program into a holding pattern that keeps your graphic on the
screen. When you're ready to stop the program, press CLEAR to break the loop.
Remember, you can run the program as many times as you like.)

A CALL COLOR statement requires three numbers, enclosed in parentheses and
separated by commas:

20 CALL C0L0R(2,7,12)

The first number after the open parenthesis symbol is a characterset number. As we
mentioned in Chapter 1, each character (letters, numbers, and symbols) that prints on
the screen has its own numeric code, ranging from 32 through 127 for a total of ninety-
six characters. These characters are organized by the computer into twelve sets with
eight characters in each:

Beginner's BASIC 41

2
Set#1 Set #2 Set #3 Set #4

Code Character . Code Character Code Character Code Character

32 (space) 40 (48 0 56 8

33 t 41) 49 1 57 9

34 •• 42 * 50 2 58

35 # 43 + 51 3 59 ;

36 $ 44 , 52 4 60 <

37 % 45 - 53 5 61 =

38 & 46 54 6 62 >

39 47 / 55 7 63 ?

Set #5 Set #6 Set #7 Set #8

Code Character Code Character Code Character Code Character

64 @ 72 H 80 P 88 X

65 A 73 I 81 Q 89 Y

66 B 74 J 82 R 90 Z

67 C 75 K 83 S 91 1

68 D 76 L 84 T 92 \

69 E 77 M 85 U 93 1

70 F 78 N ♦ 86 V 94 A

71 G 79 0 87 W 95 —

Set #9 Set #10 Set #11 Set #12

Code Character Code Character Code Character Code Character

96 * 104 H 112 P 120 X

97 A 105 I 113 Q 121 Y

98 B 106 J 114 R 122 Z

99 C 107 K 115 S 123 {
100 D 108 L 116 T 124 !

101 E 109 M 117 U 125 }
102 F 110 N 118 V 126 -

103 G 111 0 119 w 127 DEL

The set number you use in a CALL COLOR statement, then, is determined by the
character you want to print. (And what happens if you want to print characters from
different sets in the same colors? We'll discuss that in a few minutes.)

The second and third numbers in parentheses determine the colors used in your
graphic. Each of the sixteen colors has its own numeric code.

Color Code # Color Codett

Medium Red 9

Light Red 10

Dark Yellow 11

Light Yellow 12

Dark Green 13

Magenta 14

Gray 15

White 16

Transparent 1

Black 2

Medium Green 3

Light Green 4

Dark Blue 5

Light Blue 6

Dark Red 7

Cyan 8

The second number sets the foreground color; that is, the color of the character you
designate. The third number sets the background color —the color of the block or
square in which the character is printed.

CALL C0L0R(2,7,12)

42 Beginner's BASIC

The next line in your program is

30 CALL HCHAR(12,3,42,28)

(Sftt

CHAPTER TWO:

Simple Programming

(Ifyou need to review the CALL HCHAR examples in Chapter 1, this would be a good
time to do it.)

Now you know why we indicated Set #2 in our CALL COLOR statement! The
asterisk (code number 42) is a part of Set #2.

Line 40 of the program is a GO TO statement that "goes to" itself. It keeps the
computer "idling" until you press CLEAR. When you do, the program stops, and the
screen changes back to its normal color. All the reds, yellows, and greens disappear.

Now let's change line 20 of the program to see some new colors. Stop the program, if
it's still running, and type this:

20 CALL C0L0R(2,12^5)

Press ENTER to store your hew line, and list the program (LIST; press ENTER) to review
your program.

When you're ready, run the program. You'll see 28 light yellow asterisks against a dark
blue background this time.

You could, of course, continue to experiment by stopping the program, entering a new
line 20 and running the modified program over and over. Don't. Instead, save wear and
tear on your fingers by entering the following program which allows you to experiment
more easily. With this program, you enter foreground (F) and background (B) colors in
response to INPUT statements.

V INPUT color codes. J

nd?;;=fW r^t,
ND?":B J

NEW

10 CALL CLEAR

20 INPUT "F0REGR0U

30 INPUT "BACKGR0U

40 CALL C0L0R(2,F,B)
50 CALL HCHAR(12,3,42,28)
60 GO TO 60

Beginner's BASIC

Set colors based on
INPUT color codes.

43

2
When the computer asks you for the "foreground" and "background" colors you want to
use, you can type in any color code from 1 through 16. Remember, however, that color
number 1 is transparent and color 4 is the screen color when the program is running.
These may not be satisfactory in this program. (Also, color number 2, black, can cause
display distortion on some screens.) Here are some combinations you might find
interesting:

Foreground Background
Color Color

3 16

2 11

5 16

2 14

7 15

7 12

13 12

14 16

OK, have you checked your program for typographical errors? Have you chosen the
foreground and background colors you want to use first? Then run the program.

After you've experimented with different color combinations, you might enjoy trying
some other characters, as well. You can do this by retyping line 50, substituting a
different character code number for the "42" (asterisk code number). Just remember, if
you select a character from any set other than #2, you'll also have to change line 40 to
reflect the new set number. For example:

40 CALL C0L0R(4,7,12)
50 CALL HCHARC12,3,61,28)

Earlier we brought up this subject: What happens if you want to print characters from
different sets, all in the same color? One way to do this is to include in your program
twelve CALL COLOR statements — one for each set of characters. You'll have to do

quite a bit of typing, but you'll be free to use any of the characters you choose. Try the
following program, which covers eight character sets.

44 Beginner's BASIC

NEW

100

110

120

130

140

150

160

170

180

190

200

ALL CLEAR S~

ALL C0L0R(1,6,16)
ALL C0L0R(2,6,16^
ALL C0L0R(3,6,16)
ALL C0L0R(4,6,16)
ALL C0L0R(5,6,16)
ALL C0L0R(6,6,16)
ALL C0L0R(7,6,16)
ALL C0L0R(8,6,16)
RINT

OTO 200

CHAPTER TWO:

Simple Programming

Use any message you want in line 190; just remember to enclose it in quotation marks.
With these CALL COLOR statements you have told the computer to print any of the
sixty-four characters in light blue (6) on a white (16) background.

Experiment!

Put a little COLOR in your life! Try some experiments of your own with different
colors and character sets. For example, what happens if you enter the same color code
for foreground and background? Try it!

Error Messages

We haven't talked much in this chapter about error messages because, for the most
part, the ones you'd run into in these program examples are the same as —or very
similar to —those you learned about in Chapter 1. For example, a spelling or typing
error in NEW, RUN, or LIST will cause the computer to return an "INCORRECT
STATEMENT" message as soon as you press ENTER.

Errors in program statements may be detected by the computer either when the line is
entered orwhen the program is run. Here is a sample of error conditions and messages
you might see when you enter an incorrect line:

Condition Message
Omitting a quotation mark:

10 INPUT "WHAT C0L0R:F * INCORRECT STATEMENT

Beloware some examples of line errors that would cause error messages when you run
a program:

Condition

Misspelling a statement:

10 INPT "WHAT C0L0R":F

Omitting necessary punctuation or
typing an incorrect punctuation mark:

10 INPUT "WHAT C0L0R"F

10 INPUT "WHAT C0L0R";F

Beginner's BASIC

Message

> * INCORRECT STATEMENT IN 10

45

2
Leaving the variable out of an
INPUT statement:

10 INPUT "WHAT COLOR":

Leaving out the space between
GO TO and the line number:

10 GO T030

Using a non-existent line number
in a GO TO statement:

10 LET A=5

20 PRI

30 GO

A=5

NT A

TO 15—'

> * INCORRECT STATEMENT IN 10

* BAD LINE NUMBER IN 30

Notice that the error messages given during a program run usually indicate the
number of the troublesome line. If you'd like to view the line in question (let's say it's
line 10), just type

LIST 10

and press ENTER. The computer will obediently print line 10 on the screen for you to
review. You can also list the whole program on the screen if you prefer. Type

LIST

and press ENTER.

Remember, too, that failing to press ENTER at the end of each program line may cause
the computer to give you an error message or an incorrect result, depending on the
kind of operation you're performing.

Making mistakes is a normal part of learning —so don't be disturbed when the
computer gives you an error message. Just list the line or the program, identify the
error, retype the line correctly, and go right on your way!

{Note: If you'd like to see all the error messages your computer can give you, or if you
don't understand a message you're given, you'll find a complete list of error messages —
and when they occur — in the "BASIC Reference Section" of your User's Reference
Guide.)

46 Beginner's BASIC

SUMMARY OF CHAPTER 2

CHAPTER TWO:

Simple Programming

In this chapter you've covered a lot of very important ground. You've learned how to:
• Enter a program
• Use the commands NEW, LIST, and RUN
• "Edit" or change a program
• Use INPUT statements with numeric variables and string variables
• Build a mathematical conversion program
• Create a GO TO loop within a program
• Stop an endless loop with CLEAR
• Use a GO TO loop in a CALL SOUND program
• Use the CALL COLOR statement and a GO TO loop in a graphics

program

When you started working with Chapter 2, you were a beginner in learning BASIC
and programming. Now you're well on your way to becoming an experienced computer
programmer.

Quick Review of Program Structure

1. Begin each line with an identifying line number (1-32767).

2. Number the lines in the order you want the computer to follow in performing the
program.

3. Press ENTER when you have finished typing a program line.

Beginner's BASIC 47

3
CHAPTER
THREE

More Programming
Power

By this time you've had quite a bit of programming experience in TI BASIC. You know
what a program is, how it's structured, and how it's performed by the computer. Now
we're ready to add a few more techniques to your programming skills.

In this chapter we'll introduce you to several new TI BASIC features. First, there's the
very useful and versatile FOR-NEXT statement, which creates loops in programs.
Next, we'll cover some "plain and fancy" printing, using the PRINT statement and the
TAB function. Then we'll add some details about the "number power" of your
computer: the way numbers are displayed on the screen and the order in which the
computer performs mathematical calculations. Finally, we'll introduce you to the
INTeger function.

These new features will help you increase your programming skills, building on those
we've already discussed in previous chapters. They'll also prepare the way for even
more exciting things to come.

The FOR-NEXT Statement

Chapter 2 presented several examples of the GO TO loop, which repeats a set of
statements indefinitely —or until you press CLEAR to stop the program. The FOR-
NEXT statement also creates a loop, but it's different from GO TO in two important
ways:

1. The FOR-NEXT statement is actually a pair of lines in the program, the FOR line
and the NEXT line, each with its own line number.

2. You control the number of times the loop is performed. After the loop has been
"executed" the number of times.you specify, the program moves on to the line that
follows the NEXT line.

The FOR line has the form

30 FOR A = V TO 3

The NEXT line could be <~>
space

80 NEX"TA

These two lines would cause the portion of the program between the FOR and NEXT
lines to be performed three times. In this example the starting value of A is 1; after
each pass through the loop, A is increased by 1. Its value is then tested against the
upper limit (3, in this example). After the third pass through the loop, A is equal to 4,
so the program "exits" (or leaves) the loop to the line following line 80.

48 Beginner's BASIC

CHAPTER THREE:

More Programming Power

To help you see the differences between GO TO and FOR-NEXT more clearly, let's
compare two similar programs, one with a GO TO loop and one with a FOR-NEXT
loop.

A GO TO Loop

Type NEW, press ENTER, and then enter this program:

10 CALL CLEAR

20 LET A=1

30 PRINT "A=";A
40 LET A=A+1

50 GO TO 30

Before you run the program, think for a few minutes about what it will do. First, the
initial value of the variable A will be set to 1. Then, the computer will print out the
current value of A. Finally, the value ofA will be increased by 1, and the program will
loop back to line 30. It will go on with this procedure until you press CLEAR.

Ready to run the program? Type RUN and press ENTER to see it in action. When you're
ready to stop it, press CLEAR.

A FOR-NEXT Loop

•Now let's examine a similar "counting" program with a FOR-NEXT loop. Type NEW
and press ENTER to erase the first program. Then type these lines:

10 CALL CLEAR
20 FOR A=1 TO 5

30 PRINT "A=";A
40 NEXT A

50 PRINT "OUT OF LOOP"
60 PRINT "A=";A
70 END

Think about the way this program will be performed. The value of A will start at 1 and
will be increased by 1 each time the program completes line 40. As soon as the value
of A is greater than 5, the program will exit the loop and continue with line 50. If we
listed the lines in their order of performance, along with the increasing values ofA, this
is what we'd have:

Beginner's BASIC 49

3
Line Number

(S>

Run the program, and the screen should look like this:

^

A= 1

A= 2

A= 3

A= 4

A= 5

OUT OF LOOP

A= 6

** DONE **

>D

Value ofA

o

1

1

2

2

3

3

4

4

5

5

6

B

6

6

The following flowcharts illustrate the differences in the two programs.

50 Beginner's BASIC

CHAPTER THREE:

More Programming Power

GO TO Program FOR-NEXT Program

Clear screen. Clear screen.

1 1

Set initial value of A. Set the "parameters"
for A: beginning and

ending values.
1

Print "A=" and current

value of A. 1

1 Print "A=" and current
value of A.Increase A by 1.

1 1
Loop back to line 30. Increase A by 1; check

to see if the new value

for A exceeds the upper
limit set by line 20.

If the answer is "no,"
repeat lines 30 and 40.
If "yes," break out of

loop.

(Loop continues until
you stop the program
by pressing CLEAR.)

Print "Out of Loop."

i
Print "A=" and current

^ value of A.
1

Stop program run.

In Chapter 2 we also used the GO TO statement in a CALL COLOR program to
create a delay loop:

40 GO TO 40

This line caused the program to "idle" and hold the colordesign on the screen until you
pressed CLEAR. Without somesort ofdelay loop, the colorwe used in the program
would have blinked on the screen only for an instant before the program stopped and
the screen returned to its normal Immediate Mode colors.

We can also use the FOR-NEXT statement to build a controlled time delay into a
program. Consider this example:

20 FOR A=1 TO 1000

30 NEXT A

Better still, let's try it! Type NEW, press ENTER, and then type in the following
program:

Beginner's BASIC 51

3
r

TI BASIC READY

>10 CALL CLEAR

>20 FOR A=1 TO 1000

>30 NEXT A

>40 END

>DK
Now run the program. What happens on the screen? Not much, really; the screen
changes to a light green, and the cursor disappears. After a short time delay (while the
computer "counts" from 1 to 1000), the screen changes back to cyan (a light blue) and
the cursor reappears:

Although no other lines are being executed between the FOR and NEXT lines, time
passes while the computer counts the number of loops, in this example from 1 to 1000.
The following program utilizes a FOR-NEXT time-delay loop in a CALL COLOR
program.

CALL COLOR with a FOR-NEXT Loop

Clear the previous program (type NEW; press ENTER), and enter this program:

10 CALL CLEAR

20 CALL C0L0R(2,7,7)
30 CALL HCHAR(12,3,42,28)
40 FOR B=1 TO 1000

50 NEXT B

60 END

52 Beginner's BASIC

CHAPTER THREE:

More Programming Power

This program will print a row of asterisks on the screen. However, since the
foreground color (the color of the asterisks) and the backgroundcolor are both dark
red, the screen will show a solid horizontal bar of dark red. The red asterisks blend
into the red backgrounds.

Now run the program. Does the color bar stay on the screen long enough for you to
observe it carefully? If not, change line 40 to increase the time delay (1 to 2000, for
example).

Suppose we want to see a bar of a different color? We could retype line 20, inserting a
new color code for the foreground and background colors. But there's an easier way to
edit the program so that we won't have to retype line 20 every time we want to change
colors. Type these lines:

ID INPUT A - ~7Here s wherewe'11 enter
20 CALL COLOR (2,A,A) (our new color code each
60 GO TO 10 \time the program is run.

Well, well! A GO TO loop and a FOR-NEXT loop in the same program! Run the
program, and see how it works. Remember, when you see the question mark on the
screen, the program is waiting for you to "input" a color code from 1 through 16. If you
enter a number that is outside this range, you'll see this error message on the screen:

* BAD VALUE IN 20

(Remember, also, that color 1 is transparent, and color 4 is the screen color in the Run
Mode, so you won't be able to see these bars on screen.)

Experiment now with the color codes, and change the time delay in line 40 if you want
to make the bar stay on the screen longer or disappear faster.

Experiment!

Here's a challenge for you! Can you change the program above to make a single small
square of color appear on the screen, instead of a bar? (Hint: See Chapter 1, pp. 20-22,
review using HCHAR or VCHAR to display a single character.)

"Nested" FOR-NEXT Loops

You've just seen that we can use both a FOR-NEXT loop and a GO TO loop in the
same program. It's also possible for us to use more than one FOR-NEXT loop —one
inside another — in a program. We call these nested loops.

As an example, let's experiment a bit with a program very similar to the one you've just
completed. But this time, we'll get a little fancier. We'll make the bar "walk" down the
screen, so that it appears in a different position each time the color changes. Type
these lines:

Beginner's BASIC 53

3
NEW

10 FOR A=1 TO 16

20 CALL CLEAR

30 CALL C0L0R(2,A,A)

40 CALL HCHAR(A+5,3,42,28)

50 FOR B=1 TO 300

60 NEXT B

70 NEXT A

80 END

Notice that one loop is wholly contained within the other loop. That's why these are
called "nested" loops: one is nested inside another.

This program gets a lot of mileage out of the variable A. We're using it to control the
number of times the program is repeated (a loop counter), to define the color codes for
foreground and background, and to determine the row position of the color bar.

(Before you run the program, remember that color 1 is transparent and color 4 is the
Run Mode screen color. You won't be able to see these bars.)

Now run the program. Does the bar appear to move down the screen? What happens if
you shorten the time-delay loop? Try changing line 50 to

50 FOR B=1 TO 100

and run the program again.

Another interesting change would be to make the bar vertical instead of horizontal. We
can do this easily by changing line 40. Type and enter this new line:

40 CALL VCHAR(1,A+5,42,24) \ number ofrepetitions

When you run the program this time, the bar will be vertical and will move across the
screen from left to right.

54 Beginner's BASIC

CHAPTER THREE:

More Programming Power

Now let's examine another program with nested FOR-NEXT loops. The following
program displays sixty-four of the alphanumeric characters, codes 32 through 95.
(See Appendix B for a list of the character codes.) Enter these lines:

NEW

10 CALL CLEAR

20 LET CHAR=32

30 FOR R0W = 7 TO 14 *

40 FOR C0LUMN=13 TO 20

50 CALL HCHAR(R0W,C0LUMN,CHAR)

60 CHAR=CHAR+1

70 NEXT COLUMN

80 NEXT ROW

90 END

The program will look like this on the screen:

r
TI BASIC READY

>10 CALL CLEAR

>20 CHAR=32

>30 FOR R0W=7 TO 14

>40 FOR C0LUMN=13 TO 20

>50 CALL HCHAR(R0W,COLUMN,CHA
R)

>60 CHAR=CHAR+1

>70 NEXT COLUMN

>80 NEXT ROW

>90 END

>D

There are several things we'd like to point out about this program. First, FOR-NEXT
loops do not have to start counting at 1. They can begin with whatever numeric value
you need to use. Second, the nested loop (FOR COLUMN-NEXT COLUMN) is not
just a time-delay loop. It actually controls a part of the program repetition.

Finally, line 50 is called a wrap-around line. It has more than 28 characters, so part of
it prints on another line on the screen. This is an important point: program lines can be
more than one screen-line long. In fact, a program line, in general, can be up to four
screen lines (112 characters) in length. (The exception is the DATA statement. See the
"BASIC Reference" section of the User'sReference Guide for an explanation.) Notice
that wrap-around lines (that is, the second, third, or fourth screen lines of a program
line) are not preceded by the small prompting symbol.

Beginner's BASIC 55

3
Run the program, and the sixty-four characters will be printed in nice, neat rows on
the screen:

t

<)*+,-./
01234567

89:;<=>?
3ABCDEFG

HIJKLMNO

PQRSTUVW
XYZC\]A

** DONE **

>D

Hold on! There are only sixty-three characters on the screen! What happened to the
other one? Well, there are actually sixty-four. Look at the top line, and notice that it
appears to be indented one space. That's because character 32 is a space. Even though
a space doesn't print anything on the screen, it does occupy room on a line, and it is a
character, as far as the computer is concerned.

Experiment!

Let's add color to the character program above! Enter these lines:

22 FOR 1=1 TO 8

24 CALL COLORCJ.,7,15)
26 NEXT I

Try other color combinations until you find your favorite.

Error Conditions with FOR-NEXT

We mentioned earlier that a nested loop must be completely contained within another
loop. If your program included lines like these,

20 FOR A=1 TO 6

30 FOR X=5 TO 10

80 NEXT A
90 NEXT X

the computer would stop the program and give you this error message:

* CAN'T DO THAT IN 90

The computer can't go back inside the completed "A" loop to pick up the beginning of
the "X" loop.

56 Beginner's BASIC

CHAPTER THREE:

More Programming Power

Another possible error condition with FOR-NEXT statements is accidentally omitting
either the FOR line or the NEXT line. For example, if you attempted to run this
program: 10 F0R A= 1 TQ 5

20 PRINT A

30 END

the computer would respond with

* FOR-NEXT ERROR

If you encounter an error message, just list the program (type LIST and press ENTER),
identify the error, and correct the problem line or lines.

We've given you quite a lot of information now about FOR-NEXT loops, so it's
probably time for a change of pace. Let's review a bit of the PRINT material we
covered in Chapter 1.

Plain and Fancy PRINTing

While using the PRINT statement in the Immediate Mode, we saw that a difference in
spacing occurred when we used a comma or a semicolon to separate numeric values in
a PRINT statement. Let's take another look at this.

Spacing with Commas

Try each of the following examples. (In each, we'll assume that the screen has been
cleared by typing CALL CLEAR and pressing ENTER.)

Beginner's BASIC

t

>PRINT 1,2
1

>PRINT 1,2,3,4,5,6
1 2

3 4

5 6

>•

"\

57

3
So far we have used only small positive integers. Let's try some simple negative
numbers.

r

>PRINT -1,-2
-1 -2

>D

K
Now let's try a combination of positive and negative numbers.

PRINT 1,2,-3,-4
1 2

-3 -4

>•

Note that the computer always leaves a space preceding the number for the sign of the
number. For positive numbers, the plus sign (+) is assumed and is not printed on the
screen. For negative numbers, the computer prints a minus sign (-) before the
number.

We mentioned in Chapter 1 that there are two print zones on the screen line. Each
print zone has room for fourteen characters per line.

58 Beginner's BASIC

CHAPTER THREE:

More Programming Power

Print Zone 1

(spaces 1 through 14)
Print Zone 2

(spaces 15 through 28)

When you use a comma to separate numeric values or variables in a PRINT
statement, the computer is instructed to print only one value in each zone. Therefore,
since there are only two print zones on each line, the computer can print a maximum
of two values per screen line. If the PRINT statement has more than two items, the
computer simply continues on the next screen line until all the items have been
printed.

Now let's try some examples with string variables, using commas as "separators." (See
page 35 of Chapter 2 if you need to review string variables.)

r

>LET A$="Z0NE 1"

>LET B$="Z0NE 2"

>PRINT A$,B$
ZONE 1 ZONE 2

>D

~%

The strings (the letters and numbers within the quotation marks) are also printed in
different zones on the screen when a comma is used to separate the string variables.

Beginner's BASIC 59

3
Try this example:

r
>LET A$="ONE"

>LET B$="TWO"

>LET C$="THREE"

>LET D$="FOUR"

>PRINT A$,B$,C$,D$
ONE TWO

THREE FOUR

>D

*%

(Note that, for strings, the computer does not leave a preceding space.)

Spacing with Semicolons

Now let's look at semicolon spacing. Try these examples:

r

>PRINT 1;2
1 2

Aha! The numbers are much closer together.

60

r

>PRINT 1;2;3
1 2 3

>•

V

-*%

•^

Beginner's BASIC

t

*s

>PRINT 1;2;-3;-4;5;-6;7
1 2-3-4 5-6 7

>•

CHAPTER THREE:

More Programming Power

*%

The semicolon instructs the computer not to leave any spaces between the values or
variables in the PRINT statement. Then why do we see spaces between the numbers
on the screen? Two reasons! First, remember that each number is preceded by a space
for its sign. Second, every number is followed by a trailing space. (The trailing space is
there to guarantee a space between all numbers, even negative ones. The way
numbers are displayed is discussed in detail in Appendix D.)

If the semicolon tells the computer to leave no spaces between variables in a PRINT
statement, what happens when we use string variables, rather than numeric? Let's try
some examples.

r

>LET A$="HI THERE!"

>LET B$="H0W ARE YOU?"

>PRINT A$;B$
HI THERE1H0W ARE YOU?

\.
>D

The two strings are run together. If we want a space to appear between them, then, we
must include the space inside one of the sets of quotation marks! For example, let's
change A$. Type

Beginner's BASIC

LET A$="HI THERE!

PRINT A$;B$

61

3
f

>LET A$="HI THERE!"

>LET B$="HOW ARE YOU?1

>PRINT A$;B$
HI THEREIHOW ARE YOU?

>LET A$="HI THERE! "

>PRINT A$;B$
HI THERE! HOW ARE YOU?

>•

^

Second
example

Spacing with Colons

There is a third "separator" that can be used: the colon. The colon instructs the
computer to print the next item at the beginning of the next line. It works the same
waywith both numeric and string variables. Enter these lines as an example:

LET A=-5

LET B$="HELL0M

LET C$="MY NAME IS ALPHA"

PRINT A:B$:C$

r

>LET A=-5

>LET B$="HELL0"

>LET C$="MY NAME IS ALPHA"

>PRINT A:B$:C$

-5

HELLO

MY NAME IS ALPHA

>D

"%

To review for a moment, then, these are the three print separators we have used:

Punctuation mark Operation

Comma Prints values in different print zones; maximum of
two items per line.

Semicolon Leaves no spaces between items. (The spaces that
appear between numbers are results of the built-in
display format for numeric quantities.)

Colon Prints next item on following line.

62 Beginner's BASIC

CHAPTER THREE:

More Programming Power

The TAB Function

Besides these separators there is another method you can use to control the printing on
the screen. The TAB function operates very much like a typewriter TAB key:

PRINT TAB(10);"HELL0"

The statement would instruct the computer to begin printing the word HELLO in the
tenth column on the screen.

r

>PRINT TAB(10);"HELL0"
HELLO

>D

J
Notice that the "print line" on the screen has 28 columns or character positions (unlike
the "graphics line," which has a 32-column "grid"). Thus the first position on the print
line counts as column 1. This is where the "P" appears in the word "PRINT" on the
previous screen. The last print position on the line is column 28.

You can also use the TAB function more than once in a print statement:

r

>PRINT TAB(10);3;TAB(20);-4
3 -4

>D

~%

Notice that the first number, 3, is actually printed in column 11, because the preceding
or "leading" space (reserved for the sign of the number) occupies column 10, just as the
minus sign of the second number occupies column 20.

The TAB function always starts counting in column 1 (the leftmost print position on
the line), regardless of where or how many times it appears in the PRINT statement.
In the example above, the second number, —4, was printed starting in the twentieth
column on the print line, not twenty spaces from the position in which the first number,
3, was printed.

Beginner's BASIC 63

3
What happens, then, if we indicate a column that is already occupied by another
message, or if there isn't enough room left on the line to print the message positioned
by a TAB? Enter this short program to find the answer:

NEW

10 CALL CLEAR
20 LET A$=MHELL0!
30 LET B$="HI!"

40 PRINT A$;TAB(5);B$
50 PRINT B$;TAB(20);A$
60 END

Now run the program:

HOW ARE YOU?"

Notice that separators (semicolons) are also used in the PRINT statement above. Let's
try a program to help explore the use of the TAB function and separators. Imagine for
a few minutes that youare a loyal football fan, and it's time for the biggame of the
season. Since you are also a computer fan, you want to program your computer to
cheer the team on to victory! So you enter this program:

64

20

30

40

50

60

70

80

90

PRINT

NEXT Z

FOR Z=1

NEXT Z

GO TO 10

two colons.'

NEW

10 CALL CLEAR

LET A$="G0"

PRINT TAB(13);A$::TAB(1 2) ;"TEAM"
FOR Z=1 TO 10

:TAB(13);A$;M!"

Beginner's BASIC

CHAPTER THREE:

More Programming Power

Before you run the program, let's analyze it. Line 10, of course, clears the display
screen. Line 20 defines the string variable A$ as GO.

Line 30 is a very, very hard-working line. It might be helpful if we drew a flowchart to
describe what's going on here.

TAB (13)

A$

TABC12)

"TEAM"

TABC13)

A$

!• | ii

Tab over to column 13.

Do not skip any other spaces.

Print GO.

Print the next print item two
lines down.

Tab over to-column 12.

Do not skip any other spaces.

Print TEAM.

Print the next print item two
lines down.

Tab over to column 13.

Do not skip any other spaces.

Print GO.

Do not skip any other spaces.

Print an exclamation point.

(You'll have to admit that's a lot of information to pack into one program line, even if it
is more than one screen line long!)

The FOR-NEXT loop in lines 40 through 60 will print ten "empty" lines, to position
your message in the middle of the screen. Next, lines 70 and 80 form a time-delay loop.
Then line 90 instructs the computer to go back to line 10 and start all over again.

Beginner's BASIC 65

3
Run the program now, and watch your computer cheer!

£

GO

TEAM

GO!

*V

^ A
The words come on at the bottom of the screen, one at a time, and scroll up to the
center. Then the screen clears, and the whole process is repeated until you stop the
program by pressing CLEAR.

By now, your team has probably won the game, and you're ready to try some other
messages and formats. Experiment for a while with TAB and the three separators in
different PRINT statements before we go on to discuss the arithmetic operations of the
computer.

Arithmetic Power

You've been introduced before to the arithmetic powers of your computer, but it's time
now to take a more detailed "tour" of some of its mathematical capabilities. For
example, what is the answer to this problem:

/
4 + 6*5 = ?

Remember, * means
V'multiply" to the computer.

Let's say, for example, that the answer represents an amount of money you owe a
friend. Your friend argues that you owe him $50, because

4 + 6=10, and
10x5=50.

You, however, don't agree. You say you only owe $34, because
6X5=30

4+30=34

Who is right? Why not ask your computer?

Type PRINT 4+6*5
and press ENTER.

The answer is 34. How about that! You win!

66 Beginner's BASIC

CHAPTER THREE:

More Programming Power

Order ofOperations

There is a commonly accepted order in which arithmetic operations are performed,
and your computer performs calculations in that order. In any problem involving
addition, subtraction, multiplication, and division, the arithmetic operations will be
completed in this way:

Multiplications and divisions are performed
before additions and subtractions.

This is the method your computer used to solve the previous example. It first
multiplied 6*5 and then added the result to 4, giving you a final answer of 34. Now try
this example:

PRINT 6+15/3*2-4

Before you press ENTER, let's think about the way the computer will evaluate this
problem. Scanning the problem from left to right, the computer will solve it in this
order:

15/3=5

5*2 = 10

6+10=16

16-4 = 12

Your answer, then, should be 12. Press ENTER now, and see the result:

t

>PRINT 6+15/3*2-4

12

>•

Using Parentheses

Suppose, however, that we want the computer to solve the last problem like this:
(1) Add 6 and 15.
(2) Divide the result by 3.
(3) Multiply that result by 2.
(4) Subtract 4, giving a final result of 10.

We can change the built-in computational order by using parentheses. Try this:

PRINT (6+15)/3*2-4 -

Beginner's BASIC 67

3
The answer, 10, is displayed on the screen, because the computer has completed the
computation inside the parentheses first. So our new order of operations becomes:

(1) Complete everything inside parentheses.
(2) Complete multiplication and division.
(3) Complete addition and subtraction.

Now try this example:

PRINT 8/2*4/2

The answer is 8, because

8/2=4

4*4 = 16

16/2=8

But suppose we entered the problem with parentheses, like this:

PRINT 8/<2*4)/2

This time, we get a result of .5, because the expressionwithin the parentheses has
been solved first:

2*4=8

8/8 = 1

l/2 = .5

Here's a slightly harder problem to try:

PRINT 274+10/2*100-30

If we enter the problem just like this, we obtain an answer of 744 because

10/2=5

5X100=500

274+500 = 774

774-30 = 744

But by adding parentheses indifferent places we can get a variety of answers:

68

>PRINT (274+lO)/2*(lOO-30)
9940

>PRINT <274+l0)/C2*l00)-30
-28.58

>PRINT <274+l0/2)*l00-30
27870

>•

Beginner's BASIC

Experiment!

Try the following for practice:

38+6-4

38+6-4*2-

(38 + 6-4)*2
((38 + 6-4)*2)/(6+2)

Rearrange the parentheses in the last problem. How is the answer affected?

Scientific Notation

So far, all the examples we've tried have given results in a normal decimal display
form. However, the computer displays very long numbers (more than ten digits) in a
special way. Try this program:

NEW

10 CALL CLEAR

20 LET A=1000

30 FOR X=1 TO 5

40 PRINT A

50 LET A=A*100

60 NEXT X

70 END

When you run the program, the first four results are printed out in the normal form.
The last result, however, looks like this:

l.E + 11

We call this special form scientific notation. It's just the computer's way of handling
numbers that won't fit into the normal ten-digit space allotted for numbers.

l.E + 11 means IX 10n or 100,000,000,000

As you can see, 1.E + l 1 represents a very large number!

You'll find a more detailed discussion of the mathematical capabilities and numerical
displays of your computer in Appendix D (starting on page 127). Be sure to refer to this
appendix when you want to explore the computational powers of the computer. For
now, however, let's go on to another very useful feature, the INT function.

The INT Function

The INT function gets its name from the word integer, meaning a whole number, one
that has no fractional part. Integers include zero and all of the positive and negative
numbers that do not have any digits after the decimal point.

The best way to learn how the INT function works is by trying it. First, let's work a
division problem that doesn't result in a whole number answer. Type

PRINT 16/3

and press ENTER. The answer is 5.333333333.

Beginner's BASIC

CHAPTER THREE:

More Programming Power

69

3
Now try this example:

PRINT INTC16/3)
Press ENTER.

r

>PRINT 16/3

5.333333333

>PRINT INTC16/3)

5

>•

INT kept the whole number part of the answer and threw away the digits after the
decimal point! Try another example: / ^^-~^^~*^^

I 7/6=1.166666666. ^V
PRINT INTC7/6)- \ INT7/6-1.)

The answer is 1; all of the fractional part has been discarded.

How about a real-life problem? Let's say a salesclerk is giving $1.37 in change to a
customer. The customer wants as many quarters as possible. How many quarters can
be given?

PRINT INT(1-37/.25)

The answer is 5. Five quarters can be given.

More than one INT function can be used in a PRINT statement. Here's an example:

f

>PRINT INT(1/3);INT<20/9)
0 2

~%

What would happen if you entered these values with the INT function: 8, 8.99, 8.34?
Try them and see.

70 Beginner's BASIC

CHAPTER THREE:

More Programming Power

r

^

>PRINT INT(8)
8

>PRINT INT(8.99);INT(8.34>
8 8

>D

-^

If you use INT with a whole number (integer), you just get the same number back. In
the other two examples, no matter what digits are to the right of the decimal point, the
INT function "truncates" or cuts off those digits —that is, it works this way for positive
numbers. What happens with negative numbers?

We'll use a program to explore INT and negative numbers. Enter these lines:

NEW

10 CALL CLEAR

20 FOR A=1 TO 7

30 PRINT -A/3,INT(-A/3)
40 NEXT A

50 END

Now run the program. The screen will show these results:

.333333333 -1

.666666666 -1

1 -1

1.333333333 -2

1.666666666 -°2

2 -2

2.333333333 -3

So INT(X) —where X represents a number or a mathematical expression —computes
the nearest integer that is less than or equal to X. Perhaps looking at a number line will
help to explain.

-3 -2 -l 0

H 1 1 f—r

1 2

H—I—I r-H-
-2.6-2.3 -1.6-1.3 -0.6-0.3 0.3 0.6 1.3 1.6 2.3 2.6

INT -3-2-10 1 2

Beginner's BASIC 71

3
As you see from the number line, when X has the value -0.3, the nearest integer that
is less than or equal to X is —1.

One last feature associated with INT is very useful to know. It can appear on the right
side of an equals sign in a LET statement. For example, try the next series of lines.

r

>LET A=INT(4/3)+2

>PRINT A

3

V
>D

"\

In the LET statement, INT(4/3) produces the integer result of 1. This result is added
to the constant 2, yielding 3 as a final result. A is then assigned the value of 3 and
printed.

Several applications of the INT function are shown in the chapters that follow. For
now, try some other experiments with INT so that you become even more familiar
with how it works.

Summary off Chapter 3

Chapter 3 has introducedyou to some new and powerful TI BASIC capabilities:

FOR-NEXT You've used this statement to build controlled loops that
repeat a part of the program a specified number of times or
create a time delay in the program.

PRINT formats You've learned how to control the spacing of PRINT items
using the three separators (comma, semicolon, and colon)
and the TAB function.

Computation
Order

INT function

You've discovered that your computer follows a certain
mathematical order in solving problems:
1. Everything in parentheses is computed first.
2. Multiplication and division are done next.
3. Addition and subtraction are performed last.

You've learned how this function works on both positive
and negative numbers that are not integers (whole
numbers).

These features will help prepare you for the programs that follow in the next chapters.

72 Beginner's BASIC

4
CHAPTER
FOUR Fun and

Simulations

In this chapter we'll explore some features of the BASIC language that allow you to
create exciting simulations and games.

Many computer programs are simulations that imitate some real-world event. With a
computer simulation we can imitate an event as simple as the rolling of a single die or
as complex as the patterns of animal migration in North America.

As an example of a simulation, we'll enter and run a dice-rolling program in this
chapter. Other programs included here explore the games, graphics, and musical
capabilities of your computer.

The heart of most games and simulations is the RND function, so let's begin there.

The RND Function

The letters in the name RND are taken from the word RaNDom. To find out what
RND does, let's try a few examples in the Immediate Mode.

Clear the screen, and then enter this line:

PRINT PND

r

v

>PRINT RND

.5291877823

>•

Now try entering the line again:

r

>PRINT RND

.5291877823

>PRINT RND

.3913360723

>•

%

Here's an interesting situation! Every time we use RND, we get a different number.
That's exactly what RND does —it generates random numbers.

Beginner's BASIC 73

4
Now let's try a program that will produce ten random numbers. Enter these lines:

20 FOR L00P=1 TO 10

30 PRINT RND

40 NEXT LOOP

50 END

When you've checked your program for errors, run it. A list of ten random numbers
will be printed on the screen. Look at the numbers closely. Are any two of the numbers
identical?

You may have noticed that all the numbers generatedby RND are less than one (1.0)
in value. Also, there are no negative numbers. RND is preset to produceonly numbers
that are greater than or equal to zero and less than one (0<n<l).

Write down the numbers this program produced, and then run the program a second
time. Check your written list against the numbers on the screen this time. Very
strange! The list of numbers is the same!

This feature of the RND function is important to remember and can be very useful in
certain applications. Within a program RND will produce the same sequence of
random numbers each time the progran is run.

UNLESS ...!!

Unless the BASIC statement RANDOMIZE is used in your program.

The RANDOMIZE Statement

Add the RANDOMIZEstatement shown below to the program that is still in your
computer.

10 RANDOMIZE

Clear the screen now(type CALL CLEAR; press ENTER), and list the changed
program on the screen:

t

>LIST

10 RANDOMIZE

20 FOR L00P=1 TO 10

30 PRINT RND

40 NEXT LOOP

50 END

>D

Run the program again, and compare the new set of numbers with your written list
from the first program run. Are they different this time? They should be!

74 Beginner's BASIC

CHAPTER FOUR:

Fun and Simulations

Experiment!

Continue to experiment with the program until you feel comfortable with RND and
RANDOMIZE. For example, try changing line 30 of the previous program to:

30 PRINT RND;RND

What result does this change have on the program?

If you want the program tcgenerate more or fewer than ten random numbers, just
change line 20.

Other Random Number Ranges

The program you just completed generates random numbers between 0 and 1
(0<n<l). Now let's examine ways to increase the range of the numbers we generate.

The RND function can be used as part of any legitimate computation. For example,
10*RND and (10*RND) + 7 are both valid uses of RND in TI BASIC. To show what is
produced when RND is used in this way, try the following examples:

PRINT 10*RND
Press ENTER

What number appears on the screen?Try the same example again.What number did
you get this time?

In both these examples, you should see a decimal point followed by ten digits, or one
digit to the left of the decimal point, followed by nine digits to the right of the decimal
point. That's because 10*RND produces random numbers in the range of 0 to (but not
including) 10, or 0<n<10.

Now let's increase the range to this: 0<n<100, or random numbers from 0 up to (but
not including) 100. Try this:

PRINT 100*RND

and see what is produced. (Remember, this time you could get one or two digits to the
left of the decimal point, in the range from 0 through 99.9999 . . .)

Let's use a program to generate some random numbers in the ranges 0 to 10 and 0 to
100. Enter these lines:

NEW

10 RANDOMIZE

20 FOR L00P=1 TO 5

30 PRINT 10*RND,100*RND
40 NEXT LOOP

50 END

Beginner's BASIC 75

4
Now clear the screen and run the program. Although the numbers you generate on
your screen will be different, they'll look something like this:

f

>RUN

3.196128739
6.233532821

7.030941884

.6689170795

9.388957913

** DONE **

>•

11.32761568

9.502421843

33.17351797

86.40802154

.7565322811

*%

Study the differences between the numbers in the left print zoneon the screen and
those in the right print zone. Can you see that the range is greater in those on the
right? Run the program again to produce other numbers.

Suppose we'd like to eliminate alldigits to the right of the decimal point and produce
random whole numbers (integers). Well, do you remember the INT function we
discussed in Chapter 3? This is a job for INT!

Change the program by typing and entering this new line:

30 PRINT INT(10*RND),INT(100*RND)

If you list the program now, it will look like this:

76

t •%

>LIST

10 RANDOMIZE

20 FOR L00P=1 TO 5

30 PRINT INTdO* RND) ,INT<100
*RND)

40 NEXT LOOP

50 END

>•

Beginner's BASIC

CHAPTER FOUR:

Fun and Simulations

When you run the program, the screen will show two series of random whole numbers:

r

>RUN

9 51

0 14 ^_____
6 77 —" '
5 9

1 21

** DONE **

>•

All the numbers on the left side of the screen will have values from 0 through 9, while
the numbers on the right have values from 0 through 99. The INT function throws
away the digits to the right of the decimal point. The following table summarizes what
we have covered so far.

Program Instruction

RND

10*RND

INT(10*RND)

100*RND

INT(100*RND)

Range

0 through .9999 .. .
0 through 9.9999 . . .
0 through 9 (integers only)
0 through 99.9999 . . .
0 through 99 (integers only)

Notice that all these ranges begin with the value of zero. In many games and
simulations, however, we need random numbers that start at some other value. For
example, to simulate the throw of one die you need a random number generator that
produces values from 1 to 6. You have seen that INT(10*RND) gives values from 0 to
9. What would INT(6*RND) produce? Change line 30 in the program to PRINT
INT(6*RND) and run the new program.

Type:

30 PRINT INT(6*RND)

CALL CLEAR

RUN

Beginner's BASIC 77

4
Your screen shows a list of five random numbers ranging from 0 to 5. What would
happen if we added the value 1 to each item in this list? The resultant numbers would
range from 1 to 6. That's just what we need to simulate the throw of a single die.
Again, alter the program as shown below and run it.

Type:

30 PRINT INT(6*RND)+1

CALL CLEAR

RUN

That does it! The program now in yourcomputer is a simulation (imitation) of
throwing a single die five times.

A Two-Dice Simulation

At this point we can easily design a program to simulate the throws of two six-sided
dice. Before you start, erase the old program by typing NEW. Then enter the following
program:

5 CALL CLEAR

10 RANDOMIZE

20 INPUT "NUMBER OF

30 FOR R0LL=1 TO N

40 DIE1=INT(6*RND)+1

50 DIE2=INT(6*RND)+1
60 PRINT DIE1;J>IE2,DIE1 +DIE2
70 NEXT ROLL

80 PRINT
90 GOTO 20 f \

R0LLS?M:N

This program prints out the number of"spots" on each die and the sum of the spots on
both dice faces. You are asked how many rolls you wish to make at the start of the
program. Run the program now and watch what happens.

78 Beginner's BASIC

Type:

RUN

CHAPTER FOUR:

Fun and Simulations

First, the program prints a request for the number of rolls to make. Enter a number (5,
for example) and press the ENTER.key.

r

NUMBER OF R0LLS75

2 5 7

6 6 12

3 1 4

2 3 5

1 4 5

NUMBER OF R0LLS7D

The program keeps looping back to the INPUT request line. (If you want to stop the
program, just press CLEAR.)

Experiment!

Try entering different values for the number of rolls. What happens if you try 30 rolls?
Then make some changes to the program, if you'd like to experiment. For example,
how would you alter the program to simulate the throwing of three dice? Two eight-
sided dice?

Beginner's BASIC 79

4
Error Conditions with RND

The error messages produced by an improper usage of RND are essentially the same
as the error messages we've mentioned before. Here are some examples:

Typing Errors Error Message

10 PRINT INTC10RND)

10 PRINT INT(10*RND

•INCORRECT STATEMENT IN 10

•INCORRECT STATEMENT IN 10

About the only new error condition we need to mention occurs if you try to use the
letters RND as a numeric variable name in a LET or assignment statement. For
example, if you type

LET RND=5

the computer will respond with

* INCORRECT STATEMENT

This occurs because RND is "reserved" to be used only as a function in TI BASIC.
(For a list of all reserved words, see the "BASIC Reference" section of the User's
Reference Guide.).

Randomized Character Placement

The following program utilizes the INT and RND functions to generate random screen
positions for a character you input. First, type NEW and press ENTER to erase your
old program; then enter these lines:

10 RANDOMIZE

20 INPUT "CHAR

30 CALL CLEAR

40 R0W=INT(24*RND)+1

50 C0LUMN=INT(32*RND)+1

60 CALL VCHARCR0W,COLUMN,CODE)
70 GO TO 40

C0DE?":C0DE

We'll use the character codes 33 through 95; since character 32 is a blank space, we
want to avoid entering it when the program asks for a code number.

80 Beginner's BASIC

CHAPTER FOUR:

Fun and Simulations

Before running the program, let's examine a flow chart describing its performance.

Line 10

Line 20

Line 30

Line 40

Line 50

Line 60

Line 70

"Randomizes" the random number

series each time the program is run.

Stops and asks "CHAR CODE?"
Assigns number you enter to the
variable CODE.

Clears prompting message and input
character code from the screen.

Produces random integer in range
of 0 through 23; adds 1 to value
and assigns value to variable ROW.

Produces random integer in range of
0 through 31; adds 1 to value and
assigns value to variable COLUMN.

I
Prints input character in random
position designated by lines 40 and 50.

I
Loops back, to produce new random
position for character.

Nowclear the screen with CALL CLEAR and run the program. For this first
example, enter 42 (the character code for the asterisk) as the input for CHAR CODE.
The screen will look something like this:

To stop the program just press CLEAR. Then try running the program several times,
putting in a different character code each time. See if any unusual designs are
produced.

Beginner's BASIC 81

4
When you've finished experimenting with different characters, let's change the program
to generate characters at random, as well as placing them randomly on the screen.
First we'll have to decide how to set the limits we want for the character range. Here's
a general procedure for setting the limits for use with RND:

Subtract the LOWER LIMIT from the UPPER LIMIT.

Addl.

Multiply that result by RND.
Find the integer (INT) of this result.
Add the LOWER LIMIT

Now we know that we want 63 characters, with character codes ranging from 33
through 95. So our LOWER LIMIT is 33, and our UPPER LIMIT is 95:

95-33 = 62

62 + 1 =63

The number we want to multiply by RND is 63, and we must use the INT function:

INT(63*RND)
Produces random integers

from 0 through 62.

Now check the limits established when we add our LOWER LIMIT, 33:
0+33=33 (lowest possible character code)

62 +33 = 95 (highest possible character code)

INT(63*RND)+33 will give us random whole numbers in the range we need. Type the
following new line:

20 C0DE=INT(63*RND)+33

and press ENTER . Now clear the screen and list the program to review this change.

r

>LIST

10 RANDOMIZE

20 C0DE=INT(63*RND)+33

30 CALL CLEAR
40 R0W=INT(24*RND,) + 1

50 C0LUMN=INT(32*RND>+1

60 CALL VCHAR(R0W,COLUMN,COD
E)

70 GO TO 40

>•

When we run the program this time, the computer will generate a random character
code and then print the character in random positions on the screen. (Press CLEAR
when you want to stop the program.) Run the program several times to see different
characters.

82 Beginner's BASIC

CHAPTER FOUR:

Fun and Simulations

Experiment!

By making changes in two lines, you can cause the previous program to print different
random characters each time it loops. Try it! (Hint: Think about lines 30 and 70.)

The IF-THEN Statement

All the programs we've considered so far in this book have been constructed so that
they either run straight through or loop using a GO TO or a FOR-NEXT loop. The
IF-THEN statement provides you with the capabilityof making branches or "forks" in
your program. A branch or fork is a point in a program where either one of two paths
can be taken, just like a fork in a road.

The general form of an IF-THEN statement looks like this:
IF condition THEN line number

The condition is a mathematical relationship between two BASIC expressions. The
line number is the program line to which you want the program to branch ifthe
condition is true. If the condition is not true, then the program line following the IF-
THEN statement is executed. For example,

30 IF K<10 THEN 70

The statement says: If the value ofKis less than 10, then go to line 70 oftheprogram. If
K is greater than or equal to 10, then do not branch to line 70.
Instead, execute the line following line 30.

Let's try a demonstration program. Enter these lines:

Beginner's BASIC

NEW

10 CALL CLEAR

20 LET K=1

30 PRINT "K = "

40 LET K=K+1

50 IF K<10 THEN 30

60 PRINT "OUT OF LOOP"

70 END

C

83

4
Now run the program.

r
K = 1

K= 2

K= 3

K= 4

K= 5

K = 6

K= 7

K= 8

K = 9

OUT OF LOOP

**)0NE**

>•

Each time the program reaches line 50, it must make a "true or false" decision. When
K is less than 10, the IF condition (K<10) is true, and the program branches to line
30. When K equals 10, however, K<10 is false. The program then executes line 60
and stops.

We mentioned earlier that the condition is a mathematical relationship between two
expressions. In the example you've just seen, the mathematical relationship was <, or
"less than." There are a total of six relationships that can be used in the IF-THEN
statement:

Mathematical BASIC

Relationship Symbol Symbol
Equal to — i =

Less than < <

Greater than > >

Less than or equal to • < < =

Greater than or equal to > > =

Not equal to ^ <>

Suppose we changed line 50 in the program to this:

50 IF K<=10 THEN 30

How would the program's performance be affected? Try it! Enter the new line, and
then run the program again.

Now, the program prints the value of K all the way through 10, because the new line
says, "If K is less than or equal to 10, branch to line 30."

84 Beginner's BASIC

CHAPTER FOUR:

Fun and Simulations

Experiment!

The IF-THEN statement can be a powerful tool in program development. Try this
program for a graphics application:

NEW

10 CALL CLEAR

20 CALL C0L0R(2,5,5)
30 LET K=1

40 CALL HCHAR(K,K+1,42)
50 K-K+1

60 IF K<25 THEN 40

70 K = 1

80 CALL HCHAR(K,K+3,42)
90 K=K+1

100 IF K<25 THEN 80

110 GOTO 110

Can you follow this pattern to create more than two diagonal lines?

Error Conditions with IF-THEN

Like mostTI BASIC statements, the IF-THEN statement is pretty particular about its
form. The main errors that can occur in using the IF-THEN statement are shown
below:

20 IFA=B THEN 200 (No space after IF)

20 IF A=BTHEN 200 (No space in front of THEN)
20 IF A=B THEN200 (No space after THEN)

20 IF A==B THEN 200 (Invalid relational symbol combinations)
20 IF A= THEN 200 (No expression on one side of the relational symbol;

All ofthe above conditions produce an error message either when entered or during
the running of the program, alongwith a reference to the line number of the statement
in which the error, occurs.

If the line number referenced in an IF-THEN statement does not exist, the program
stops and produces a message saying that the line number referenced in the statement
is not found in the program. For example (using the line above), if 200 is not a valid
line number in your program, you see this error message:

* BAD LINE NUMBER IN 20

Games and Music

The remainder of this chapter explores color graphics and sound through special
games applications. Several of the programs are based on a number-guessing game
you may have played before. You'll also find that both the RND function and the IF-
THEN statement are used extensively in the programs.

Beginner's BASIC 85

4
A Number-Guessing Program

In this game the computer generates a secret number from 1 to 100, using the RND
function, and asks you to guess the number. The program tells you if your guesses are
larger, smaller, or equal to the secret number. When you guess the number, the
program chooses another number and begins the game again.

Type NEW, press ENTER, and enter these lines:

10 CALL CLEAR

20 SECRET=INT(100*RND)+1

30 PRINT "I HAVE A SECRET NUMBER!"

40 PRINT

50 INPUT "WHAT IS YOUR GUESS?":GUESS

60 IF GUESS=SECRET THEN 130

70 IF GUESS>SECRET THEN 100

80 PRINT "TOO SMALL!"

90 GOTO 110

100 PRINT "TOO BIG!"

110 PRINT "TRY AGAIN."

120 GOTO 40

130 PRINT "YOU GUESSED IT!"

140 PRINT "LET'S PLAY AGAIN!"

150 FOR DELAY=1 TO 1000

160 NEXT DELAY-

170 GOTO 10

Notice that two IF-THEN statements are used in the program, at lines 60 and 70. In
line 60, if the guess is not equal to the secret number, the condition in the IF-THEN
statement is false, and the program proceeds to line 70. If the guess is equal to the
secret number, the program branches to line 130 and prints the victory message.

At line 70, we test to see if the guess is larger than the secret number. If the guess is
larger than the number, the condition is true, and the program branches to line 100. If
the guess is smaller than the number, the condition is false, and the program proceeds
to line 80.

86 Beginner's BASIC

CHAPTER FOUR:

Fun and Simulations

Nowrun the program. When it asks "WHAT IS YOUR GUESS?"just type in a
number from 1 through 100, and press ENTER. Here's an example of what might appear
on the screen:

I HAVE A SECRET NUMBER!

WHAT IS YOUR GUESS735

TOO SMALL!

TRY AGAIN.

WHAT IS YOUR GUESS775

TOO BIG!

TRY AGAIN.

WHAT IS YOUR GUESS750

TOO BIG!

TRY AGAIN.

WHAT IS YOUR GUESS740

TOO SMALL!

TRY AGAIN.

WHAT IS YOUR GUESS741

TOO SMALL!

TRY AGAIN.

WHAT IS YOUR GUESS742

TOO SMALL!

TRY AGAIN.

WHAT IS YOUR GUESS745
YOU GUESSED IT! !

LET'S PLAY AGAIN!

I HAVE A SECRET NUMBER!

WHAT IS YOUR GUESS?

The computer will start a new game each timeyou guess the correct number. When
you want to stop playing, just press CLEAR.

Notice also that we did notinclude the RANDOMIZE statement. Therefore, the
program will generate the same series of random numbers each time you run it! If you
want to make the program create a newset of random numbers each time, just add
this line:

15 RANDOMIZE

Beginner's BASIC 87

4
A Tone-Guessing Program

A novel version of the number-guessing program can be created using the sound
capabilities of your computer. This program generates a random tone from 131 cycles
per second through 247 cycles per second. (If you need to review the CALL SOUND
statement and the frequency limits of the computer, see Chapter 1, page 17.) Your job
is to guess the frequency of the tone! The program lets you know if your guess is lower,
higher, or equal to the frequency of the random tone that is generated. When you guess
the correct frequency, the program plays the tone three times and begins the game
again.

So type NEW, press ENTER, and enter the new program.

10 CALL CLEAR

20 T0NE = INT(117*RND) + 131 *

30 PRINT "HERE'S THE TONE!"

40 PRINT

50 CALL S0UND(1000,T0NE,2)

60 INPUT "GUESS, PLEASE?":GUESS

70 IF GUESS=T0NE THEN 160

80 IF GUESS>T0NE THEN 110

90 PRINT "TOO LOW!"

100 GOTO 120

110 PRINT "TOO HIGH!"

120 CALL SOUND(1000,GUESS,2)
130 PRINT "TRY AGAIN."

140 PRINT

150 GOTO 30

160 PRINT "YOU GUESSED IT!"

170 FOR PLAY=1 TO 3

180 CALL S0UND(100,T0NE,2)
190 NEXT PLAY

200 FOR DELAY=1 TO 500

210 NEXT DELAY

220 GOTO 10

Line 20 may need a little explanation. If the lowest tone we want is 131 cycles per
second and the highest is 247 cycles per second, how do we set our random number
limits? Well, INT(117*RND) produces numbers from 0 through 116, and

0 + 131 =131 (our desired lower limit)
116 + 131 =247 (Our desired upper limit)

Now run the program. The information that appears on the screen is similar to the
number-guessing program. The only difference is that in this program your guess is
"played" back to you by the computer.

88 Beginner's BASIC

CHAPTER FOUR:

Fun and Simulations

If you'd like to change the tone limits, you can do so easily by changing line 20. For
example, suppose you'd rather hear aseries ofhigher tones - perhaps in the range
from 262 cycles per second through 392 cycles per second. How would you rewrite
line 20 to generate these tones?

Also, you may want to add the RANDOMIZE statement to create a newseries of
random tones each time you run the program. If so, just enter this newline:

15 RANDOMIZE

Color Up!

Next, let's examine two color programs. The first program creates ten randomly
placed horizontal bars - ofa color you input, and ofrandom lengths. Then the
program stops for you to input a new color code.

You'll notice that we've used IF-THEN statements in anew way (lines 30 and 40). We
test the input color code to be sure it's valid. If it isn't, the program gives you a
specially written "error message."

10 CALL CLEAR

15 RANDOMIZE

20 INPUT "COLOR PLEASE?":C
25 CALL CLEAR

30 IF C<1 THEN 200
35 IF C>16 THEN 200

40 FOR L00P=1 TO 10

45 R0W=INT(24*RND)+1

50 REPEAT=INT(28*RND)+1

55 CALL C0L0R(2,C,C)

60 CALL HCHAR(R0W,3,42,REPEAT>

65 FOR DELAY=1 TO 100

70 NEXT DELAY

75 NEXT LOOP

80 GO TO 10

200 PRINT "BAD COLOR CODE!"
210 PRINT "MUST BE 1 TO 16."
220 PRINT "TRY AGAIN!"

240 FOR DELAY=1

250 NEXT DELAY

260 GO TO 10

TO 500

When you run the program, you'll see all of the bars begin at column 3, near the left-
hand edge of the display. Their lengths, however, are random, as are their horizontal
positions on the screen. After ten bars ofthe input color are placed, the program clears
the screen and asks you for a new color code.

Beginner's BASIC 89

4
Remember to avoid putting in color codes 1 (transparent) and 4 (the screen color in the
Run Mode). Although these are valid codes, you won't be able to see the bars.

The next program is a game that contests two colors against each other. A winning
color is randomly chosen. The program is the longest you've seen yet, so we'll provide
some explanations as we go along. Here's the program:

NEW

10 CALL CLEAR

20 INPUT "FIRST C0L0R?":C1
30 IF C1<1 THEN 700

40 IF C1>16 THEN 700

50 INPUT "SECOND C0L0R?":C2

60 IF C2<1 THEN 800

70 IF C2>16 THEN 800

80 CALL CLEAR

90 C0L0RTEST=INT(2*RND)+1

100 FOR L00P=1 TO 50

110 R0W=INT(24*RND)+1
120 C0LUMN=INT(32*RND)+1

130 IF C0L0RTEST=1 THEN 160

140 LET A=C2

150 GOTO 170

160 LET A=C1

170 CALL C0L0R(2,A,A)
180 CALL HCHAR(R0W/C0LUMN/42)

190 NEXT LOOP -

200 FOR DELAY=1 TO 500

210 NEXT DELAY

220 GOTO 10

700 PRINT "BAD COLOR CODE!" v
710 PRINT "MUST BE 1 TO 16."

720 PRINT "TRY AGAIN."

730 GOTO 20

800 PRINT "BAD COLOR CODE!"

810 PRINT "MUST BE 1 TO 16."

820 PRINT "TRY AGAIN!"

830 GOTO 50

Two people can play against each other, or you can play against yourself by putting in
both color codes, just to see which "wins" the game. (Again, avoid entering color codes
1 and 4.)

90 Beginner's BASIC

CHAPTER FOUR:

Fun and Simulations

Random Notes

We've used CALL SOUND earlier in a program that played notes from a musical
scale. (See Chapter 2, pages 39-40.) If we modify that program, adding the IF-THEN
statement and the RND function, we can make the computer play some interesting
(but not necessarily enjoyable) "music." Here's how:

NEW

10 LET C=262

15 LET D=294

20 LET E=330

25 LET F= 349

30 LET G=392

35 LET A=440

40 LET B=494

45 LET C2=523 f

50 RANDOMIZE

55 N0TE=INT(8*RND)+1

60 TIME=INT(901*RND)+100

65 V0LUME=2

70

75

80

85

90

100

IF

IF

IF

IF

IF

IF

N0TE=1

N0TE=2

N0TE=3

N0TE=4

N0TE=5

N0TE=6

THEN

THEN

THEN

THEN

THEN

THEN

105 IF N0TE=7 THEN

110 N0TE=C2

115 CALL S0UNDCTIME,NOTE,VOLUME)
120 GOTO 55

200 N0TE=C X
210 GOTO 115

300 N0TE=D

310 GOTO 115

400 N0TE=E

410 GOTO 115

500 N0TE=F

510 GOTO 115

600 N0TE=G

610 GOTO 115

700 N0TE=A

710 GOTO 115

800 N0TE=B

810 GOTO 115

Beginner's BASIC 91

4
Now run the program and enjoy the "music." When you're ready to "stop the music,"
just press CLEAR.

You might like to experiment with this program in various ways. For example, do you
notice anything different in the "music" if you change lines 60 and 65 to

60 TIME=500

65 V0LUME=5

A Musical Interlude

Now that we've let the computer play its "music," let's play some music of our own!
With this program we can use the keyboard to input the notes we want to play. Enter
these lines:

NEW

10 CALL CLEAR

15 LET C=262

20 LET D= 294

25 LET E=330

30 LET F=349

35 LET G=392

40 LET A=440

45 LET B=494

50 INPUT "NOTE

92

55

60

65

70

75

80

85

IF

IF

IF

IF

IF

IF

IF

A$="C"

A$="D"

A$=ME"

A$=»F"

A$="6"

A$="A"

A$="B"

90 GOTO 50

100 N0TE=C

110 GOTO 800

200 N0TE=D

210 GOTO 800

300 N0TE=E

310 GOTO 800

400 N0TE=F

410 GOTO 800

500 N0TE=G

510 GOTO 800

600 N0TE=A

610 GOTO 800

700 N0TE=B

800 CALL S0UND(100,N0TE,2)

810 GOTO 50

Beginner's BASIC

CHAPTER FOUR:

Fun and Simulations

When you run the program, the program will ask you for a note. You then press one of
the letter keys (A,B,C,D,E,F, orG), followed by the ENTER key. For example, when the
screen shows

NOTED

and you press these keys:
A (ENTER)

the "note" A will play. The screen keeps a record of the keys you depress:

NOTE C

NOTE D

NOTE E

NOTE F

Having to press the ENTER key for each note slows down your musical performance a
bit, doesn't it?What can we do about this problem?

The CALL KEY Routine

There is a routine that permits the transfer of one character from the keyboard directly
into a program. The routine is CALL KEY. If you alter the current program in the
following way, you don't have to press the ENTER key after hitting the key for each
note.

Enter:

50 CALL KEYCO,NOTE,STATUS)

55 IF STATUS=-1 THEN 50

60 IF STATUS=0 THEN 50

65 IF N0TE=67 THEN 100

70 IF N0TE=68 THEN 200

75 IF N0TE=69 THEN 300

80 IF N0TE=70 THEN 400

85 IF N0TE=71 THEN 500

90 IF N0TE=65 THEN 600

95 IF N0TE=66 THEN 700

Beginner's BASIC 93

4
Here's how CALL KEY works. Each character on the keyboard has a numeric code.
When a key is depressed, the character code of that key is assigned to the second
variable in the KEY routine. In this example, the character code is assigned to the
variable NOTE. The last variable in the KEY routine is a status indicator. The
indicator lets the program know what has occurred on the keyboard. If you keep
holding down the same key, the STATUS is minus one. If you press a key different
from your last entry, the STATUS is one (1). If you don't press any key, the STATUS
is zero (0). When you run the program, nothing appears on the screen as you press the
keys. The program simply plays the note you request. So go ahead — make a little
music!

The CALL KEY routine allows you to create "your own kind of music," and the
routine can also be used in many games and simulations where single-character input
values are requested. The CALL KEY routine speeds up the input of data by
eliminating the need to press the ENTER key after your data entry.

Summary of Chapter 4

This chapter has given you an idea of the many interesting games and simulations you
can develop with your computer. You've discovered these new features:

RND Allows you to generate random numbers.

RANDOMIZE Insures that each series of random numbers generated by
a program will be different.

IF-THEN Provides conditional branching capabilities in a program.

CALL KEY Permits the transfer of a keyboard character directly into
a program, without pressing ENTER.

Congratulations! You've accomplished a lot of computer programming!

The following chapter deals only with computer graphics. You'll learn how to define
your own characters and how to make "animated" patterns on the screen. Just turn the
page for some more exciting experiences!

94 Beginner's BASIC

Beginner'sBASIC 95

5
CHAPTER
FIVE

Computer
Graphics

This chapter continues developing programs that demonstrate the graphics
capabilities of your computer. The programs deal with the use of color, animation and
the generation of your own graphics characters on the screen.

The intent in this chapter is to give you some hints and examples that will help you
expand your enjoyment and use of your computer. As you begin to develop your own
graphics applications, you may want to refer to this material for ideas on how to
approach the use of color and graphics. In time, you'll discover other ways to create
specific programs and simulations. But for now the programs that are given here will
demonstrate several techniques you'll enjoy using.

Blocks of Color

In previous chapters we've experimented with several programs that placed color lines
or squares on the screen. The program below shows you how to create larger blocks of
color.

NEW

10 INPUT "COLOR C0DE?":C

20 IF C<1 THEN 10

30 IF C>16 THEN 10

40 CALL CLEAR

50 CALL C0L0R(2,C,C)
60 FOR 1=1 TO 4

70 CALL VCHAR(2,I+2,42,4)
80 CALL VCHAR(19,I+2,42,4)
90 CALL VCHAR(2,I+24,42,4)
100 CALL VCHAR(19,I+24,42,4)
110 CALL VCHAR(12,I+13,42,4)
120 NEXT I

130 INPUT "PRESS ENTER KEY":

KEY$

140 GOTO 10

First the program stops and asks you to input a color code. (See Appendix C for the
list of colors that correspond to the valid color codes, 1 through 16.) When you enter a
code, the screen clears, the blocks of color are displayed, and the program waits for
you to press a key before continuing. Notice the special use of the INPUT statement in
line 130. We are just using INPUT to stop the program until we are ready to go on.

Now clear the screen and run the program. First you'll see

COLOR C0DE7D

96 Beginner's BASIC

CHAPTER FIVE

Computer Graphics

Remember that color code 1 is transparent and code 4 is the screen color in the Run
Mode. So let's enter 7 (dark red) as our first color code. When you press ENTER, you'll
see this:

r •%

€3

•
PRESS ENTER KEYO

Experiment with several colors. Find the ones that produce clearsharp images against
the normal color of the screen. Can yousee how this technique could be used to create
checkerboard patterns or the board area for a game like tic-tac-toe?

(Each block in this program is four "characters" wide and four "characters" high. If
you'd like to see the "characters," press CLEAR to stop the program.)

The CALL SCREEN Statement

So far, the color of the screen in the Run Mode has always been light green. Suppose,
however, that we would prefer a different color as a background for ourcolor design.
Easy! All we have to do is to add a simple statement that changes the Run Mode
screen color:

CALL SCREENC11)
Color code for

screen color we want,
enclosed in parentheses.

Let's edit the color block program we just entered so that we can use a different screen
color as a background for our blocks. Enter these lines:

32 INPUT "SCREEN C0L0R?":A

33 IF A<1 THEN 32

34 IF A>16 THEN 32

45 CALL SCREEN(A)

Now run the program again. This time, you'll be asked to enter two color codes. The
first code determines the color of the blocks; the second sets the color of the screen.

Beginner's BASIC 97

5
Experiment!

Experiment with different color combinations. Which give you the sharpest, clearest
design?Which are most pleasing in an artistic sense?Then try changing the block
design produced by the program. For example, can you make the blocks rectangular?

Patterns

The two programs we'll develop next continue our exploration of computer graphics by
showing how to construct patterns out of standard characters. The statements and
functions used in the program are elements of BASIC you already know; however, you
may see some new applications of these features.

Rectangles and Squares

The first program allows you to place a rectangle or square of standard characters on
the screen. Instead of using CALL HCHAR or CALL VCHAR and identifying the
character by its character code, we'll assign a character to a string variable from the
keyboard.

Try these examples in the Immediate Mode:

LET A$="*
PRINT A$

PRINT A$;
PRINT A$;

ii

A$
TAB(10);A$

r^^ r *%
{ one asterisk)

>LET A$="*"

\>PRINT A$

two asterisks, \
side by side 1——^_____^

^ *

>PRINT A$;A$

one asterisk at \
left margin; one y^^"

in column 10 J *

>PRINT A$;TAB(10);A$

—j

Try a few more Immediate Mode experiments on your own. For example, what would
happen if you redefine A$ as "***" or as "()"? Try it and see what results! (If you need to
review the TAB function and the print separators, see Chapter 3, page 57.)

98 Beginner's BASIC

CHAPTER FIVE

Computer Graphics

This method is convenient if you want to print only a short line of characters. But what
if you want to print a long line or vary the line length or character the program prints?
INPUT statements and a FOR-NEXT loop will solve the problem. Type NEW; then
enter this program:

20 INPUT MCHARACTER?":A$

40 INPUT "WIDTH?":W

60 CALL CLEAR

80 FOR X=1 TO W

100 PRINT A$;
120 NEXT X

140 END

When you run the program, you'll first be asked to input the character you want to use.
Just type the character and press ENTER. Then you'll be asked for the "width" or the
number of characters in the line you want to print. Type in the number and press
ENTER to continue the program. Let's say that you entered * as the character and 28 as
the width. The screen will look something like this:

r

** DONE **

>D

•\

(Note that the semicolon in line 100 causes the characters to be printed in an
unbroken row.)

Run the program a few times, entering different characters and lengths. Then let's try
adding some program lines that will allow us to make rectangles and squares of
characters.

Beginner's BASIC 99

5
Enter these new lines:

40 INPUT "SIZEO

70 FOR Y=1 TO H

130 PRINT

135 NEXT Y

140 GOTO 40

IDTH,HEIGHT)":W,H

There are a couple of items that need to be explained about these lines. First, notice in
line 40 that we are using one INPUT statement to assign values to two variables!
When you input the width and height, you'll need to use this form:

Second, lines 70 and 135 set up a loop on the variable Y Your original "X loop" is now
nested inside the "Y loop."

Finally, line 130 prints an "empty" line. This line is needed to clear away the semicolon
(;) in line 100 so that a new row will begin the next time the program loops through the
"Y loop." (As you've seen already, the semicolon causes the characters to be printed on
the same line throughout the loop on X.)

Before we list the program to see the changes, let's add a few more lines. We can use
IF-THEN statements to "build in" some tests:

100

25 IF A$="XX" THEN 150

45 IF W+H=0 THEN 20

150 END

Beginner's BASIC

CHAPTER FIVE

Computer Graphics

Here's what these tests provide. Line 25 gives you a handy way to stop the program by
pressing the X key twice and then pressing ENTER when you're asked for a character
input. If you want to experiment with a different character, all you have to do is to
enter 0,0 as size inputs. The test in line 45 then sends you back to line 20 to input a
new character.

Now clear the screen and list the program

LIST

20 INPUT "CHARACTER?":A$
25 IF A$="XX" THEN 150

40 INPUT ,,SIZE(WIDTH/HEIGHT)
":W,H
45 IF W+H=0 THEN

60 CALL CLEAR

70 FOR Y=1 TO H

80 FOR X=1 TO W

100 PRINT A$;
120 NEXT X

130 PRINT —

135 NEXT Y

140 GOTO 40

150 END

Clear the screen again and run the program. For this example, enter * when the
program asks CHARACTER? Then enter 8,5 when you're asked for width and height:

Next, enter the same value for both width and height, such as 8,8 or 5,5. With these
inputs the program will create a square, rather than a rectangle.

Beginner's BASIC 101

5
Perhaps a flowchart will help to describe how the program works. The following
diagram doesn't show the whole program in detail; it covers only the parts that relate
to program control by input values.

line 20

line 25

line 40

line 45
YES

line 60

lines 70-140

Input
character.

Input size
(width, height).

NO

Clear screen.

Display rectangle
or square and return

to line 40.

YES
•M Stop line 150

Experiment!

Experiment with the program. Try entering the control values (character input =XX,
width and height both=zero) to see how the program reacts. Vary the width and height
so that the display fills the screen or makes only tall thin bars and wide flat strips.
What happens if you enter a width greater than 28 or a height greater than 24? (Try it
and see what happens.) Can you add color to this program?

102 Beginner's BASIC

CHAPTER FIVE

Computer Graphics

"Holes"

Let's expand the Rectangles and Squares program one more time. These new lines
will create rectangles or squares with a random sprinkling of "holes" (blank spaces) in
the display field. Enter the following lines:

15

85

90

95

RANDOMIZE

IF INT(2*RND)=0

PRINT " "

GOTO 120

THEN

Now clear the screen and list the changed program, so that we can discuss the effect of
these additions.

LIST

15 RANDOMIZE

20 INPUT "CHARACTER?":A$

25 IF A$="XX" THEN 150

40 INPUT "SIZECWIDTH,HEIGHT) J Iftrue, go to
": W, H f line 100 and PRINT
45 IF W+H =0 THEN 20 V the character. Iffalse
60 CALL CLEAR 7 PRINT* b!*"ksPace
70 FOR Y=1 TO H l 0"*m
80 FOR X=1 TO W

85 IF INT(2*RND)=0

90 PRINT " ";
95 GOTO 120

100 PRINT A$;
120 NEXT X

130 PRINT

135 NEXT Y

140 GOTO 40

150 END

The test with the RND function in line 85 causes a character to be printed whenever
INT(2*RND) is equal to 0, a space when INT(2*RND) is equal to 1. Thus,
approximately half of the time the program prints a character and half of the time a
space. Run the program now, and observe the kind of pattern that emerges.

Experiment!

You'll be able to see the "holes" better by making the character into a color block. Add
these lines to the program:

10 INPUT "C0L0R?":C

45 IF W+H=0 THEN 10

50 CALL C0L0R(3,C,C)

Now, when the program asks, COLOR?, type and enter a color code from 1 to 16.
Notice that, to see the character in color, you'll have to enter a character input from
set #3 (0,1,2,3,4,5,6, and 7 are the characters in this set).

THEN 100

Beginner's BASIC 103

5
Animation

Animation is the illusion of movement. In order to achieve this illusion in your graphics
programs, it's necessary to keep changing your character or sets of characters. The
following programs demonstrate some of the techniques used to create flashing and
moving graphics on the screen.

Flashing Letters

One way to create a flashing graphic is to print a character (or set of characters), delay
the program, clear the screen, delay the program again, and then repeat the process.
The clearing of the screen and the delays have the effect of turning the character "on
and off," making it appear to flash. Let's try a program that flashes the letter A in the
center of the screen.

NEW

10 CALL VCHAR(12,16,65)
20 FOR DELAY=1 TO 200

30 NEXT DELAY

40 CALL CLEAR

50 FOR DELAY=1 TO 100

60 NEXT DELAY

70 GOTO 10

/

Now clear the screen and run the program.

104 Beginner's BASIC

CHAPTER FIVE

Computer Graphics

Another way to simulate flashing is to replace one character with another in the same
spot on the screen. Let's revise our program so that it alternately flashes A and B. We
can do this easily by entering a new line 4 0:

40 CALL VCHAR(12,16,66)

Since we're replacing A with B, we don't have to clear the screen between printing the
characters. However, we may want to add a CALL CLEAR at the beginning of the
program. So enter this line:

5 CALL CLEAR

and run the revised program. Do A and B appear to flash alternately on the screen?
(You may want to increase the time delay in line 50, so that A and B will each stay on
the screen the same length of time.)

From flashing characters to flashing color squares is an easy step, so we'll examine
next a program that places a flashing color square on the screen.

Flashing Color Squares

With this program we want to create a color square that flashes on the screen.
We'll write the program so that we can input the color we want, and we'll use character
42 (the asterisk, in character set 2) to make our square. Here's the program:

NEW

10 CALL CLEAR

20 INPUT "COLOR C0DE?":X

30 CALL CLEAR

40 CALL C0L0R(2/X/X)
50 CALL VCHARC12,16,42)
60 FOR DELAY=1 TO 200

70 NEXT DELAY

80 CALL CLEAR

90 FOR DELAY=1 TO 200

100 NEXT DELAY

110 GOTO

Beginner's BASIC 105

5
Now run the program. First, it asks

COLOR CODE?

and waits for you to input a valid color code. The codes are 1 through 16; remember,
however, that code 1 is transparent and code 4 is the normal screen color in the RUN
Mode. Squares of these colors will not show up on the screen.

When you type in a color code and press ENTER, you'll see the square flashing near the
center of the screen.

Next, let's change the program to create two color squares that alternately flash on the
screen. To do so, we'll need to input two color codes. So enter these lines first:

20 INPUT "C0L0R1?":X

25 INPUT "C0L0R2?,,:Y

Now we'll replace our original line 80 with two new lines, to set the color and display
the second square:

80 CALL C0L0R(2,Y,Y)
85 CALL VCHAR(12,16,42)

Let's review these changes by listing the program. Clear the screen; then type LIST
and press ENTER:

LIST

10 CA

20

25

30

40

50

60

70

80

85

90

100

IN

IN

CA

CA

CA

F0

NE

CA

CA

F0

N

110 G

LL CLEAR

PUT "C0L0R1?":X

PUT "C0L0R2?":Y

LL CLEAR

LL C0L0R(2,X,X)
LL VCHAR<12,16,42
R DELAY=1 TO 200

XT DELAY

LL C0L0R(2,Y,Y)
LL VCHAR(12,16,42
R DELAY=1 TO 200

EXT DELAY

0T0 40-—

Select your two colors and run the program, typing in the color codes as the program
asks for them. The two color squares will alternately flash on the screen.

106 Beginner's BASIC

CHAPTER FIVE

Computer Graphics

Experiment with several color combinations to find those that give a good contrast.
Here are a few examples to try:

Color 1 Color 2

6 5

11 14

14 16

9 11

Moving Color Squares

With just a few simple changes in the previous program, we can make the color
squares move across the screen as they flash. Add these lines:

35 FOR 1=3 TO 28

50 CALL VCHAR(12,I,42)
85 CALL VCHAR(12,I,42)
105 CALL CLEAR

110 NEXT I

120 GOTO 10

Now list the program to review the changes:

CALL CLEAR

LIST

10 CALL CLEAR

20 INPUT "C0L0R1?":X

25 INPUT "C0L0R2?,,:Y

30 CALL CLEAR

35 FOR 1=3 TO 28

40 CALL C0L0R(2,X,X)
50 CALL VCHAR(12,I,42)
60 FOR DELAY=1 TO 200

70 NEXT DELAY

80 CALL C0L0R(2,Y,Y)
85 CALL VCHAR(12,I,42)
90 FOR DELAY=1 TO 200

100 NEXT DELAY

105 CALL CLEAR

110 NEXT I

120 GOTO 10

When you've checked the program for accuracy, run it. Starting at column 3, the
squares flash and travel across the screen, ending at column 28. Then the screen
clears, and the program asks you for new color inputs.

Experiment!

If you want to speed up the flashing, shorten the time delay loops in lines 60 and 90.
For a challenge, you might like to make the program flash three color squares! How
would you do it?

By this time you've seen several examples of the kind of graphics you can create with
the standard characters of your computer. Next we'll show you how to develop
characters of your own.

Beginner's BASIC 107

5
The CALL CHAR Statement

The CALL CHAR statement gives you the capability of creating your own screen
characters. In our first program we'll recfe/?/?e some of the standard characters. Before
we redefine a character, however, we must first look at the way a character is
represented on the screen.

Each printing position on the screen is made up of sixty-four tiny dots. The dots are
arranged in eight rows of eight dots each. Each row is partitioned into two blocks of
four dots each. The diagrams below show how an 8-by-8 grid of dots would look if it
were greatly enlarged.

ROW1

ROW 2

ROW 3

ROW 4

ROW 5

ROW 6

ROW 7

ROW 8

Any Row

LEFT RIGHT

BLOCKS BLOCKS

'

IT

left

block.

right
block

A character on the screen, either a standard character or one that you invent, is
formed by dots within the 8-by-8 grid. By turning some dots "on" and leaving others
"off," a character is created. Leaving all the dots "off' creates the space character
(character code 32), for example. Turning all the dots "on" produces a solid spot on the
screen.

All the standard characters are automatically set so that they turn on the appropriate
dots to produce the images you have seen. To create a new character, we must tell the
computer which dots to turn on or leave offin each of the 16 blocks within the printing
region that contains the character. In your computer a shorthand system is used to
specify which dots are on or off within a particular block. The table that follows
contains all the possible on/off conditions for the dots within a given block and the
shorthand notation for each condition.

108 Beginner's BASIC

CHAPTER FIVE

Computer Graphics

BLOCKS DOT CODE SHORT-
(0=off;l=on) HAND

CODE

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

1000 8

1001 9

1010 A

1011 B

1100 C

1101 D

1110 E

1111 F

f" '̂
>,:j

L":'.

tJ:-.i

k- i

I \

V !

'.'.'

1 •'." '
)---

rr_. ;-.. i

[•« i • ,-

*

;'<•••!
• J..'! i;:

; r

Let's take a look at one row (two blocks) to see how the "shorthand code" works.

LEFT RIGHT

BLOCK BLOCK

Any row— u-i r-nzcE
Dot Code

Shorthand

0 10 110 11

5 B

The shorthand code for the row, then, is 5B.

The shorthand codes for an entire grid can be determined block by block, just by
converting the on/off conditions of each row. The following example provides a
translation of an entire grid into the shorthand code.

ROWl

ROW 2

ROW 3

ROW 4

ROW 5

ROW 6

ROW 7

ROW 8

LEF1

BLOC K

RIGH'

BLOC1

r

EC

X X X X X X

X X X X

X X

X X X X

X X

X X X X X X

X X

X X X X X X

Beginner's BASIC

CODE

109

5
Therefore, if we want to "define" a character shaped as the X's on the grid indicate, we
enter all the shorthand codes of the blocks as a single "string":

"7EA5819981BD817E"

In the shorthand code, then, one number or letter represents a whole block (4 dots) on
the grid. Two letters and/or numbers represent a whole row.

Based on the table, if all the dots in all the blocks were to be turned on, the shorthand
code for this condition would be:

"FFFFFFFFFFFFFFFF"

This code may seem long, since it represents all 16 blockswithin the grid. But it is still
shorter than trying to write down all 64 separate conditions dot by dot.

Once you've decided which dots you wanton and off and worked out the code, you're
ready to use the CALL CHAR statement. It looks like this:

CALL CHAR<33,"FFFFFFFFFFFFFFFF")

Let's try a simple program that redefines character code 33(!) as a characterwith all
the dots turned on. The new character is then printed in the center of the screen,
givingyou a chance to see exactly how bigone of the individual print areas really is.
Enter these lines:

110

NEW

10 CALL CLEAR

20 CALL CHARC33,"FFFFFFFFFFFFFFFF";

30 CALL VCHAR(12,16,33)

40 GOTO 40

Beginner's BASIC

CHAPTER FIVE

Computer Graphics

Run the program and observe your newly defined character on the screen!

r

So that you can experiment with other shorthand codes, let's edit the program. Type
these new lines:

5 INPUT MSHORTHAND?":A$

20 CALL CHAR(33,A$)
40 GOTO 5

This time, when you run the program, you'll be asked to input the shorthand code for
the character you are defining. Try the following examples.

Enter: FFFFFFFF

k SH0RTHAND7D

When you stop the program by pressing CLEAR, the character that you created
changes back into the character from the standard character set. In this case,
character code 33 is restored to an exclamation point (!), and that symbol appears near
the center of the screen.

Beginner's BASIC 111

5
Entering FFFFFFFF is the same as entering FFFFFFFFOOOOOOOO. That is, the
CHAR routine fills out the right side of the string variable with zeros when there are
less than 16 characters in the string. Knowing this fact allows you to easilyexamine all
the shorthand codes individually. Just enter 0, 1, and so on up to F at the INPUT
request.

Enter: F

Try different combinations ofthe shorthand codes. See ifyou can generate any
interesting characters. Then let's revise the program again to print more than just one
of our redefined characters. Enter these lines:

30 FOR 1=1 TO 4

40 CALL VCHARC12,1+13,33,4)
50 NEXT I
60 GOTO 5

Now list the program to see the changes:

112

LIST

5 INPUT "SHORTHAND?":A$
10 CALL CLEAR
20 CALL CHAR(33,A$)
30 FOR 1=1 TO 4

40 CALL VCHAR(12,I+13,33,4)
50 NEXT I
60 GOTO 5

Beginner's BASIC

CHAPTER FIVE

Computer Graphics

When you run this program and enter a shorthand code for a new character, that
character is displayed 16 times in the center of the screen. The 16 characters appear
in a square four characters wide by four characters high. Try the following:

Enter: FF

A single print of the character with the shorthand code FF puts something like a long
dash on the screen. Printing four of these characters side by side draws a line on the
screen! To get dashes across the screen you must leave a space by setting two dots in
each block "off." To do this, the code is 33.

Enter: 33

Notice that, when you stop the program, the center of the screen fills with 16
exclamation points (!).

Now enter some other codes and experiment with the program until you feel
comfortable with the shorthand codes. To help you work out the codes, draw up
several 8-by-8 grids and mark off your "dots-on, dots-off" design. Then figure out the
code you need for each block of the grid.

Beginners BASIC 113

5
A Block Figure with CALL CHAR

Now that you've had some experience with defining your own characters, let's see if we
can create a small "human" figure by turning dots on and off.

To begin, you need to create the figure on a character grid worksheet, like the one
below. (Later, when you are creating your own characters, you may want to make
copies of the worksheet, not only to design your symbols, but also to use in translating
the symbol into the shorthand code of the CALL CHAR statement.)

114

CHAR Worksheet

SHORT

LEFT RIGHT HAND

BLOCK BLOCK CODE CODE

0

1

2

3

4

5

6

7

8

DOTS

ROW1 0000

ROW 2 0001

ROW 3 0010

ROW 4 0011

ROW 5 0100

ROW 6 0101

ROW 7 0110

ROW 8 0111

1000

9 1001

A 1010

B 1011

C 1100

D 1101

E 1110

INPUT TC)C Hi\R F mi

Beginner's BASIC

CHAPTER FIVE

Computer Graphics

Using the worksheet, we'll mark ones (Is) in the positions where the dots will be
turned on:

CHAR Worksheet

LEFT

BLOCK

RIGHT

BLOCK CODE

SHORT

HAND

CODE

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

DOTS

ROW 1 1 1 0000

ROW 2 1 1 0001

ROW 3 0010

ROW 4 0011

ROW 5 0100

ROW 6 0101

ROW 7 0110

ROW 8 0111

INPUT T(3C:h AR

1000

1001

1010

1011

1100

1101

1110

mi

Now, let's look at the same figure with the "on" dots shaded in, and let's fill in the
shorthand codes for developing the character. This form of the worksheet shows you
what the character will look like on the screen.

CHAR Worksheet

]

B

ROW 1 •

LEFT

LOCK

•RIGH

BLOC
£ CODE

• 99

SHORT

HAND

CODE

0

DOTS

0000

ROW 2 • • 5A 1 0001

ROW 3 _• 3C

3C

3C

3C

24

24

2

3

4

5

6

7

8

0010

ROW 4 •• 0011

ROW 5 :•: 0100

ROW 6 JIk 0101

ROW 7 h^ 0110

ROW 8 • 0111

1000

9 1001

A 1010

B 1011

C 1100

INPUT TO CHAR: 995A3C3C3C3C24 24 D 1101

E 1110

F mi

Beginners BASIC
11«

5
By filling in the worksheet for both the character and the shorthand codes, we know
that one line of our program will be

LET A$="995A3C3C3C3C2424"

But before we actually start our program, we need to discuss a bit further the process
of defining a character. In our previous examples we redefined an already existing
character, the exclamation point (character code 33). There are other character codes,
however, that are undefined by the computer. These are available for you to use in
building a customized character set in your graphics programs. The undefined
character codes are grouped into the following sets (for color graphics):

Set #13 Set #14 Set #15 Set #16

128 136 144 152

129 137 145 153

130 138 146 154

131 139 147 155

132 140 148 156

133 141 149 157

134 142 150 158

135 143 151 159

These extra character codes allow you to design special graphics characters for use in
your own programs without giving up the standard keyboard characters. For example,
you might want to design differently colored underline characters to highlight certain
parts of a displayed message or develop a gameboard on the screen with directions
displayed in standard text characters.

H6 Beginner's BASIC

CHAPTER FIVE

Computer Graphics

These codes and their corresponding set numbers are used in the CALL CHAR,
CALL HCHAR, CALL VCHAR, and CALL COLOR statements exactly as we used
the defined character codes and their set numbers. Let's use code 128 in our sample
program.

OK, we're ready to begin our program. Enter these lines:

NEW

10 CALL CLEAR

20 LET A$="995A3C3C3C3C2424"

30 CALL CHAR(128,A$)

40 CALL C0L0R(13,2,16)

50 CALL VCHAR(12,16,128)

60 GOTO 60

Beginner's BASIC 117

5
Now run the program and observe the small "person" on the screen. Remember, the
figure is only one character in size, so look closely. When you're ready to stop the
program, press CLEAR.

Would it be possible to animate our little figure? Yes, it would! By changing our
program and incorporating one of the techniques we covered under ANIMATION, we
can turn our character into Mr. Bojangles, the dancing man!

Mr. Bojangles

As it's written presently, our program defines only one character. To make Mr.
Bojangles appear to move, we'll need to define two characters that are alternately
displayed in the same position. So we'll go to our CHAR Worksheets to design our two
new characters.

118

CHAR Worksheet

First Figure

ROW1

ROW 2

ROW 3

ROW 4

ROW 5

ROW 6

ROW 7

ROW 8

LEFT

BLOCK

RIGHT

BLOCK

1 1 1

1 1 1

1 1

1 1

1 1

1 1

1

1

CODE

99

5A

3C

3C

3C

3C

44

84

SHORT

HAND

CODE

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

INPUT TO CHAR: "995A3C3C3C3C4484'

DOTS

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Beginner's BASIC

CHAPTER FIVE

Computer Graphics

CHAR Worksheet

Second Figure
SHORT

LEFT RIGHT HAND

BLOCK BLOCK CODE CODE

0

1

2

3

4

5

6

7

8

DOTS

ROW1 1 18

99

FF

3C

3C

3C

22

21

0000

ROW 2 1 1 1 0001

ROW 3 1 1 1 1 1 1 0010

ROW 4 1 1 0011

ROW 5 1 1 0100

ROW 6 1 1 0101

ROW 7 1 0110

ROW 8 1 0111

1000

9 1001

A 1010

B 1011

C 1100

INPUT TO CHAR: "1899FF3C3C3C2221 " D 1101

E 1110

F mi

Now we're ready to edit the program. Enter these lines:

20 A$="995A3C3C3C3C4484"

25 B$="1899FF3C3C3C222r

35 CALL CHAR(129,B$)

60 FOR 0ELAY=1 TO 100

70 NEXT DELAY

80 .CALL VCHAR(12,16,129)

90 FOR DELAY=1 TO 100

100 NEXT DELAY

110 GOTO 50

Beginner's BASIC 119

5
Clear the screen and list the changed program so that you can see how it fits together:

LIST

10 CALL CLEAR

20 A$="995A3C3C3C3C4484"

25 B$=" 1899FF3C3C3C2221"

30 CALL CHAR(128,A$)

35 CALL CHAR(129,B$)

40 CALL C0L0R(13,2,16)

50 CALL VCHAR(12,16,128)

60 FOR DELAY=1 TO 100

70 NEXT DELAY

80 CALL VCHAR(12,16,129)

90 FOR DELAY=1 TO 100

100 NEXT DELAY

110 GOTO 50

Now run the program and watch Mr. Bojangles dance! (To stop the program, press
CLEAR.)

Experiment!

After running the program a few times, you might like to add a FOR-NEXT loop to
make Mr. Bojangles dance across the screen (see page 107 for an example of this
technique). Also, try creating other pairs of characters and placing their shorthand
codes in lines 20 and 25. Can you turn Mr. Bojangles into an acrobat who flips from
his hands to his feet and back again?

As we've mentioned, Mr. Bojangles is pretty small - only one character in size. Not all
the designs you can create are limited to this small size. You can combine several small
characters to construct bigger graphics that cover more of the screen. Our next
program shows how to design a larger graphic using one small color character as our
"building block."

120 Beginner's BASIC

CHAPTER FIVE

Computer Graphics

The Giant

If you define one special character where all the dots are "on," you can then use it to
paint in the rest of a large figure. The following program takes the small character just
mentioned and creates a "giant" figure similar to the Mr. Bojangles character. Enter
the program and see what it does:

NEW

10 CALL CLEAR

20 A$="FFFFFFFFFFFFFFFF"

30 CALL CHAR(128,A$)

40 CALL C0L0R(13,5,5)

50 CALL VCHAR(7,15,128,8)

60 CALL VCHAR(7,16,128,8).

70 CALL VCHAR(9,14,128,10)

80 CALL VCHAR(9,17,128,10)

90 CALL VCHAR(7,12,128,3)

100 CALL VCHAR(9,13,128) _

110 CALL VCHAR(9,19,128,3)

120 CALL VCHAR(9,18,123)

130 GOTO 130

When you run the program, you'll see a larger version of Mr. Bojangles:

Beginner's BASIC 121

5
Our dark-blue "giant" is rather angular and blocky, since it's created from a single
angular character. You might like to rework the program, adding extra defined
characters that allow you to soften the edges of the figure.

Experiment!

Experiment with some other block designs using your "all-dots-on" character. Then try
defining other characters to include in your graphics programs. The examples shown
below will help to get you started.

ROW1

ROW 2

ROW 3

ROW 4

ROW 5

ROW 6

ROW 7

ROW 8

CHAR Worksheet

LEFT

BLOCK

RIGHT

BLOCK

1

1 1

1 1 1

1 1 1 1

1 1 1 1 1

CODE

01.
03

.07
OF

IF

3F

7F

FF

ROW1

ROW 2

ROW 3

ROW 4

ROW 5

ROW 6

ROW 7

ROW 8

CHAR Worksheet

CODE

11
3C

7E

FF

FF

7E

3C

18

INPUT TO CHAR: "0103070F1F3F7FFF•

LEFT

BLOCK

RIGHT

BLOCK

1 1

1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1

1 1

INPUT TO CHAR: "183C7EFFFF7E3C18"

122

ROW1

ROW 2

ROW 3

ROW 4

ROWS

ROW 6

ROW 7

ROW 8

CHAR Worksheet

LEFT

BLOCK

RIGHT

BLOCK

1 1 1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1

1 1

1 1

1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1 1 1

CODE

FF

7E

3C

11
11
3C

7E

FF

INPUT TO CHAR: "FF7E3C18183C7EFF

Beginner's BASIC

CHAPTER FIVE

Computer Graphics

Summary of Chapter 5

Chapter 5 has dealt entirely with computer graphics —the colorful patterns and
designs you can create with your computer. Only two new statements have been
introduced:

CALL Allows you to change the Run Mode screen to any color you choose.
SCREEN

CALL Defines a character code for a character you create.
CHAR

In addition to these two statements, you've experimented with the following
techniques:

• Creating large color blocks on the screen
• Making patterns and designs from standard characters
• Animating your graphics
• Creating your own characters by turning dots "on" and "off'

The ability to create color graphics can add a lot of excitement to your computer
programming. We hope that you've enjoyed this introduction to graphics and that you'll
find even more creative ways to use your computer.

This chapter concludes our "introductory tour" through the TI BASIC language. You
are now well launched into your programming career. For more advanced features you
may want to consult the "BASIC Reference" section of the User's Reference Guide.
Here are some sections we suggest:

• Additional editing techniques —see EDIT
• Automatic line numbering - see NUMBER
• BREAK

•TRACE

• Recording programs on the TI Disk Memory System or a cassette tape
recorder — see SAVE and OLD

If you'd like to consult a programming book on an intermediate level, we can
recommend an excellent one: Herbert Peckham's Programming BASIC with the TI
Home Computer{New York: McGraw-Hill Book Company, 1979). You'll find a coupon
for ordering this book on page 143.

Congratulations and best wishes for continued success in BASIC programming!

Beginners BASIC 123

APPENDIX A

Musical Tone Frequencies

The tones produced by the computer are generated by the CALL SOUND statement.
(See Chapter 1 for an explanation of the CALL SOUND statement.)

The frequency designated in the CALL SOUND statement determines the tone that is
produced. The acceptable value range for frequencies is from 110 to 44,733 Hertz
(cycles per second). Noninteger entries within this range are acceptable as inputs in
theCALL SOUND statement, but they are rounded to nearest integers by the
computer before execution.

The following table gives frequency values (rounded to integers) for four octaves in the
tempered scale (one half-step between notes). While these values do not, of course,
represent the entire range of tones - or even ofmusical tones - they can give you a
basis for musical programs. (See Appendix D for a frequency-generating program.)

Frequency Note Frequency Note

124

110 A 440 A (above middle C)
117 A#,B> 466 A^B1*
123 B 494 B
131 C (low C) 523 C(highC)
139 C*Db 554 C*,D>
147 D 587 D
156 d#,e" 622 D^E*
165 E 659 E
175 F 698 F
185 F#,Gb 740 F#,Gb
196 G 784 G
208 G*,Ab 831 G*,Ab
220 A (below middle C) 880 A (above high C)

220 A (below middle C)
A*,Bb

880 A (above high C)
233 932 A#,Bb
247 B 988 B
262 C (middle C) 1047 C
277 C#,Db 1109 C#,D>
294 D 1175 D
311 D#,Eb 1245 D#,Eb
330 E 1319 E
349 F 1397 F
370 F#,Gb 1480 F#,Gb
392 G 1568 G
415 G#,A> 1661 G#,Ab
440 A (above middle C) 1760 A

Beginner*s BASIC

APPENDIX B

Character Codes

All characters that print on the screen (letters, numbers, and symbols) are identified by
numeric character codes. The standard characters are represented by character codes
32 through 127. These ninety-six codes are grouped into twelve character sets for color
graphics purposes.

Standard Character Codes

Set#1 Set #2 Set #3 Set #4

Code # Character Code # Character Code # Character Code # Character

32 (space) 40 (48 0 56 8

33 ! 41) 49 1 57 9

34
//

42 * 50 2 58

35 # 43 + 51 3 59 \

36 $ 44 , 52 4 60 <

37 % 45 - 53 5 61 =

38 & 46 54 6 62 >

39

Set #5

47

Set #6

/ 55

Set #7

7 63 p

Set #8

Code # Character Code # Character Code # Character Code # Character

64 @ 72 H 80 P 88 X

65 A 73 I 81 Q 89 Y

66 B 74 J 82 R 90 Z

67 C 75 K 83 S 91 [

68 D 76 L 84 T 92 \
69 E 77 M 85 U 93]

70 F 78 N 86 V 94 A

71 G 79 O 87 w 95 —

Set #9 Set #10 Set #111 Set #12

Code Character Code Character Code Character Code Character

96
\

104 H 112 p 120 X

97 A 105 I 113 Q 121 Y

98 B 106 J 114 R 122 Z

99 C 107 K 115 S 123 {
100 D 108 L 116 T 124 I

101 E 109 M 117 U 125 }
102 F 110 N 118 V 126

103 G 111 O 119 W 127 DEL

There are thirty-two additional character codes (128-159) available for use in defining
special characters for graphics programs. (See Chapter 5 for a discussion of character
definition.) Again, these codes are grouped into four sets for color graphics.

Special Character Codes

Set #13 Set #14 Jt #15 Set #16

144 152

145 153

146 154

147 155

148 156

149 157

150 158

151 159

128 136

129 137

130 138

131 139

132 140

133 141

134 142

135 143

Beginner's BASIC 125

APPENDIX C

Color Codes

Sixteen colors are available for color graphics programs in TI BASIC. These colors
are designated by numeric codes in the CALL COLOR and CALL SCREEN
statements. (See Chapter 2 for a discussion of CALL COLOR and Chapter 5 for an
explanation of CALL SCREEN.)

Color Codes

Color Codett Color Code*

Transparent 1 Medium Red 9

Black 2 Light Red 10

Medium Green 3 Dark Yellow 11

Light Green 4 Light Yellow 12

Dark Blue 5 Dark Green 13

Light Blue 6 Magenta 14

Dark Red 7 Gray 15
Cyan 8 White 16

126 Beginner's BASIC

APPENDIX D

Mathematical Operations

If your computer is to be a useful tool, you'll need to know about some of its
computational powers. This appendix first discusses the ways your computer handles
and displays numbers and then shows you how to perform exponentiation (powers and
roots of numbers). Next is a section on the order in which mathematical operations are
performed. Finally, certain other mathematical functions are listed for you. You'll find
that your computer can eliminate much of the drudgery of computation, leaving you
with more time to explore the theory and fun of mathematics.

Decimal Notation

The Texas Instruments computer accepts and displays numbers, within certain limits,
in the traditional decimal form.

In Chapter 3, we mentioned briefly that numbers are displayed with a leading space
and a trailing space. The leading space is reserved for the sign (positive or negative) of
the number. If the number is positive, this space will be blank. If the number is
negative, this space will show a minus sign. Here's an example of both situations:

•^

The trailing space is there to make sure that two numbers on the same line of the
screen will always have at least one space between them, even if you use a semicolon
as a PRINT separator. (The semicolon instructs the computer to leave no spaces
between PRINT items.) Try this Immediate Mode example to see the effect of the
trailing space:

Beginner's BASIC 127

APPENDIX D

Mathematical Operations

Without this trailing space the two numbers would appear like this:
1-1

The screen shows a maximum of ten digits for any number. If an integer (whole
number) consists of ten digits or less, the computer shows the number withouta
decimal point to the right:

f

>PRINT 1;12345;1234567890
1 12345 1234567890

>•

"\

If the number is a decimal fraction with ten digits or less, the computer automatically
places the decimal point in the correct position:

>PRINT 1/8;7.525/5;159.1395/5
.125 1.505 31.8279

>•

Notice the first example above, 1/8 = .125. If a number is less than +1 and greater
than —1, so that the digit to the left of the decimal point would be zero, the zero is not
displayed.

Most of the time, the numbers you see and work with will be shown in this normal
display format. But what about numbers that consist of more than ten digits, such as

723,895,274,524
0.00000000014896

The computer can also handle numbers like these, but it must use a special display
format to do so.

128 Beginner's BASIC

APPENDIX D

Mathematical Operations

Floating Point Form or Scientific Notation

To display numbers with more than ten digits, your computer uses a special kind of
notation. You'll see several names in computer books referring to this type of notation;
two of the more common names are floating point form and scientific notation. Here
we'll refer to the special display format as scientific notation.

Before we discuss scientific notation, let's try a program to see how whole numbers
(integers) look in this display format. Enter these lines:

NEW

10 LET A=10

20 FOR 1=1 TO 12

30 PRINT A

40 LET A=A*10

50 NEXT I

60 END

Now clear the screen and run the program. You'll see these results:

10

100

1000

10000

100000

1000000

10000000

100000000

1000000000

1.E + 10 -

1.E+11
1.E+12

As soon as the value of A becomes an integer with more than ten digits, the computer
switches over to the special display format. Here's what this format represents:

1 .E +10 means 1 X1010 or 10,000,000,000
1.E +11 means 1 X1011 or 100,000,000,000
1.E +12 means 1 X1012 or 1,000,000,000,000

Numbers that are printed in scientific notation will always have this form:
base number E exponent

The base number {mantissa) is always displayed with one digit (1 through 9) to the left
of the decimal point. There can be a maximum of six digits in the mantissa (one to the
left of the decimal point; up to five to the right of the decimal). "E" stands for "x (times)
10 raised to some power," and the exponent (power) is always displayed with a plus or
minus sign (+ or —) followed by a one- or two-digit number (1 through 99).

Note: If you attempt to print a number with an exponent greater than 99 but less than
the computer's limits, you'll see this format:

mantissa E + **

or

mantissa E —**

Beginner's BASIC 129

APPENDIX D

Mathematical Operations

The two asterisks indicate that the number is within the valid computing range of the
computer, but the exponent is too large to be displayed in the allotted space. (For a
discussion of the computational ranges, see the "BASIC Reference" section of the
User's Reference Guide.)

Here are several examples of integers that are displayed by the computer in scientific
notation:

r

>PRINT 1234512345123

1.23451E+12

>PRINT 45678900000000

4.56789E+13

>PRINT 98765432100

9.87654E+10

>•V
Notice that the sign of the exponent tells us how to convert scientific notation back
into standard decimal form. If the sign is a +,we move the decimal point to the right.
If the sign is a —, we move the decimal point to the left. The exponent tells us how
many places to move the decimal point:

1.11111E + 10 means 11111100000

We have moved the decimal ten places to the right:
1111110,0,00,0.
\XJOJJJJJJJ

Integers with more than ten digits, then, are always displayed in scientific notation.
Now let's see how the computer handles noninteger numbers (numbers with fractional
parts). Consider the number 0.000000000000123. It will not fit into the ten-digit
display, so the computer shows it in scientific notation. Try this:

r

130

>PRINT 0.000000000000123

1.23E-13

>D

%

Beginner's BASIC

APPENDIX D

Mathematical Operations

The following program generates some very small noninteger numbers:

NEW

10

20

30

40

50

60

LET A=10

FOR 1=1 TO

PRINT A

LET A=A/10

NEXT I

END

14

Clear the screen and run the program. The results are:

10

1

.1

.01

-001

.0001

.00001

.000001

.0000001

.00000001

.000000001

.0000000001

1.E-11

1.E-12

This program and the previous examples we've seen might lead us to think that
nonintegers with more than ten digits are always displayed in scientific notation, just
as integers are. This is not always true, however. Noninteger numbers with more than
tendigitsare printed in scientific notation onlyif they can be presentedmore accurately
in scientific notation than in the normal form.

This point is very important. Consider an example that we've tried before:

Beginner's BASIC

r

>PRINT 1/3

.3333333333

>•K J

131

APPENDIX D

Mathematical Operations

We know that .3333333333... is a repeating decimal that goes on infinitely. Why, then,
does the display show the result in normal form? The answer is that .3333333333 is
more accurate than 3.33333E —1; that is, more significant digits (digits that reflect the
actual mathematical value of the number) can be shown in normal form than in
scientific notation.

Scientific notation is just a "shorthand" method for writing long numbers, whether they
are very large or very small quantities. It allows the computer to handle, in the most
accurate form possible, numbers that otherwise could not be adequately displayed in
the ten-digit normal form.

Entering Numbers in Scientific Notation

Up to this point, we've only entered numbers in the normal decimal form. It is also
possible, however, to enter numbers in scientific notation. Try this example:

r

>PRINT 1 .23456E10

1.23456E+10

V>D

Notice that, unless you enter a minus sign before the mantissa and/or the exponent,
these are assumed to be positive.

132

r

>PRINT 2.574E13

2.574E+13

>PRINT -5.5E-11

-5.5E-11

V >•

~%

Beginner's BASIC

APPENDIX D

Mathematical Operations

If you enter a number in scientific notation, but the computer can show it in normal
form, it will do so. Try this:

r

>PRINT 5.555E3

5555

>•

~%

J
Whenever you are usingextremely large or small numbers in a computation, entering
the numbers in scientific notation can be very handy.

Exponentiation

In the previous section we talked about exponents and powers of 10. Now we need to
discuss some of the "higher math" capabilities of your computer; specifically, powers
and roots.

Powers

Quite often in mathematical calculations, we must raise some number to a power, such
as

83 (or 8X8X8)
252 (or 25X25)

To perform exponentiation (raising a number to a power) on the computer, we do this:

r

V*

>PRINT 8A3

512

>PRINT 25A2

625

>•

~%

The exponentiation symbol (A) tells the computer that the number that follows is a
power.

Beginner's BASIC 133

APPENDIX D

Mathematical Operations

Let's say that we have this mathematical expression to evaluate:
y = X3

We want to find all the values for y where x equals 1 through 10. So we enter this short
program:

NEW

10 CALL CLEAR

20 FOR X=1 TO 10

30 Y=XA3

40 PRINT "Y=";Y
50 NEXT X

60 END

When we run the program, we'll see the following values for y:

Y= 1

Y= 8

Y= 27

Y= 64

Y= 125

Y= 216

Y= 343

Y= 512

Y= 729

Y= 1000

The computer completes the program for us very quickly! We have the values we need
and can go on to other computations.

Roots

Finding a root of a number is another very common mathematical problem. The square
root is one we've all heard of —and probably used —at some point in our educations.
Since many, many calculations call for square roots, this function is built into the
computer:

r

134

>LET A=SQR(A)

>PRINT A

2

>PRINT SQR(16)

4

>•

Beginners BASIC

APPENDIX D

Mathematical Operations

The letters SQR stand for "square root of and instruct the computer to find the square
root of the number or expression contained within the parentheses.

Other roots must be computed by using a form of exponentiation. Computing a root of
a number is the same function as raising the number to a power which is the reciprocal
of the root; that is,

V125 is the same as 125(1 /3)

Try this example:

r

>PRINT 125a(1/3)

5.

\£
Notice that we had to use parentheses around the exponent 1/3. The parentheses
notify the computer that the whole expression makes up the exponent. (You'll see why
this is necessary when we discuss "Order of Operations.")

Here's a program that helps you compute any root of any number (within the
computer's limits and the bounds of mathematical rules, of course).

NEW

10 CALL CLEAR

20 INPUT "NUMBER?":N

30 INPUT ,,R00T?,,:R

40 CALL CLEAR

50 PRINT N;R,NA(1/R)
60 END

When you run the program, you'll first be asked to input the number for which you
want to find the root. Let's enter 27 for our example.

Beginner's BASIC 135

APPENDIX D

Mathematical Operations

Next you're asked for the root you want to find. Let's say we want the cube root, so we
type 3 and press enter.

Run the program again, and this time enter 2401 for the number and 4 for the root. Did
you get the answer 7?

Of course, not all numbers work out to results that are nice, neat integers. Try the
program again, entering 25 for the number and 3 for the root. You'll get 2.924017738
as your answer. Now check the answer in the Immediate Mode, by raising
2.924017738 to the power of 3:

r

>PRINT 2.924017738A3

24.99999999

>•

You don't quite get back to your original 25. That's because 2.924017738 is not the
"exact" cube root of 25; it's an "approximate" root, rounded to ten digits so that it can
be displayed.

All computing devices must "round off' calculated results at some point. Where a
computer rounds a result depends on the computational and display limits of the
machine. To make sure that the accuracy of the last displayed digit is within certain
limits, most computers and many calculators actually perform computations internally
with more digits than they can display. These extra or "guard" digits are retained in
the computer's internal registers, but they can't be shown on the screen, due to space
limitations.

136 Beginner's BASIC

APPENDIX D

Mathematical Operations

We can, however, demonstrate the presence of these internal "computational" digits.
Let's use the same problem we performed earlier:

rr

>LET A=25a(1/3)

>PRINT A

2.924017738

>PRINT AA3

25.

V>D

~%

The "memory box" labeled A retains all the internal digits as well as the rounded result
shown on the screen. Therefore, with the greater accuracy provided by the internal
digits, we get back our original 25 when we raise A to the power of 3.

One special note of caution: Your computerwill give you an error message ifyou try to
raise a negative number of a fractional power; therefore, you cannot use the
exponentiation routine to find roots of a negative number without taking other steps.
See the Sign (SGN) and Absolute Value (ABS) functions in the "BASIC Reference"
section of the User's Reference Guide.

Order of Operations

In Chapter 3 we discussed the order the computer follows to complete problems
involving multiplication, division, addition, and subtraction. We also demonstrated that
an expression within parentheses is evaluated before the rest of the problem is solved.
The order of operations, then, was listed as:

(1) Complete everything inside parentheses.
(2) Complete multiplication and division.
(3) Complete addition and subtraction.

Now we need to add another level to this order. Exponentiation (raising a number to a
power or finding a root of a number) is performed before any other mathematical
operation. So our new order becomes:

(1) Complete parenthetical expressions.
(2) Complete exponentiation.
(3) Complete multiplication and division.
(4) Complete ajddition and subtraction.

Let's try some examples that help to demonstrate these concepts.

Beginner's BASIC 137

APPENDIX D

Mathematical Operations

First, we'll define some variable names for the quantities we'll be using in our
calculations. Enter these lines:

LET

LET

LET

LET

A= 5

B=2

C= 10

D=4

Now we're ready for the calculations:

t —\

>PRINT B*CAB

200

>PRINT A+B*CAB

205

>PRINT ((A+B)*C)AB/D

1225

^ _J
Here's the order the computer followed in each of these examples:

First problem 102 = 100

2X100=200

Second problem 102 = 100
2X100=200

5+200=205

Thirdproblem 5+2=7

7X10=70

702=4900

4900+4 = 1225

Notice that this last problem utilized two sets of parentheses, one within the other. In
this situation the computer evaluates the innermost set of parentheses first.

138 Beginner's BASIC

APPENDIX D

Mathematical Operations

As you saw when we discussed the roots of numbers, the exponent of a number can
also be a numeric expression enclosed in parentheses. Let's try a few more examples,
using the values already stored in the computer's memory.

r

>PRINT (<A+B)*(A+B))A(B/D)

7.

>PRINT BA(D/B)+A*C
54.

vs
The first problem essentially squared the number 7 and then took the square root of
the result:

(A+B)=5+2=7
(A+B)*(A+B) = 7X7=49
B/D=2-4 = .5
49-5=^/49 =7

The second problem is solved like this:
D/B=4-5-2=2
BA(D/B)=22=4
A*C=5X10=50
4+50=54

The following program not onlydemonstrates the computational power of your
computer, but also plays a scale for you!

The relationship between the frequencies of notes in the tempered scale can be
algebraically expressed as

y=xkn
where x =the frequency of the first note of the scale,

k =a constant, \/2,
n =the number of half-steps between note x and note y
y=the frequency of the next note you want to play

Beginner's BASIC 139

APPENDIX D

Mathematical Operations

There are twelve notes in the tempered scale, and between each note and the next is
one half-step. The following program, starting with a frequency of 440 (A above middle
C on a piano keyboard), calculates and plays each note in the scale:

20 X = 440

30 K = 2A(1/12)

40 CALL S0UND(200,X,2)
50 FOR N=1 TO 12

60 Y=X*KAN

70 CALL SOUND (200,Y,2)
80 NEXT N

90 END

Run the program and listen to the music!

Other Mathematical Functions

Several other mathematical functions, in addition to those we've already covered, are
available in TI BASIC. We won't discuss these in detail, but we want to list some of
them for you, because they can be a great help in performing mathematics with your
computer.

Trigonometric Functions

These trigonometric functions are available:

SIN () —Finds the sine of the number or numeric expression enclosed in
parentheses.

A number or numeric

expression goes here.

—Finds the cosine of the number or numeric expression enclosed in
parentheses.

—Finds the tangentof the number or numeric expression enclosed in
parentheses.

—Finds the arctangent of the number or numeric expression enclosed in
parentheses.

Note: All trigonometric functions are performed by the computer in radians, rather
than degrees. Therefore, if your data is measured in degrees, you'll need to
convert the measurement to radians before using it with the function. (To convert
an angle from degrees to radians, multiply by tt/180. To convert from radians to
degrees, multiply by I8O/77.)

140 Beginner's BASIC

APPENDIX D

Mathematical Operations

Logarithms

The computer calculates the naturallog and naturalantilog(based on e =2.718281828)
of a number:

A number or numeric

expression goes here.

LOG () Computes the natural logarithm of the number or numeric expression
enclosed in parentheses.

EXP () Computes the natural antilogarithm of the number or numeric expression
enclosed in parentheses.

To convert the natural logarithm of a number to the common logof the number, simply
divide the natural log by the natural log of 10. For example, if you want to find the
common log of 3, you would use this procedure:

r

>A=LOG(3)/LOG(10)

>PRINT A

.4771212547

>D

Absolute Value

Calculations often require the use of the absolute value of a number. This has the
effect of making the number positive, regardless of its sign. Here's how to instruct the
computer to find and utilize the absolute value of a number:

A number or numeric

expression goes here.

ABS() Finds the absolute value of the number or numeric expression in
parentheses.

There are other mathematical functions available, and you'll find them listed and
discussed under "Functions" in the "BASIC Reference" section of the User's Reference
Guide. The functions we've illustrated here, however, should help you discover many
ways to use your computer as a computational tool.

Beginner's BASIC
141

Index

A Page
Absolute value 141

Adding program lines 31-32
Animation 104-120

B

BASIC, definition of 5
Branching 83-84

C

CALL CHAR 108-110

CALL CLEAR 10-11

CALL COLOR 40-45
CALLHCHAR 20-25

CALL KEY 93-94

CALL SCREEN 97-98

CALL SOUND 17-20

for noise 18-19

for one tone 17

for three tones 18

for two tones 18-19

CALLVCHAR 20-25

Character codes 21, 41-42,125
Character, definition of 21

defining customized
character set 108-118

"grid" 108-113
standard set 42,125

Character grid worksheet . . . 114-116
Color codes 42,126
Commands 28-29

Computer programming,
definition of 5

Cursor-control keys 12-13
Cursor, definition of 8

D

Defining characters 108-118
Deleting program lines 32-33
Duration of tone 17

E

Editing programs 31-37
Error correction 12-13,26

Error messages 11-12,45-46,
56-57. 80, 85

Exponentiation 133-137

F

FOR-NEXT statement 48-57

Functions

INT 69-72

RND 73-78

TAB 63-66

G

GO TO statement 38-45

Graphics "grid" (character
positioning) 20-21
Graphics line 20
Graphics subprograms

CALL COLOR 40-45

CALL HCHAR 20-25

CALL SCREEN 97

CALLVCHAR 20-25

142

I

IF-THEN statement 83-85

Immediate mode, definition of 7
INPUT statement 33-35

INT function 69-72

L

LET statement 13-17

Line number 28

LIST command 28-29

Logarithms 141
Loop

delay loop 41-43,51-53
FOR-NEXT 48-57

GOTO 38-45

loop counter 54
nested loop 53-57

M

Mathematics

Absolute value 141

. Decimal notation 127-128
Exponentiation 133-137
Logarithms 141
Order of operation. 67-69.137-140
Parentheses 67-69,137-140
Scientific notation . . . 69,129-133
Trigonometric functions 140

Musical tone frequencies 124

N

NEW command 26, 28-29
Normal display form . 58, 61,127-128
Numbers

Display of numbers 127-133
Random numbers 73-78
Rounding of numbers 136

Numeric variables 13-17

O

Order of operation
in mathematics. . . 67-69,137-140

in programs 27-28

P

Powers 133-134
PRINT statement

definition 8
with arithmetic operations. ... 16
with colon 62
with comma 57-60
with numeric variables 14-16

with semicolon 60-62
with string variables . 35-36, 59-62
with TAB 63-66

Program structure 27-28, 47
Prompting message with INPUT. . 34
Prompting symbol, purpose of . . 8, 26

R

Random numbers 73-80

Changing range 75-79
Setting limits 82

RANDOMIZE 74-75

RND function 73-80

Roots 134-137

RUN command 27-29

S

Scientific notation 69,129-133

Scrolling, definition of 9
with Immediate Mode graphics. 24

"Shorthand" codes 108-114

Simulation, definition of 73

Dice-rolling simulations . . . 77-79
Statements

CALL CHAR 108-110

CALL CLEAR 10-11

CALL COLOR 40-45

CALL HCHAR 20-25

CALL SCREEN 97-98

CALLSOUND 17-20

CALL VCHAR 20-25

FOR-NEXT 48-57

GO TO 38-45

IF-THEN 83-85

INPUT 33-35

LET 13-17

PRINT 8-10

RANDOMIZE 74-75

String variables 35-37

T

TAB function 63-66

Tones 17-20

Trigonometric functions 140

V

Variables, definition of 13

Numeric 13-17

String 35-37
Volume of Tone 17

W

"Wrap-around" line 55

6/81

Beginners BASIC

Programming BASIC with the TI Home Computer
by Herbert D. Peckham

When you've completed Beginner's BASIC, you maywant to explore further with the
help of an intermediate level book. We recommend Programming BASIC with the TI
Home Computer by Herbert D. Peckham (McGraw-Hill, 1979).

A well-known author and educator, Mr. Peckham has published numerous books on
programming in BASIC. His new book takes you further into the full range and power
of TI BASIC and your Texas Instruments computer. The easy-to-understand
examples and relaxed style of the book can help you expand your programming skills
and develop your own customized computer applications.

Use the coupon below to order Programming BASIC with the TIHome Computer from
Texas Instruments Incorporated.

ORDERING INSTRUCTIONS

Shipping Inside U.S. Prepaid orders (check or money order) will be sent by postage-
paid Third orFourth Class postage. Allow 4 to 6 weeks for delivery. If you desire
shipment other thanThird or Fourth Class, additional postage should be included with
your order along with specific directions as to method of shipment. Enter additional
amount for shipping on order form.

Shipping Outside U.S. Orders prepaid in U.S. funds only will be accepted. Specify
method of shipment and enter postage orshipping charge amount in proper blankon
order form. This amountshould be included in book payment.

Please send orders to: Texas Instruments Incorporated
P.O. Box 3640, M.S. 84M
Dallas, Texas 75285

• To: Texas Instruments Incorporated
P.O. Box 3640, M.S..84M
Dallas, Texas 75285

Pleasesend me Programming BASIC with the TIHome Computer.

Name:

Address:

City: _ State: Zip: _
(LCB-4190) copies @ $19.95 each _
State and local sales tax (If applicable)* _
Shipping method**

Additional postage enclosed** „

Total payment amount enclosed _

♦State and local sales taxes required by every state except AK, DE, HI, MT, NH, OR.
**For mailing other than Third or Fourth Class.

Price effective October 1, 1982 subject to change withoutnotice. BB-79 •
I , J

Beginner's BASIC 143

	front-cover
	front-cover-inside
	content01
	content02
	content03
	content04
	back-cover

