

TI-99/4A™ Graphics and Sounds

t »*•**#*iBP!

Timothy Orr Knight is a member of the "younger generation" who started "playing
around" with computers about five years ago. He developed a strong interest in "mo
dems," the devices that allow one microcomputer to talk to another, and that interest led
to the writing of his first book. While attending high school, Tim has been busy writing
reviews, articles, and programs for such national magazines as InfoWorld and SoftSide,
plus programming computer games, such as EVADE, SPACE CHASE, and SPOX, for
various software companies.

Tim is a busy 17-year-old who enjoys being with friends and being involved in all areas
of school activites, but most of all . . . he enjoys working. Thus, it was no surprise when
Tim formed his own software company, Knight Software, Inc., in the summer of 1983 to
produce both business and game software for a wide variety of computers. Tim Knight's
other SAMS books are The World Connection; Megabucks from Your Microcomputer; the
Combo Pack, Commodore 64 Graphics and Sounds; and Graphics and Sounds on the IBM
PC. He is coauthor of another Combo Pack, Commodore 64 BASIC Programs.

TI-99/4A
Graphics and Sounds

by
Timothy Orr Knight

Adapted for the TI-99/4A1
by

Gregory L. Guntle

Howard W. Sams & Co., Inc.
4300 West 62nd St.

Indianapolis, Indiana 46268 USA

Copyright © 1984 by Timothy Orr Knight

FIRST EDITION

FIRST PRINTING - 1984

All rights reserved. No part of this book shall be
reproduced, stored in a retrieval system, or transmitted by
any means, electronic, mechanical, photocopying,
recording, or otherwise, without written permission from
the publisher. No patent liability is assumed with respect to
the use of the information contained herein. While every
precaution has been taken in the preparation of this book,
the publisher assumes no responsibility for errors or
omissions. Neither is any liability assumed for damages
resulting from the use of the information contained herein.

International Standard Book Number: 0-672-22386-4

Library of Congress Catalog Card Number: 84-50804

Edited by Katherine Stuart Ewing
Printed in the United States ofAmerica.

TI is a trademark of Texas Instruments Incorporated.

Preface

This book is for TI-99/4A home computer users who want to learn more
about the graphics and sound capabilities of their computer.

Learning to master graphics and sounds on the TI-99/4A is not very
difficult. The hardest part of learning these features is understanding the
BASIC commands that control graphics and sounds. Most books contain
ing materials on this subject are very complex and hard to understand.
This book provides you with the tools neededto fully use your computer's
graphics, sound, and music capabilities. What sets this book apart from
others like it? It provides sample programs, complete with line-by-line
explanations of the program code, thus clearing up a lot of confusion.

TI-99I4A Graphics and Sounds will serve as a beginners guide for those
wanting to learn, a referencebook for more experiencedusers, and a handy
collection of programroutines. Anyone can master the graphics and sound
features of the TI-99/4A who has the knowledge to do so. I hope this book
will provide that knowledge.

The programs in this book were originally written for the Commodore
64. My thanks to Gregory L. Guntle for adapting them for the TI-99/4A
computer.

Timothy Orr Knight

A NOTE TO THE READER

The programs in this book were not written as applications software but
as educational examples of what your personal computer can do. All of
the programs have been tested and work on the machine configuration for
which they were designed. The programs, orsubroutines, are unprotected.
This means that you can modify them tobetter understand how they work
or to fit a differentmachine configuration.

What is a Combo Pack?

A Combo Pack, like this package, is a step beyond your average tech
nical book. While most books give you programming examples through
printed listings (which we do here), Combo Packs provide the book and
the listings recorded on magnetic media, either diskette, cassette tape, or
both.

Every effort has been made to be clear, concise, and informative about
how these programs and routines work. If you experience any difficulty
with the software operations, the solution can be found in the book or in
your computer manuals.

We are rather proud of the time and effort that went into preparing the
Combo Pack. If you have purchased the Combo Pack and have enjoyed
using it, let us know your thoughts. Your comments will be valuable in
preparing future Combo Packs.

LOADING INSTRUCTIONS

The cassette accompanying this Combo Pack contains the subroutine
listings and/or program listings printed in the book.

To load a cassette file from this tape, perform the following steps:

1. Put the cassette into the cassette recorder.

2. Position the tape at the beginning of the subroutine or program you
wish to load.

3. Type OLD CS1
Press <ENTER>

4. Follow the directions as they appearon your videoscreen.

This will cause the next program on the tape to load into thecomputer's
memory. When the program is loaded, it is ready to be used as described
in the book.

The following list shows the listing names and tape counter positions
for the contents of the cassette tape. These numbers are approximate and
may vary from recorder to recorder. They should, however, assist you in
locating the programs you are searchingfor.

Tape Directory

Program Names Counter Location

Colors 0

Colors&Gr 8

Rnd-Dots 17

Strght-Ln 23

Vert-Line 29

Diag-Line 35

Squares 41

Circles 47

Triangles 54

Variety 60

Giant-Hi 69

Rd-Pnoise 78

Rd-Wnoise 84

Up-Sound 90

Down-Snd 96

Up&Down 103

M-Scales 110

Rectangle 117

Lg-Triang 125

Cube 134

Expand-Fs 148

F-Saucer 173

Saucer-Tr 181

Sauc-Cube 191

Bombardier 210

Swanee 220

Snd-Devel 231

Mus-Trans 248

Brahms 260

Rgh-Scroll 276

Up-Scroll 285

Dn-Scroll 294

Scroll-L&R 304

Alpha-Scr 314

Character 327

Chr-Chngr 340

Data-Stat 355

Contents

CHAPTER 1

An Introduction to Graphics and Sounds 11

CHAPTER 2

Colors and Basic Graphics 13
Color Changer —Colors and Graphics — Basic Graphics — Random Dots
—Straight Line—Vertical Line —Diagonal Line —Squares —Circles —
Triangles —Variety —Giant HI — Summary

CHAPTER 3

Special Effects with Sounds 39
Programming Sounds — Random Periodic Noises — Random White Noises
— Upward Sound — Downward Sound —Up and Down Sound — Musical
Scale — Summary

CHAPTER 4

Advanced Graphics Techniques and Animation 47
Rectangle — Large Triangle —Cube —Expanding Flying ^Saucers — Basic
Animation — Flying Saucer — Saucers with Triangles — Saucer through
Cube — Bombardier — Summary

CHAPTER 5

Music on the TI-99/4A 71
Swanee River — Sound Development — Translator — Multiple Voices —
Brahms — Summary

CHAPTER 6

Advanced Techniques 81
Rough Scrolling — Upward Scroll — Downward Scroll — Scroll Left and
Right — Creating CharacterSets — Alpha Scrambler — Characters — Char
acter Changer — Summary

APPENDIX A

Color Codes for the TI-99/4A 93

APPENDIX B

Standard ASCII Character Codes 95

APPENDIX C

Character Sets and Their Corresponding
Character Codes 97

APPENDIX D

Pattern Identifier Conversion Table 99

APPENDIX E

Frequencies for Musical Tones 101

Chapter 1

An Introduction to Graphics
and Sounds

The TI-99/4A home computer has the ability to produce a wide variety
of graphics, sounds, and music. Yet these are often neglected because
many people lack theknowledge necessary to fully utilize thegraphics and
sounds capabilities of the TI-99/4A.

This book contains program listings to demonstrate these powerful fea
tures. After each listing is an explanation of the programming lines. Feel
free to use these programs, modify them, or attempt to create your own
graphics and sounds. Try experimenting with the programs. Make changes
here and there and see what happens. The main objective is to enjoy your
TI-99/4A.

A few reminders before we begin:

1. When you see this statement: FCTN + 1 or FCTN +any number or
key, that means tohold down the FCTN key(located just tothe right
of the spacebar) and press the specified key at the sametime.

2. The "panic button" on the TI-99/4A is the FCTN+ 4 key. By press
ing these twokeys simultaneously, you can stop most program exe-

11

12 TI-99I4A Graphics and Sounds

cutions without losing your program. If something unusual happens
on the screen, hold down on these two keys and the program will
stop.

3. Use either upper or lower case letters when typing the programs.

Have fun!

Chapter 2

Colors and Basic Graphics

The TI-99/4Aproduces a wide variety of colors. The screencan display
16 different colors. Every character that is displayed has a foreground
color and a background color, each of which can be set to any one of 16
colors. (See Appendix A for a listingof the colorswith their corresponding
color number.)

COLOR CHANGER

Listing 2-1 steps through the available colors. You will see how the
different colors can brighten and enhance the characters as well as the
screen. This listing uses the FCTN key. Press FCTN+1 to change the
foregroundcolor. To change the background color, press FCTN-1-3. Press
ing FCTN+ 5 produces random screen colors untilyou pressanother key.
These keys are displayedon the screenas you run the program. When you
run the program, your screen will look similar to Fig. 2-1.

Listing 2-1

10 REM COLORS

20 TT$="** COLORS **"
30 CALL CLEAR

cont. on next page

13

14 71-9914A Graphics andSounds

Listing 2-1—cont.

40 PRINT TAB(INT((29-LEN(TT$))/2));TT$
50 PRINT :::" THIS PROGRAM ALLOWS THE"

60 PRINT :"USER TO SEE THE DIFFERENT"::"SCREEN COLORS,
BACKGROUND"

70 PRINT :"COLORS AND FOREGROUND COLORS"::"THAT THE
TI-99/4A CAN"::"PRODUCE.":: :

80 PRINT " PRESS ANY KEY TO BEGIN"
90 CALL KEY(0,K,S)
100 IF S<=0 THEN 90

110 CALL CLEAR

120 RANDOMIZE

130 FCOLR=l

140 BCOLR=2

150 PRINT " TO CHANGE PRESS"

160 PRINT " "::

170 PRINT "FOREGROUND COLORS FCTN+1"::"BACKGROUND

COLORS FCTN+3"::

180 PRINT "SCREEN COLORS RANDOMLY
FCTN+5"::

190 PRINT "STOP RANDOM COLORS ANY KEY"::

200 PRINT ::::::" PRESS X TO EXIT"

210 CALL KEY(3,KEY,STATUS)
220 IF KEY=3 THEN 270

230 IF KEY=7 THEN 360

240 IF KEY=14 THEN 450

250 IF KEY=88 THEN 520

260 GOTO 210

270 FCOLR=FCOLR+l

280 IF FCOLR<=16 THEN 300

290 FCOLR=2

300 FOR NUMSETS=1 TO 12

310 CALL COLOR(NUMSETS,FCOLR,BCOLR)
320 CALL KEY(3,KEY,STATUS)
330 IF KEY=88 THEN 520

340 NEXT NUMSETS

350 GOTO 210

360 BCOLR=BCOLR+l

370 IF BCOLR<=16 THEN 390

380 BCOLR=l

390 FOR NUMSETS=1 TO 12

400 CALL COLOR(NUMSETS,FCOLR,BCOLR)
410 CALL KEY(3,KEY,STATUS)
420 IF KEY=88 THEN 520

430 NEXT NUMSETS

440 GOTO 210

450 REM RANDOMLY CHANGE SCREEN COLORS

460 SCRN=INT(RND*15)+1
470 CALL SCREEN(SCRN)
480 CALL KEY(3,KEY,STATUS)
490 IF KEY=88 THEN 520

500 IF STATUS=0 THEN 460

510 GOTO 210

520 CALL CLEAR

530 CALL SCREEN(4)

Colors and Basic Graphics 15

540 FOR 1=1 TO 12

550 CALL COLOR(I,2,l)
560 NEXT I

570 END

Explanation of Program

10-40 Clear screen and center title of program
50-100 Display introduction screen and wait for a key to be pressed
110-200 Clear screen, set randomizer routine, set initial foreground

and background colors, display keys to press to work
program

210 Wait for a key to be pressed, return ASCII value for key
pressed; i.e., if key pressed was "A", KEY returns 65 as
value (refer to ASCII table in Appendix B)

220-260 Wait for valid key to be pressed and act accordingly
270-290 Increment foreground color and check to make sure fore

ground color does not go over 16 (max number of colors).
Reset color if over maximum amount

300-350 Start loop for changing each character set. Each character
set's colors have to be changed. (More on character sets in
next section)

360-440 Increment background color and check to see if over maxi
mum limit of 16. If over, reset color. Loop through all the
characters sets

Fig. 2-1. Colors.

16 TI-99I4AGraphics and Sounds

COLORS AND GRAPHICS

Listing 2-2 also deals with colors on the TI-99/4A. This time the pro
gram steps through the colors for you. Sit back and watch as the screen
advances one color at a time. The 16 foreground colors are displayed on
each of the background colors until all possible color combinations are
displayed. The characters displayed here are the normal TI-99/4A charac
ters (all the keys that are on the keyboard) and a few user-defined charac
ters (more on user-defined characters in the next section). When you run
the program, your screen will look similar to Fig. 2-2.

NOTE: Sometimes the screen will be blank. DON'T PANIC! The screen

will only look blank when the foreground color matches the screen color;
the characters blend into the screen.

Listing 2-2

10 REM COLORS & GRAPHICS

20 TT$="** COLORS & GRAPHICS **"
30 CALL CLEAR

40 PRINT TAB(INT((29-LEN(TT$))/2));TT$
50 PRINT :::" THIS PROGRAM DEMONSTRATES"::"THE NORMAL

CHARACTERS AND"::"SOME USER-DEFINED CHARACTERS"

60 PRINT :"AS WELL AS THE DIFFERENT"::"COLORS THAT THE

TI-99/4A"::"CAN PRODUCE."::
70 PRINT :::" PRESS ANY KEY TO BEGIN"

80 CALL KEY(0,KEY,STATUS)
90 IF STATUS<=0 THEN 80

100 CALL CLEAR

110 FOR 1=1 TO 10

120 READ CODE$
130 CALL CHAR(127+1,CODE?)
140 NEXT I

150 A$="* NORMAL CHARACTERS *"
160 CALL CLEAR

170 CN=4

180 RN=2

190 GOSUB 630

200 ROW=4

210 COL=10

220 FOR 1=32 TO 127

230 CALL HCHAR(ROW,COL,I)
240 COL=COL+l

250 IF COL>20 THEN 650

260 NEXT I

270 A$="* USER-DEFINED CHARACTERS *"
280 CN=2

290 RN=14

300 GOSUB 680

310 FOR 1=128 TO 137

320 CALL HCHARQ6,1-127+9,1)
3 30 NEXT I

Colors and Basic Graphics 17

340 A$=" AND THESE COLORS."
350 FOR DELAY=1 TO 1000

360 NEXT DELAY

370 RN=20

380 CN=2

390 GOSUB 680

400 A$=" PRESS X TO EXIT"
410 RN=24

420 CN=2

430 GOSUB 680

440 FOR C0LR=2 TO 16

450 CALL SCREEN(COLR)
460 FOR CHCOLR=l TO 16

470 FOR NUMSETS=1 TO 14

480 CALL COLOR(NUMSETS,CHCOLR,l)
490 CALL KEY(0,KEY,STATUS)
500 IF (KEY=88)+(KEY=120)THEN 630
510 NEXT NUMSETS

520 NEXT CHCOLR

530 NEXT COLR

540 CALL CLEAR

550 CALL SCREEN(4)
560 FOR 1=1 TO 14

570 CALL COLOR(I,2,l)
580 NEXT I

590 PRINT "WANT TO SEE CHARACTERS AND COLORS

AGAIN? (Y/N)"
600 CALL KEY(0,KEY,STATUS)
610 IF (KEY<>89)*(KEY<>121)*(KEY<>78)*(KEY<>110)THEN

600

620 IF (KEY=89)+(KEY=121)THEN 150
630 CALL CLEAR

640 END

650 COL=10

660 ROW=ROW+l

670 GOTO 260

680 FOR 1=1 TO LEN(A$)
690 CALL HCHAR(RN,CN+I,ASC(SEG$(A$,I,1)))
700 NEXT I

710 RETURN

720 DATA 0000247E7E7E3C18

730 DATA 0010387CFE7C3810

740 DATA 0010387CFE101010

750 DATA 00000604FC7C4848

760 DATA 3C7EFFFFFFFF7E3C

770 DATA 00000000183C7EFF

780 DATA 00000000FFFFFFFF

790 DATA F0F0F0F0F0F0F0F0

800 DATA FFFFFFFF00000000

810 DATA 0F0F0F0F0F0F0F0F

Explanation of Program

10-90 Clear screen, center title of program, display introduction
screen

18 T1-99/4A GraphicsandSounds

100-140

150-260

270-330

340-430

440-450

460

470-500

510-530

540-640

650-670

680-710

720-810

Set up user-defined graphics characters
Display normal TI-99/4A characters in middle of screen
Display user-defined graphics characters in middle of screen
Short delay before changing colors. Show you how to exit
program early if need arises
Start loop that changes screen color
Start loop that changes foreground color
Start looping through all character sets to adjust them to new
color and check to see if early exit key is pressed
Increment character set until all done. Then increment fore

ground color until all 16 colors have been displayed. Incre
ment screen color

Reset characters and screen color to default colors. Ask if you
want to see colors again and if response is no, clear screen
and exit

Advance row on which characters are printed
Print each character to specific row and column. This routine
requires a row number, column number, and characters to
display. Characters are contained in one string, A$
These are numbers needed to create user-defined characters

Fig. 2-2. Colors & Graphics.

Colors and Basic Graphics 19

BASIC GRAPHICS

The TI-99/4A has the capability to display virtually any character you
can imagine. Well, any character that you can draw or design. Graphics
characters are created using a bit-map. Fig. 2-3 shows the 8 x 8 bit-map.

LEFT HALF RIGHT HALF

8 4 2 1 8 4 2 1

ROW 1

ROW 2

ROW 3

ROW 4

ROW 5

ROW 6

ROW 7

ROW 8

Fig. 2-3. 8x8 Bit-Map.

Every character has an 8 x 8 bit-map representation. Before we jump
right into some examples, there is one other topic that has to be mentioned.
That topic is hexadecimals. Hexadecimal notation is another way of count
ing, but there are only 16 different numbers in hexadecimal compared to
the unlimited amount of numbers in the normal counting method. Here are
the 16 different hexadecimal numbers and their associated numeric value:

Number

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Hexadecimal Notation

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

As you can see, there is not much difference between the two sets of
numbers. The reasons for this notation: the computer can convert hexade-

20 TI-99/4AGraphicsandSounds

cimal numbers to graphics representation faster, and it uses less memory
space. You also don't have to type as much.

Let's take a closer look at the bit-map. The bit-map is divided into left
and right halves. Each half is made up of eight rows consisting of four
columns. The rows are numbered 1 through 8 from top to bottom. The
columns are numbered 8, 4, 2 and 1from left to right. In a moment, you'll
see why they are numbered like that. Fig. 2-4 shows the two halves of the
bit-map with their corresponding rows and columns marked. Now we are
ready to start designing graphics characters.

LEFT HALF

8 4 2 1

ROW1

ROW 2

ROW 3

ROW 4

ROW 5

ROW 6

ROW 7

ROW 8

RIGHT HALF

8 4 2 1

Fig. 2-4. Two Halves of a Bit-Map.

As mentioned earlier, computers convert hexadecimal notations into
graphics representation. How do you get a hexadecimal notation for the
graphics character you have designed? What you have to do is color
squares that you want to appear on the screen for that character. Be sure to
use the 8 x 8 map for this procedure. We will use the two halves to
calculate the hexadecimal notation in a moment. Once you have colored
the appropriate squares, simple mathematics converts the colored squares
into hexadecimal notations. The best way to understand this is to look at
an example. Let's say you wantto generate a small dot. The bit-mapwould
look like Fig. 2-5.

LEFT HALF

8 4 2 1

RIGHT HALF

8 4 2 1

ROW 1

ROW 2

ROW 3

ROW 4

ROW 5

ROW 6

ROW 7

ROW 8

Fig. 2-5. Bit-Map for a Small Dot.

LEFT HALF

8 4 2 1

ROW 1

ROW 2

ROW 3

ROW 4

ROW 5

ROW 6

ROW 7

ROW 8

Colors and Basic Graphics 21

RIGHT HALF

8 4 2 1

Fig. 2-6. Small Dot Bit-Map Divided into Two Halves.

Now break that bit-map into two halves (see Fig. 2-6).
Once you have done that, the rest is simple. If a block of the bit-map is

not colored, the value for that block is 0. If a block of the bit-map is
colored, then the value corresponds to that column number. (See Appendix
D for the hexadecimal value corresponding to the colored blocks of the
bit-map.) In our example, the left half, row 4, column 1 is equal to a value
of 1. If the small colored dot was in row 1, column 8, the value would be

8. To complete the calculation, add all the values for each block in each
row. Do this for both halves. Your results should look like Fig. 2-7.

R0W1

ROW 2

ROW 3

ROW 4

ROW 5

ROW 6

ROW 7

ROW 8

LEFT HALF

8 4 2 1 VALUES

0+0+0+0=0

0+0+0+0=0

0+0+0+0=0

0+0+0+1=1

0+0+0+0=0

0+0+0+0=0

0+0+0+0=0

0+0+0+0=0

RIGHT HALF

8 4 2 1

Fig. 2-7. Calculation of an 8 x 8 Bit-Map.

VALUES

0+0+0+0=0

0+0+0+0=0

0+0+0+0=0

0+0+0+0=0

0+0+0+0=0

0+0+0+0=0

0+0+0+0=0

0+0+0+0=0

So far we have calculated the numeric value for each row in both halves.

But we're not quite ready to enter this information into the TI-99/4A.
Remember, the computer has to have the number in hexadecimal. So let's
convert the totals for each row into hexadecimal. The conversion from

numeric to hexadecimal is straightforward. (Look back to the beginning of
this section for the conversion table.) The last step before using the com
puter is to combine the hexadecimal numbers into one long number. To do
this, start at the Left Half, Row 1 total and write down that number. Then

move over to the Right Half, Row 1 total and write that beside the Left
Half, Row 1 total. Now get the Left Half, Row 2 total and write that
number beside the Right Half, Row 1 total. Keep writing the totals, one
after another, in this form. Congratulations! You have just completed your

22 TI-99I4A Graphics andSounds

first user-defined graphics character. Your hexadecimal line of numbers
should look like Fig. 2-8.

Hexadecimal

Fig. 2-8. Hexadecimal Notation for the Small Dot.

Even though this isn't a hard example, the steps taken to achieve the
hexadecimal notation are used for every graphics character you design.

The hardest part ofgraphics isdone. It really isn'tthat complicated once
you step through it. Remember the hexadecimal number, because we are
going to use it shortly. Before we use it, though, we have to look briefly
at the command the TI-99/4A uses to generate the characters you have
designed.

CALL CHAR(char-code,"hexadecimal notation") is the command
needed to reproduce our graphics representation. As you can see, your
hexadecimal number goes in the second part of the command. You will
need to put quotation marks around the number and place it into the
command. Thefirstpart, char-code needs a little explaining.

Every character the TI-99/4A can generate has anASCII value assigned
to it. An ASCII value is the number that represents that particular charac
ter. For instance, the letter "A" is represented by the number 65, the letter
"B" by thenumber 66, and soon. (See Appendix B fora complete listof
the ASCII codes for the TI-99/4A.) The char-code in the command is the
number you want to represent the graphics character.

ASCII codes 32-127 are used by the TI-99/4A forcharacter representa
tion. That leaves ASCII 128-159 left for your use. (NOTE: You may use
any ASCII code [32-159] that you want for your character, but, for now,
let's stick to the codes 128-159. We'll use the other ASCII codes in
Chapter 6.)

To give the character a certain color, use the CALL COLOR command.
The format for the command is CALL COLOR(char-set-num, fore
ground color,background color). See the previous section for a discus
sion of the last two parameters. The first parameter, char-set-num is the
character set number that corresponds to theASCII code where you have
stored your graphics character. The TI-99/4A divides its standard ASCII
codes (32-127) into subgroups. Each subgroup contains eight ASCII
codes. For instance, the ASCII codes 32 through 39 are in character set
number 1. To change the color of any one of the ASCII codes from 32-39,
place a 1in theparameter, char-set-num. (See Appendix C fora complete

Colors andBasic Graphics 23

breakdown of the ASCII codes into their corresponding character set
numbers.)

To print that character, once it has been defined, use either the CALL
HCHAR(row,col,ascii code) or CALL VCHAR(row,col,ascii code). Re
place row and col with the screen location (see Fig. 2-9 for a grid of the
screen showing the rows and columns) at which you want your graphics
representation to appear, and replace ascii code with the ASCII code you
have chosen for your character. These two commands will cause the com
puter to display the character you have designed.

COLUMNS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 1516171819 20 21222324 2526 27282930 3132

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Fig. 2-9. Grid of the Screen.

RANDOM DOTS

Listing 2-3 is a program using the small dot you have just created. It
stores the hexadecimal notation in ASCII code 128. This program displays
150 small dots all over the screen in a random fashion.

Listing 2-3

10 REM RANDOM DOTS

20 TT$="** RANDOM DOTS **"
30 CALL CLEAR

40 PRINT TAB(INT((29-LEN(TT$))/2)) ;TT$
cont. on next page

24 TI-99I4A Graphics andSounds

Listing 2-3—cont.

50 PRINT :::" THIS PROGRAM PLOTS RANDOM":::"DOTS ON
THE SCREEN."

60 PRINT :::::::" PRESS ANY KEY TO BEGIN"
70 CALL KEY(3,KEY,STATUS)
80 IF STATUS<=0 THEN 70

90 CALL CHAR(128,"0000001000000000")
100 CALL C0L0R(13,2,1)
110 CALL SCREEN(15)
120 CALL CLEAR

130 FOR NUMD0TS=1 TO 150

140 R0W=INT(RND*24)+1
150 C0L=INT(RND*32)+1
160 CALL HCHAR(R0W,C0L,128)
170 NEXT NUMDOTS

180 CALL SCREEN(4)
190 CALL CLEAR

200 PRINT "PLOT MORE RANDOM DOTS? (Y/N)"
210 CALL KEY(3,KEY,STATUS)
220 IF (KEY<>89)*(KEY<>78)THEN 210
230 IF KEY=09 THEN 110

240 CALL CLEAR

250 END

Explanation of Program

10-80 Clear screen, display introduction screen, and wait for a key
to be pressed

90 Define character. This is hexadecimal notation for small dot.

The dot's hexadecimal representation is then stored at ASCII
code 128

100-120 Set color that dot should be, set screen color, and clear screen
before printing dots

130-170 Loop 150 times, printing dot in random rows and columns on
screen

180-250 Clear screen and ask if you want to see more random dots. If
response is no, clear screen and exit program

STRAIGHT LINE

Listing 2-4 draws a straight line across the screen. The hexadecimal
notation is a little different from the small dot. Here, the hexadecimal
number is "000000FFFF000000". Fig. 2-10 shows the bit-map represen
tation of this number. When you run the program, your screen will look
similar to Fig. 2-11.

LEFT HALF

VALUES

0+0+0+0=0

0+0+0+0=0

0+0+0+0=0

8 + 4 + 2 + 1 = 15

8 + 4 + 1 + 1 = 15

0+0+0+0=0

0+0+0+0=0

0+0+0+0=0

Colors and Basic Graphics 25

RIGHT HALF

VALUES

0+0+0+0=0

0+0+0+0=0

0+0+0+0=0

8+4+2+1=15

8+4+2+1=15

0+0+0+0=0

0+0+0+0=0

0+0+0+0=0

TRANSLATION OF NUMERIC VALUES TO HEXADECIMAL

0 NUMERIC = 0 HEXADECIMAL, 15 NUMERIC = F
HEXADECIMAL

SO WHEN YOU COMBINE THE TWO HAVLES YOU END UP WITH
THIS HEXADECIMAL NOTATION: 000000FF000000

Fig. 2-10. Hexadecimal Translation of Straight Line.

Listing 2-4

10 REM STRAIGHT LINE

20 TT$="** STRAIGHT LINE **"
30 CALL CLEAR

40 PRINT TAB(INT((29-LEN(TT$))/2));TT$
50 PRINT :::" THIS PROGRAM DRAWS A":::"STRAIGHT LINE

ACROSS THE":::"SCREEN."

60 PRINT ::::::::" PRESS ANY KEY TO BEGIN"

70 CALL KEY(3,KEY,STATUS)
80 IF STATUS<=0 THEN 70

90 CALL CHARQ28, "000000FFFF000000")
100 CALL C0L0R(13,16,1)
110 CALL SCREEN(2)
120 CALL CLEAR

130 FOR COL=l TO 32

140 CALL HCHAR(12,COL,128)
150 NEXT COL

160 FOR DELAY=1 TO 1000

170 NEXT DELAY

180 CALL SCREEN(4)
190 CALL CLEAR

200 PRINT "WANT TO DRAW STRAIGHT LINE AGAIN? (Y/N)"
210 CALL KEY(3,KEY,STATUS)
220 IF (KEY<>89)*(KEY<>78)THEN 210
230 IF KEY=89 THEN 110

240 CALL CLEAR

250 END

Explanation of Program

10-80 Clear screen, center title, display introduction screen
90 Define user-defined graphics character

26 TI-99/4A GraphicsandSounds

100-120 Set color for graphics character and set screen colors
130-150 Print straight line, one column at a time
160-250 Delay after drawing line, clear screen, and ask if you want to

see straight line again. If response is no, clear screen and exit
program

Fig. 2-11. Straight Line.

VERTICAL LINE

Listing 2-5 is similar to the last program, except this one draws a vertical
line on the screen. Notice the hexadecimal number. Work out the bit-map
representation as we did to produce Fig. 2-10. When you run the program,
your screen will look similar to Fig. 2-12.

Listing 2-5

10 REM VERTICAL LINE

20 TT$="** VERTICAL LINE **"
30 CALL CLEAR

40 PRINT TAB(INT((29-LEN(TT$))/2));TT$
50 PRINT :::" THIS PROGRAM DRAWS A":::"VERTICAL LINE

ON THE":::"SCREEN."

60 PRINT ::::::::" PRESS ANY KEY TO BEGIN"

70 CALL KEY(3,KEY,STATUS)
80 IF STATUS<=0 THEN 70

90 CALL CHAR(128,"1818181818181818")
100 CALL COLOR(13,7,l)
110 CALL SCREEN(16)

Colors and Basic Graphics 27

120 CALL CLEAR

130 FOR R0W=1 TO 24

140 CALL VCHAR(R0W,16,128)
150 NEXT ROW

160 FOR DELAY=1 TO 1000

170 NEXT DELAY

180 CALL SCREEN(4)
190 CALL CLEAR

200 PRINT "WANT TO DRAW VERTICAL LINE AGAIN? (Y/N)"
210 CALL KEY(3,KEY,STATUS)
220 IF (KEY<>89)*(KEY<>78)THEN 210
230 IF KEY=89 THEN 110

240 CALL CLEAR

250 END

Explanation of Program

10-80 Clear screen, center title, and display introduction screen
90 Set graphics representation for vertical line

100-150 Set color for vertical line, set screen color, and draw vertical
line

160-250 Delay program while you look at vertical line, clear screen,
and ask if you want to see line again. If response is no, clear
screen and exit program

Fig. 2-12. Vertical Line.

DIAGONAL LINE

As you have seen, by coloring blocks of the bit-map, you can plan the
production of many different graphics characters on your computer. (We

28 TI-99/4AGraphics andSounds

will discuss more detailed bit-mapping in Chapter 4.) Listing 2-6 produces
another variation of the straight line. This time, the program draws a
diagonal line on the screen. Notice the hexadecimal notation for the diag
onal line. When you run the program, your screen will look similar to Fig.
2-13.

Fig. 2-13. Diagonal Line.

Explanation of Program

10-80 Clear screen, center title, display introduction screen
90 Set graphics representation for diagonal line

100-170 Set color of diagonal line, set screen color, and draw diagonal
line

180-270 Clear screen, reset screen color, and ask if you want to see
line again. If response is no, exit program

Listing 2-6

10 REM DIAGONAL LINE

20 TT$="** DIAGONAL LINE **"
30 CALL CLEAR

40 PRINT TAB(INT((29-LEN(TT$))/2));TT$
50 PRINT :::" THIS PROGRAM DRAWS A":::"DIAGONAL LINE

ON THE":::"SCREEN."

60 PRINT :::::::" PRESS ANY KEY TO BEGIN"

70 CALL KEY(3,KEY,STATUS)
80 IF STATUS<=0 THEN 70

Colors and Basic Graphics 29

90 CALL CHAR(128,"C0E070381C0E0703")
100 CALL COLOR(13,5,l)
110 CALL SCREEN(15)
120 CALL CLEAR

130 C0L=4

140 FOR ROW=l TO 24

150 CALL HCHAR(ROW,COL,128)
160 COL=COL+l

170 NEXT ROW

180 FOR DELAY=1 TO 1000

190 NEXT DELAY

200 CALL SCREEN(4)
210 CALL CLEAR

220 PRINT "DRAW DIAGONAL LINE AGAIN? (Y/N)"
230 CALL KEY(3,KEY,STATUS)
240 IF (KEY<>89)*(KEY<>78)THEN 230
250 IF KEY=89 THEN 110

260 CALL CLEAR

270 END

SQUARES

Squares displays squares on random screen locations. Notice that the
bit-map for a square is still simple. It requires a few more bits than the
programs listed above did. The program Squares is given in Listing 2-7.
When you run the program, your screen will look similar to Fig. 2-14.

Listing 2-7

10 REM SQUARES

20 CALL CLEAR

30 TITLE$="** SQUARES **"
40 REM CENTER THE TITLE

50 PRINT TAB(INT((29-LEN(TITLE$))/2));TITLE$
60 PRINT :::::" THIS PROGRAM DEMONSTRATES HOW SQUARES

ARE CREATED."

70 PRINT ::" THEY ARE THEN PLACED ON THE SCREEN IN

RANDOM LOCATIONS."

80 PRINT :::::" PRESS ANY KEY TO BEGIN"

90 CALL KEY(0,KEY,STATUS)
100 IF STATUS<=0 THEN 90

110 CALL CLEAR

120 PRINT ::::::::::::::::::::::" PRESS X TO

EXIT"

130 CALL COLOR(13,2,l)
140 CALL CHAR(128,"FF318181818181FF")
150 RANDOMIZE

160 COL=INT(27*RND)+3
170 ROW=INT(18*RND)+2
180 CALL HCHAR(ROW,COL,128)
190 CALL KEY(0,KEY,STATUS)
200 IF (KEY=88)+(KEY=120)THEN 220
210 GOTO 160

220 CALL CLEAR

230 END

30 TI-99I4A GraphicsandSounds

Explanation of Program

10-100 Clear screen, center title, and display introduction screen
110-130 Print way to exitprogram and setcolor of squares
140 Set character representation for square in ASCIIcode 128
150-210 Set randomizer routine, select random row and column num

bers, and print square at that location. Check to see if X key
was pressed. If so, then exit

220-230 Clear screen and exit

Fig. 2-14. Squares.

CIRCLES

The square was pretty easy to create. It was formed by coloring the
blocks positioned along the outsideof the bit-map. Generating circles is a

R0W1

ROW 2

ROW 3

ROW 4

ROW 5

ROW 6

ROW 7

ROW 8

LEFT HALF RIGHT HALF

HEXADECIMAL #

3C

42

81

81

81

81

42

3C

Fig. 2-15. Bit-Map and Hexadecimal Representation of a Circle.

Colors and Basic Graphics 31

little harder. You have to color certain blocks of the bit-map to have it look
like a circle. Listing 2-8 is a program that creates a circle and then displays
it randomly on the screen. See Fig. 2-15 for the bit-map and hexadecimal
representation of a circle. When you run the program, your screen will
look similar to Fig. 2-16.

Listing 2-8

10 REM CIRCLES

20 CALL CLEAR

30 TITLE$="** CIRCLES **"
40 REM CENTER THE TITLE

50 PRINT TAB(INT((29-LEN(TITLE$))/2));TITLE?
60 PRINT :::::" THIS PROGRAM DEMONSTRATES HOW CIRCLES

ARE CREATED."

70 PRINT ::" THEY ARE THEN PLACED ON THE SCREEN IN

RANDOM LOCATIONS."

80 PRINT :::::" PRESS ANY KEY TO BEGIN"
90 CALL KEY(0,KEY,STATUS)
100 IF STATUS<=0 THEN 90

110 CALL CLEAR

120 CALL COLOR(5,16,l)
130 CALL C0L0R(6,16,1)
140 CALL COLOR(7,16,l)
150 CALL COLOR(8,16,l)
160 CALL SCREEN(2)
170 PRINT ::::::::::::::::::::::" PRESS X TO

EXIT"

180 CALL COLOR(13f16,1)
190 CALL CHAR(128,"3C4281818181423C")
200 RANDOMIZE

210 COL=INT(27*RND)+3
220 ROW=INT(18*RND)+2
230 CALL HCHAR(ROW,COL,128)
240 CALL KEY(0,KEY,STATUS)
250 IF (KEY=88)+(KEY=120)THEN 270
260 GOTO 210

270 CALL CLEAR

280 END

Explanation of Program

10-100 Clear screen, center title, and display introduction screen
110-180 Set color for screen, color for characters used to display mes

sage for exiting, and color of graphics character
190 Set up and define character representation for circle
200-260 Set randomizer for retrieving random numbers. Select ran

dom row and column position for printing character. If X is
pressed, then exit

270-280 Clear screen and exit program

32 TI-99I4A GraphicsandSounds

CO.. g%/.^%#rt,^oo.

a ° villiillll

>*••• oo
GO O

W^E^lt

Fig. 2-16. Circles.

TRIANGLES

A triangle is no more difficult to create than a circle. Remember, you
don't have to use the entire 8x8 bit-map. In fact, for creating a triangle,
we will use the bottom half of the bit-map. This causes the triangle to be
more uniform in shape. See Fig. 2-17 for the bit-map representation. The
program is given in Listing 2-9. When you run the program, your screen
will look similar to Fig. 2-18.

LEFT HALF

8 4 2 1

RIGHT HALF

8 4 2 1 HEXADECIMAL #

R0W1 00

ROW 2 00

ROW 3 00

ROW 4

• •
18

ROW 5

• •
24

ROW 6

Zk
42

ROW 7 ^B^
ROW 8 ^BH s

Fig. 2-17. Bit-Map for a Triangle.

Listing 2-9

L0 REM TRIANGLES

20 CALL CLEAR

30 TITLE$="** TRIANGLES **"

Colors and Basic Graphics 33

40 REM CENTER THE TITLE

50 PRINT TAB(INT((29-LEN(TITLE$))/2));TITLE$
60 PRINT :::::" THIS PROGRAM DEMONSTRATES HOW

TRIANGLES ARE CREATED."
70 PRINT ::" THEY ARE THEN PLACED ON THE SCREEN IN

RANDOM LOCATIONS."
80 PRINT :::::" PRESS ANY KEY TO BEGIN"
90 CALL KEY(0,KEY,STATUS)
100 IF STATUS<=0 THEN 90

110 CALL CLEAR

120 CALL COLOR(5,2,l)
130 CALL COLOR(6,2,l)
140 CALL COLOR(7,2,l)
150 CALL COLOR(8,2,l)
160 CALL SCREEN(16)
170 PRINT ::::::::::::::::::::::" PRESS X TO

EXIT"

180 CALL COLOR(13,13,l)
190 CALL CHAR(128,"00000018244281FF")
200 RANDOMIZE

210 COL=INT(27*RND)+3
220 ROW=INT(18*RND)+2
230 CALL HCHAR(ROW,COL,128)
240 CALL KEY(3,KEY,STATUS)
250 IF (KEY=88)+(KEY=120)THEN 270
260 GOTO 210

270 CALL CLEAR

280 END

Fig. 2-18. THangles.

34 TI-99/4A Graphics and Sounds

Explanation of Program

10-100 Clear screen, center title, and display introduction screen
110-180 Set colors of characters for printing to screen. Set screen

color and color of triangles
190 Set up and define graphicsrepresentation for triangle
200-260 Set randomizer generator. Select random row and column to

display triangle. If X is pressed, then exit
270-280 Clear screen and exit program

VARIETY

By now, you should be able to develop basic graphics characters. If not,
go back to the start of this section on graphics and review the examples
and the sample programs more slowly. With what you have learned in this
chapter, you know how to generate a single graphics character the size of
a normal TI-99/4A character. It is a small character, but when you combine
these small characters (squares, circles and triangles) in one program the
result can be impressive.

The program in Listing 2-10 does just that. It combines the square,
the circle, and the triangle and displays them on the screen in random
locations. When you run the program, your screen will look similar to
Fig. 2-19.

Listing 2-10

10 REM VARIETY

20 CALL CLEAR

30 TITLE$="** VARIETY **"
40 REM CENTER THE TITLE

50 PRINT TAB(INT((29-LEN(TITLE$))/2));TITLE$
60 PRINT :::::" THIS PROGRAM COMBINES SQUARES,

CIRCLES AND TRIANGLES.":

70 PRINT :" IT PLACES THEM AT RANDOM LOCATIONS ON

THE SCREEN."

80 PRINT :" EACH ONE IS DISPLAYED IN A DIFFERENT

COLOR."

90 PRINT :::::" PRESS ANY KEY TO BEGIN"

100 CALL KEY(0,KEY,STATUS)
110 IF STATUS<=0 THEN 100

120 CALL CLEAR

130 CALL COLOR(5,2,l)
140 CALL COLOR(6,2,l)
150 CALL COLOR(7,2,l)
160 CALL COLOR(8,2,l)
170 CALL SCREEN(16)
180 PRINT ::::::::::::::::::::::" PRESS X TO

EXIT"

Colors and Basic Graphics 35

190 CALL C0L0R(14,3,1)
200 CALL CHAR(128,"00000018244281FF")
210 CALL CHAR(136,"FF818181818181FF")
220 CALL CHAR(144,"3C4281818181423C")
230 RANDOMIZE

240 COL=INT(27*RND)+3
250 ROW=INT(18*RND)+2
260 CALL COLOR(14,5,l)
270 CALL HCHAR(ROW,COL,136)
280 CALL KEY(0,KEY,STATUS)
290 IF (KEY=88)+(KEY=120)THEN 430
300 C0L=INT(27*RND)+3
310 ROW=INT(18*RND)+2
320 CALL COLOR(15,7,l)
330 CALL HCHAR(ROW,COL,144)
340 CALL KEY(0,KEY,STATUS)
350 IF (KEY=88)+(KEY=120)THEN 430
360 ROW=INT(18*RND)+2
370 COL=INT(27*RND)+3
380 CALL COLOR(13,13,l)
390 CALL HCHAR(ROW,COL,128)
400 CALL KEY(0,KEY,STATUS)
410 IF (KEY=88)+(KEY=120)THEN 430
420 GOTO 240

430 CALL CLEAR

440 END

Fig. 2-19. Variety.

Explanation of Program

10-110 Clear screen, center title, and display introduction screen
120-190 Set color of characters that are in message to exit program.

Set screen color

36 TI-99/4A GraphicsandSounds

200 Set up and define triangle
210 Set up and define square
220 Set up and define circle
230-290 Display square at random location on screen
300-350 Display circle at random location on screen
360-420 Display triangle at random location on screen
430-440 Clear screen and exit program

GIANT HI

This program is an example that demonstrates combining bit-maps to
generate larger graphics characters. Using 14 different bit-maps placed
together on the screen, the program displays a large "HI" on your com
puter's screen. I hope this program will encourage you to experiment with
creating larger and larger graphics characters. (You will learn more about
these advanced graphics techniques in Chapter 4.) The program is given in
Listing 2-11. When you run the program, your screen will look similar to
Fig. 2-20.

Listing 2-11

10 REM GIANT HI

20 TT$="** GIANT HI **"
30 CALL CLEAR

40 PRINT TAB(INT((29-LEN(TT$))/2));TT$
50 PRINT :::::" THIS PROGRAM DRAWS A"::::"GIANT 'HI1

ON THE SCREEN.":::

60 PRINT ::::::" PRESS ANY KEY TO BEGIN"

70 CALL KEY(3,KEY,STATUS)
80 IF STATUS<=0 THEN 70

90 CALL SCREEN(5)
100 CALL CLEAR

110 PRINT " SETTING UP GRAPHICS...":::::::::::

120 CALL COLOR(13,16,l)
130 CALL COLOR(14,16,l)
140 FOR CHR=1 TO 14

150 READ CODE$
160 CALL CHAR(CHR+127,CODE$)
170 NEXT CHR

180 CALL CLEAR

190 REM DRAWS TOP OF 'H'

200 FOR ROW=6 TO 8

210 CALL HCHAR(ROW,12,128)
220 CALL HCHAR(ROW,15,129)
230 NEXT ROW

240 REM DRAWS LINE ACROSS 'H'

250 CALL HCHAR(9,12,136)
260 CALL HCHAR(9,13,130)
270 CALL HCHAR(9,14,130)

Colors and Basic Graphics 37

280 CALL HCHAR(9,15,137)
290 REM DRAWS BOTTOM OF 'H'

300 FOR ROW=10 TO 12

310 CALL HCHAR(ROW,12,128)
320 CALL HCHAR(ROW,15,129)
330 NEXT ROW

340 REM DRAWS TOP OF 'I *

350 FOR COL=18 TO 21

360 CALL HCHAR(6,COL,COL+112)
370 NEXT COL

380 REM DRAWS LINE DOWN 'I'

390 FOR ROW=7 TO 11

400 CALL HCHAR(ROW,19,134)
410 CALL HCHAR(ROW,20,135)
420 NEXT ROW

430 REM DRAWS BOTTOM OF 'I'

440 FOR COL=18 TO 21

450 CALL HCHAR(12,COL,COL+120)
460 NEXT COL

470 PRINT " PRESS X TO EXIT"

480 CALL KEY(3,KEY,STATUS)
490 IF KEY<>88 THEN 480

500 CALL CLEAR

510 END

520 REM DATA FOR BUILDING THE LETTERS 'H' & 'I'

530 DATA C0C0C0C0C0C0C0C0

540 DATA 0303030303030303

550 DATA FFFF000000000000

560 DATA FFFF010101010101

570 DATA FFFF808080808080

580 DATA FFFF000000000000

590 DATA 0101010101010101

600 DATA 8080808080808080

610 DATA FFFFC0C0C0C0C0C0

620 DATA FFFF030303030303

630 DATA 000000000000FFFF

640 DATA 010101010101FFFF

650 DATA 808080808080FFFF

660 DATA 000000000000FFFF

Explanation of Program

10-80 Clear screen, center title, and display introduction screen
90-180 Set up and define necessary graphics characters and color

associated with each one

190-230 Draw top section of "H"
240-280 Draw middle line of "H"

290-330 Draw bottom of "H"

340-370 Draw top of "I"
380-420 Draw line down "I"

430-460 Draw bottom part of "I"
470-510 Wait for X key to be pressed, clear screen, and exit program
520-660 Generate graphics characters for each part of "H" and "I"

38 TI-99I4A GraphicsandSounds

Fig. 2-20. Giant HI.

SUMMARY

At this point, you should have a very good understanding of thedifferent
colors and how they can affect the screen, the foreground, and the back
ground characters. These small graphics characters maynotseempowerful
to you. Still, they are very useful in learning the more advanced graphics
techniques.

Chapter 3

Special Effects with Sounds

The TI-99/4A is capable of producing music as well as noises and
sounds. The reason for this is the versatility of the TI-99/4A's program
ming capabilities. To help you understand the sounds and music power of
the TI-99/4A, though, here are a few definitions.

Sound/Music: for the purposes of this book, "sound" is defined as audio
which is not music. For instance, the simulated roar of a spaceship blasting
off would be a sound, while an electronic version of the Bach Minuet
would be music.

Voice: a voice on the TI-99/4A refers to an individual oscillator within

the computer. Each of the TI-99/4A's oscillators can produce a sound of
its own, so that three different notes or sounds may be produced simulta
neously. Think of multiple voices as multiple musical instruments since
each voice can have characteristics all its own.

Frequency: the frequency of a tone is how high or low it sounds. The
higher the frequency number, the higher the sound. A very low frequency
number would designate a bass note, while a high frequency might resem
ble the high-pitched squeak of a mouse.

PROGRAMMING SOUNDS

The command to generate sound or music on the TI-99/4A is CALL
SOUND(duration, frequencyl, vohimel[, frequency2, volume2],

39

40 TI-99/4AGraphicsandSounds

[frequency3, volume3][, frequency4, volume4]) The parameters are
self-explanatory. For the time being, concern yourself only with the first
part of the command: duration, frequency 1, and volumel.

How long a sound or musical note is played is called the duration.
Duration can be any numeric value from 1 to 4250 or -1 to -4250, where
1 is equal to 1 millisecond and 4250 is equivalent to 4.25 seconds. If you
use a negative duration, the computer produces the next tone as soon as it
is encountered without waiting for the previous note or sound to end.

Frequency is defined at the beginning of this chapter. Frequencyl can
be any value from 110 through 44733. (See Appendix E for a complete
listing of the frequencies and their corresponding musical notes.)

Volumel can be any number 0 through 30, where 0 is the loudest and
30 is the quietest.

When programming a musical piece for the TI-99/4A, the data for the
notes must first be entered. Usually the data is entered into DATA state
ments and then READ into the CALL SOUND routine one at a time. This

method, while it is the most efficient, need not concern you while you
read this chapter. You will use DATAstatements in Chapter 5.

The TI-99/4A is capable of generating two kinds of noises. The first is
periodic noises and the second is white noises.

Frequency is the only parameter that differentiates between periodic and
white noises. (See Random Periodic Noises and White Noises below for
the correct parameters.)

RANDOM PERIODIC NOISES

The program shown in Listing 3-1 will cause your computer to produce
random periodic noises. Periodic noises are generated by frequencies from
-1 through -4.

Listing 3-1

10 REM RANDOM PERIODIC NOISES

20 TT$="** PERIODIC NOISES **"
30 CALL CLEAR

40 PRINT TAB(INT((29-LEN(TT$))/2));TT$
50 PRINT : : :" THIS PROGRAM GENERATES"::::"RANDOM

PERIODIC NOISES."

60 PRINT :::::::" PRESS ANY KEY TO BEGIN"

70 CALL KEY(0,KEY,STATUS)
80 IF STATUS<=0 THEN 70

90 CALL CLEAR

100 PRINT " PLAYING NOISES..."::::::::::::

Special Effects withSounds 41

110 PRINT " PRESS X TO EXIT"

120 N0ISE=INT(RND*4)+1
130 NOISE=-NOISE

140 CALL SOUND(150,NOISE,0)
150 CALL KEY(3,KEY,STATUS)
160 IF KEY=88 THEN 180

170 GOTO 120

180 CALL CLEAR

190 END

Explanation of Program

10-90 Clear screen, center title, and display introductory screen
100-110 Display way to exit program
120 Select random noise from 1 to 4

130 Change positive value to negative one to generate noise
140 Play noise
150-190 Wait for key to be pressed to exit. If X is pressed, clear screen

and exit. Otherwise, play another random noise

RANDOM WHITE NOISES

Listing 3-2 produces random white noises. White noises are generated
with a frequency range from -5 through -8.

Listing 3-2

10 REM RANDOM WHITE NOISES

20 TT$="** WHITE NOISES **"
30 CALL CLEAR

40 PRINT TAB(INT((29-LEN(TT$))/2));TT$
50 PRINT :::" THIS PROGRAM GENERATES"::::"RANDOM

WHITE NOISES."

60 PRINT :::::::" PRESS ANY KEY TO BEGIN"
70 CALL KEY(0#KEY,STATUS)
80 IF STATUS<=0 THEN 70

90 CALL CLEAR

100 PRINT " PLAYING NOISES ...u::::::::::::
110 PRINT " PRESS X TO EXIT"

120 N0ISE=INT(RND*4)+5
130 N01SE=-N0ISE

140 CALL SOUND(150,NOISE,0)
150 CALL KEY(3,KEY,STATUS)
160 IF KEY=88 THEN 180

170 GOTO 120

180 CALL CLEAR

190 END

Explanation of Program

10-90 Clear screen, center title, and display introduction screen
100-110 Display notice that noises are playing and how to exit

program

42 TI-99/4AGraphicsandSounds

120 Select random noise from 5 through 8
130 Turn positive into negative number for use in frequency
140 Play noise
150-190 Check to see if you want to exit. If so, clear screen and exit.

If not, play another random noise

UPWARD SOUND

Program Listing 3-3 uses a climbing frequency to produce a rapid up
ward sound. Notice the negative duration number. This causes the next
frequency to be played as soon as it reaches the CALL SOUND statement,
thus producing an upward sound.

Listing 3-3

10 REM UPWARD SOUND

20 TT$="** UPWARD SOUND **"
30 CALL CLEAR

40 PRINT TAB(INT((29-LEN(TT$))/2));TT$::::
50 PRINT " THIS PROGRAM GENERATES AN"::"UPWARD

SOUND.":::::::::

60 PRINT " PRESS ANY KEY TO BEGIN"

70 CALL KEY(0,KEY,STATUS)
80 IF STATUS<=0 THEN 70

90 CALL CLEAR

100 PRINT " PLAYING UPWARD SOUND..."::::::::::::::

110 FOR DELAY=1 TO 100

120 NEXT DELAY

130 FOR FREQ=220 TO 1662 STEP 10

140 CALL SOUND(-900,FREQ,0)
150 NEXT FREQ

160 CALL SOUND(1,FREQ+10,0)
170 CALL CLEAR

180 PRINT "PLAY UPWARD SOUND AGAIN? (Y/N)"
190 CALL KEY(0,KEY,STATUS)
200 IF (KEY<>89)*(KEY<>121)*(KEY<>78)*(KEY<>110)THEN

190

210 IF (KEY=89)+(KEY=121)THEN 90
220 CALL CLEAR

230 END

Explanation of Program

10-90 Clear screen, center title, and display introduction screen
100-120 Display notice that upward sound is playing. Delay to let you

get ready
130-150 Play upward sound
160 lurn off sound

170-230 Ask if you want to hear sound again. If so, play it again. If
not, clear screen and exit program

Special Effects withSounds 43

DOWNWARD SOUND

By changinga few lines, a rapiddownward soundcan be produced.The
program is shown in Listing 3-4.

Listing3-4

10 REM DOWNWARD SOUND

20 TT$="** DOWNWARD SOUND **"
30 CALL CLEAR

40 PRINT TAB(INT((29-LEN(TT$))/2));TT$::::
50 PRINT " THIS PROGRAM GENERATES A"::"DOWNWARD

SOUND.":::::::::

60 PRINT " PRESS ANY KEY TO BEGIN"
70 CALL KEY(0,KEY,STATUS)
80 IF STATUS<=0 THEN 70
90 CALL CLEAR

100 PRINT " PLAYING DOWNWARD SOUND..."::::::::::::::
110 FOR DELAY=1 TO 100

120 NEXT DELAY

130 FOR FREQ=1662 TO 220 STEP -10
140 CALL SOUND(-400,FREQ,0)
150 NEXT FREQ

160 CALL SOUND(1,FREQ-10,0)
170 CALL CLEAR

180 PRINT "PLAY DOWNWARD SOUND AGAIN? (Y/N)"
190 CALL KEY(0,KEY,STATUS)

200 IF (KEYO89)*(KEY<>121)*(KEY<>78)*(KEY<>110)THEN
190

210 IF (KEY=89)+(KEY=121)THEN 90
220 CALL CLEAR

230 END

Explanation of Program

10-90 Clear screen, centertitle, and display introduction screen
100-120 Display notice to screen that sound is being played. Delay

program to let you get ready
130-170 Play downward sound and, when done, shut sound off

abruptly
180-230 Clear screen and ask if you want to hear downward sound

again. If so, play it again. If not, exit program

UP AND DOWN SOUND

By combining the previous two programs, a rapid upward and down
ward sound can be produced. See Listing 3-5.

44 TI-99I4AGraphics and Sounds

Listing 3-5

10 REM UP & DOWN SOUND

20 TT$=M** UP & DOWN SOUND **"
30 CALL CLEAR

40 PRINT TAB(INT((29-LEN(TT$))/2));TT$::::
50 PRINT " THIS PROGRAM GENERATES A"::"SOUND THAT

RAPIDLY GOES UP"::"AND DOWN."

60 PRINT ::::::" PRESS ANY KEY TO BEGIN"

70 CALL KEY(0,KEY,STATUS)
80 IF STATUS<=0 THEN 70

90 CALL CLEAR

100 PRINT "PLAYING UP & DOWN SOUND..."::::::::::::

110 PRINT " PRESS X TO EXIT"

120 FOR DELAY=1 TO 100

130 NEXT DELAY

140 FOR FREQ=440 TO 660 STEP 10

150 CALL KEY(0,KEY,STATUS)
160 IF (KEY=88)+(KEY=120)THEN 250
170 CALL SOUND(-800,FREQ,0)
180 NEXT FREQ

190 FOR FREQ=660 TO 440 STEP -10

200 CALL KEY(0,KEY,STATUS)
210 IF (KEY=38)+(KEY=120)THEN 250
220 CALL SOUND(-800,FREQ,0)
230 NEXT FREQ

240 GOTO 140

250 CALL CLEAR

260 CALL SOUND(-1,110,30)
270 END

Explanation of Program

10-90 Clear screen, center title, and display introduction screen
100-130 Display notice that sound is being played and a notice of how

to exit program
140-180 Play upward sound and check if X is pressed to exit program
190-240 Play the downward sound and check if X is pressed to exit

program

250-270 Clear screen and exit program

MUSICAL SCALE

The TI-99/4A can produce songs as well as sounds and noises. Listing
3-6 causes your computer to produce a musical scale. So you can follow
along, the screen changes color as each note is sounded.

Special Effects with Sounds 45

Listing 3-6

10 REM MUSICAL SCALE

20 TT$="** MUSICAL SCALE ***'
30 CALL CLEAR

40 PRINT TAB(INT((29-LEN(TT$))/2));TT$
50 PRINT :::" THIS PROGRAM PLAYS A"::

60 PRINT "MUSICAL SCALE.":::::::::

70 PRINT " PRESS ANY KEY TO BEGIN"

80 CALL KEY(0,KEY,STATUS)
90 IF STATUS<=0 THEN 80

100 RANDOMIZE

110 CALL CLEAR

120 RESTORE

130 PRINT " PLAYING SCALES ...u:::::::::::::

140 FOR NUMNOTES=l TO 14

150 READ NOTE

160 COLR=INT(RND*15)+l
170 CALL SCREEN(COLR)
180 CALL SOUND(300,NOTE,4)
190 NEXT NUMNOTES

200 FOR DELAY=1 TO 200

210 NEXT DELAY

220 CALL CLEAR

230 CALL SCREEN(4)
240 PRINT "PLAY MUSICAL SCALES AGAIN? (Y/N)"
250 CALL KEY(0,KEY,STATUS)
260 IF (KEY<>89)*(KEY<>121)*(KEY<>78)*(KEY<>110)THEN

250

270 IF (KEY=89)+(KEY=121)THEN 110
280 CALL CLEAR

290 END

300 DATA 220,246,261,293,329,349,392
310 DATA 392,349,329,293,261,246,220

Explanation of Program

10-90 Clear screen, center title, and display introduction screen
100-130 Start randomizer generator and display notice that music is

being played
140-190 Select random screen color to display on screen as note is

sounded. Change screen color. Play note.
200-290 Clear screen. Reset screen to default color. Ask whether you

would like to hear scales again. If not, clear screen and exit
program

300-310 Play musical scale

SUMMARY

The definitions and program listings in this chapter provide basic infor
mation about the noise, sound, and music features of theTI-99/4A. Chap
ter 5 explores more advanced programming possibilities.

Chapter 4

Advanced Graphics
Techniques and Animation

To make use of the more elaborate graphics effects on the TI-99/4A,
you will need to expand on what you learned from studying Chapter 2. In
that chapter, you learned the basic ingredient in creating a graphics char
acter is the 8 x 8 bit-map. You also had a sneak preview, in the Giant HI
program, of how larger graphics characters are formed. In this chapter,
you will learn how to combine several bit-maps to form a larger graphics
character.

There are a couple of techniques used in combining bit-maps. First,
design large graphics characters on several adjacent 8x8 bit-maps. When
you have drawn the design, all you will need to do is break the bigger bit
map into several smaller 8x8 bit-maps. This is similar to taking apart a
jigsaw puzzle one piece at a time. Use the techniques you learned in
Chapter 2 to calculate the hexadecimal notations for each 8x8 bit-map.

The second technique is very important: remember how you took apart
the big bit-map so you'll be able to piece the puzzle back together.

It is a good idea to order the hexadecimalnotations by sequential ASCII
codes. (See Appendix B for the list of ASCII codes available on the TI-
99/4A.) This will make it easier to remember where the bit-maps were
stored in your computer. It also helps when you are displaying the puzzle's

47

48 T1-99I4A Graphics and Sounds

pieces because you'll know in what order to display them. To display the
characters, use the CALL HCHAR or CALL VCHAR and place the pieces
side by side or on top of one another. If you forget where the hexadecimal
notation for a particular bit-map goes, and you place it in the wrong row
or column, some very strange results may be displayed.

RECTANGLE

The program in Listing 4-1 draws a big rectangle. The hexadecimal
notation for the rectangle is given in lines 360-440. The large rectangle is
drawn starting with the upper left corner. The computer draws each sub
sequent bit-map block beside the first. In other words, the program draws
the rectangle horizontally. When you run the program, your screen will
look similar to Fig. 4-1.

Listing 4-1

10 REM RECTANGLE

20 TT$="** RECTANGLE **"
30 CALL CLEAR

40 PRINT TAB(INT((29-LEN(TT$))/2));TT$
50 PRINT :::" THIS PROGRAM DRAWS A":::"RECTANGLE ON

THE SCREEN."

60 PRINT :::::::" PRESS ANY KEY TO BEGIN"

70 CALL KEY(3,KEY,STATUS)
80 IF STATUS<=0 THEN 70

90 CALL CLEAR

100 PRINT " SETTING UP GRAPHICS...":::::::::::

110 CALL COLOR(13,2,l)
120 FOR 1=1 TO 8

130 READ CODE$
140 CALL CHAR(127+I,CODE$)
150 NEXT I

160 CALL SCREEN(16)
170 CALL CLEAR

180 CALL HCHAR(8,12,128)
190 CALL HCHAR(8,13,129,6)
200 CALL HCHAR(8,19,130)
210 CALL VCHAR(9,12,131,4)
220 CALL VCHAR(9,19,132,4)
230 CALL HCHAR(13,12,133)
240 CALL HCHAR(13,13,134,6)
250 CALL HCHAR(13,19,135)
260 FOR DELAY=1 TO 1000

270 NEXT DELAY

280 CALL SCREEN(4)
290 CALL CLEAR

300 PRINT "DRAW RECTANGLE AGAIN? (Y/N)"
310 CALL KEY(3,KEY,STATUS)
320 IF (KEY<>89)*(KEY<>78)THEN 310
330 IF KEY=89 THEN 160

Advanced Graphics Techniquesand Animation 49

340 CALL CLEAR

350 END

360 REM DATA FOR THE RECTANGLE

370 DATA FF80808080808080

380 DATA FF00000000000000

390 DATA FF01010101010101

400 DATA 8080808080808080

410 DATA 0101010101010101

420 DATA 80808080808080FF

430 DATA 00000000000000FF

440 DATA 01010101010101FF

Fig. 4-1. Rectangle.

Explanation of Program

10-80 Clear screen, center title, and display introduction screen
90-170 Clear screen, set color for rectangle. (Notice that I set the

color for only one of the character sets. That's because each
character set contains eight ASCII codes. By setting the color
for one set, I set the color for all eight ASCII code charac
ters.) Read and store hexadecimal notation for each section

of rectangle in ASCII codes 128-135
180-200 Draw top section of rectangle horizontally
210-220 Draw sides of rectangle vertically
230-250 Draw bottom section of rectangle horizontally
260-350 Delays so you can see rectangle. Ask if you want to see

rectangle again. If not, exit program

50 TI-99I4AGraphics andSounds

360-440 Data for individual bit-maps that make up rectangle put in
order to redraw rectangle

LARGE TRIANGLE

The program shown in Listing 4-2 draws a large triangle. Notice that
only three graphics elements were used to draw the triangle. That's be
cause the same elements were used more than once. In this way, the
program uses less of the computer's memory to draw the picture. When
you run the program, your screen will look similar to Fig. 4-2.

Listing 4-2

10 REM LARGE TRIANGLE

20 TT$="** LARGE TRIANGLE **"
30 CALL CLEAR

40 PRINT TAB(INT((29-LEN(TT$))/2));TT$
50 PRINT :::" THIS PROGRAM DRAWS A":::"LARGE TRIANGLE

ON THE":::"SCREEN."

60 PRINT :::::::" PRESS ANY KEY TO BEGIN"

70 CALL KEY(3,KEY,STATUS)
80 IF STATUS<=0 THEN 70

90 CALL CLEAR

100 PRINT " SETTING UP GRAPHICS...":::::::::::

110 CALL COLOR(13,16,l)
120 FOR 1=1 TO 3

130 READ CODE?
140 CALL CHAR(127+1,CODE$)
150 NEXT I

160 CALL SCREEN(2)
170 CALL CLEAR

180 CALL HCHAR(8,14,128)
190 CALL HCHAR(8,15,129)
200 CALL HCHAR(9,13,128)
210 CALL HCHAR(9,16,129)
220 CALL HCHAR(10,12,128)
230 CALL HCHAR(10,17,129)
240 CALL HCHAR(11,11,128)
250 CALL HCHAR(11,18,129)
260 CALL HCHAR(12,10,128)
270 CALL HCHAR(12,19,129)
280 CALL HCHAR(13,10,130,10)
290 FOR DELAY=1 TO 1000

300 NEXT DELAY

310 CALL SCREEN(4)
320 CALL CLEAR

330 PRINT "DRAW TRIANGLE AGAIN? (Y/N)"
340 CALL KEY(3,KEY,STATUS)
350 IF (KEY<>89)*(KEY<>78)THEN 340
360 IF KEY=89 THEN 160

370 CALL CLEAR

380 END

Advanced Graphics Techniquesand Animation 51

390 REM DATA FOR THE TRIANGLE

400 DATA 0102040810204080

410 DATA 8040201008040201

420 DATA FF00000000000000

Fig. 4-2. Large Triangle.

Explanation of Program

10-80

90-170

Clear screen, center title, and display introduction screen
Set color for triangle. Define each element needed to draw
triangle

180-190 Draw top of triangle (A)
200-210 Draw next section (/ \)
220-230 Use same elements as line 200-210 but display them farther

apart (/ \)

240-270 Use same elements as line 200-230 but display them farther
apart (/ \) (/ \)

280 Draw bottom line of triangle ()
290-380 Delay program so you can see triangle. Ask if you want to

see triangle again. If not, exit program
390-420 Hexadecimal notations for triangle

CUBE

We have created one rectangle. Now, we can make it smaller, then create
a second smaller rectangle and place it slightly above and to the right of

52 TI-99I4A Graphics andSounds

the original, connecting the two figures with diagonal lines. In this manner,
we can create a three-dimensional object—the cube. The program is shown
in Listing 4-3. (This program isn't as efficient as it can be. Instead of using
one piece many times, I used each piece once. Thus, the program has
some duplicate hexadecimal definitions. It was designed this way so you
could study the components of a three-dimensional object design.) When
you run the program, your screen will look similar to Fig. 4-3.

Listing 4-3

10 REM CUBE

20 TT$="** CUBE **"
30 CALL CLEAR

40 PRINT TAB(INT((29-LEN(TT$))/2));TT$
50 PRINT :::" THIS PROGRAM DRAWS A THREE";
60 PRINT ::"DIMENSIONAL CUBE.":::

70 PRINT : : : : " PRESS ANY KEY TO- BEGIN"

80 CALL KEY(0,KEY,STATUS)
90 IF STATUS<=0 THEN 80

100 CALL SCREEN(16)
110 CALL CLEAR

120 PRINT " PREPARING THE CUBE..."::::::::

130 FOR CH=0 TO 34

140 READ CD$
150 CALL CHAR(CH+120,CD$)
160 NEXT CH

170 FOR CHARSET=12 TO 16

180 CALL COLOR(CHARSET, 2,1)
190 NEXT CHARSET

200 CALL CLEAR

210 ROW=8

220 FOR COL=14 TO 18

230 CALL HCHAR(ROW,COL,106+COL)
240 NEXT COL

250 CALL HCHAR(ROW+l,13,125)
260 CALL HCHAR(ROW+l,14,126)
270 CALL HCHAR(ROW+l,17,127)
280 CALL HCHAR(ROW+l,18,128)
290 CALL HCHAR(ROW+2,12,129)
300 CALL HCHAR(ROW+2,13,130)
310 CALL HCHAR(ROW+2,14,131)
320 CALL HCHAR(ROW+2,16,132)
330 CALL HCHAR(ROW+2,18,133)
340 CALL HCHAR(ROW+3,12,134)
350 CALL HCHAR(ROW+3,13,135)
360 CALL HCHAR(ROW+3,14,136)
370 CALL HCHAR(ROW+3,15,137)
380 CALL HCHAR(ROW+3,18,138)
390 CALL HCHAR(ROW+4,12,139)
400 CALL HCHAR(ROW+4,14,140)
410 CALL HCHAR(ROW+4,15,141)
420 CALL HCHAR(ROW+4,16,142)
430 CALL HCHAR(ROW+4,17,143)
440 CALL HCHAR(ROW+4,18,144)

AdvancedGraphicsTechniques andAnimation 53

450 CALL HCHAR(ROW+5,12,145)
460 CALL HCHAR(ROW+5,13,146)
470 CALL HCHAR(ROW+5,15,147)
480 CALL HCHAR(ROW+5,16,148)
490 CALL HCHAR(ROW+5,17,149)
500 CALL HCHAR(ROW+6,12,150)
510 CALL HCHAR(ROW+6,13,151)
520 CALL HCHAR(ROW+6,14,152)
530 CALL HCHAR(ROW+6,15,153)
540 CALL HCHAR(ROW+6,16,154)
550 PRINT " PRESS X TO EXIT"

560 CALL KEY(0,KEY,STATUS)
570 IF (KEY<>88)*(KEY<>120)THEN 560
580 CALL CLEAR

590 END

600 DATA 000000000000007F

610 DATA 00000000000000FF

620 DATA 00000000000000FF

630 DATA 00000000000000FF

640 DATA 0000000000000080

650 DATA 0001020408102040

660 DATA C040404040404040

670 DATA 0102040810204080

680 DATA 8080808080808080

690 DATA 0001020408102040

700 DATA 8000000000000000

710 DATA 4040404040404040

720 DATA 0102040810204080

730 DATA 8080808080808080

740 DATA FF80808080808080

750 DATA FF00000000000000

760 DATA FF40404040404040

770 DATA FF01010101010101

780 DATA 8080808080808080

790 DATA 8080808080808080

800 DATA 4040404040407F80

810 DATA 010101010101FF01

820 DATA 000000000000FF00

830 DATA 000000000000FF01

840 DATA 8080808080808000

850 DATA 8080808080808080

860 DATA 0102040810204080

870 DATA 0101010101010101

880 DATA 0000000000000001

890 DATA 0204081020408000

900 DATA 8182848890A0C0FF

910 DATA 00000000000000FF

920 DATA 00000000000000FF

930 DATA 01010101010101FF

940 DATA 0204081020408000

Explanation of Program

10-90 Clear screen, center title, and display introduction screen
100-200 Set screen color. Define characters. Set color for characters

210-240 Draw top row of cube

54 T1-99/4A GraphicsandSounds

Fig. 4-3. Cube.

250-280 Draw second-from-top row
290-330 Draw third-from-top row
340-380 Draw another row

390-440 Draw another row

450-490 Draw another row

500-540 Draw last row

550-590 Wait for you to exit by pressing X key, then exit program
600-940 Charactersneeded to complete cube

EXPANDING FLYING SAUCERS

Younow have the basic knowledge to createsimple and complexgraph
ics characters. Every character the programs have created so far was sta
tionary on the screen. The program shown in Listing 4-4 displays three
flying saucers; it also designates keys you can use to manually expandand
contract the flying saucers. You will be able to expand them vertically,
horizontally, or in both directions. The flying saucers are displayed in
different colors when they are expanded; they return to their original color
when they contract to their normal size.

In order to expand and contract graphics characters, you will need to
design them twice: as they will look when they're expanded, and as they
look when contracted. Place these hexadecimal notations in different

locations. When you need to expand or contract the flying saucers, use

Advanced Graphics Techniques andAnimation 55

these designs. When you run the program, your screen will look similar
to Fig. 4-4.

Listing 4-4

10 REM EXPANDING FLYING SAUCERS

20 TT$="**EXPANDING FLYING SAUCERS**"
30 CALL CLEAR

40 PRINT TT?
50 PRINT :::" THIS PROGRAM ALLOWS THE":::"USER TO

EXPAND THREE FLYING":::"SAUCERS BY USING THE"

60 PRINT ::"FUNCTION KEY."

70 PRINT ::::" PRESS ANY KEY TO BEGIN"

80 CALL KEY(3,KEY,STATUS)
90 IF STATUS<=0 THEN 80

100 CALL CLEAR

110 VEXP=-1

120 HEXP=-1

130 PRINT " SETTING UP GRAPHICS...":::::::::::

140 FOR CHSET=120 TO 122

150 READ CODES
160 CALL CHAR(CHSET,CODE?)
170 NEXT CHSET

180 FOR CHSET=128 TO 132

190 READ CODE?

200 CALL CHAR(CHSET,CODE?)
210 NEXT CHSET

220 FOR CHSET=136 TO 141

230 READ CODE$
240 CALL CHAR(CHSET,CODE?)
250 NEXT CHSET

260 FOR CHSET=144 TO 153

270 READ CODE?
280 CALL CHAR(CHSET,CODE?)
290 NEXT CHSET

300 CALL COLOR(12,2,l)
310 CALL COLOR(13,5,l)
320 CALL COLOR(14,7,l)
330 CALL COLOR(15,13,l)
340 CALL COLOR(16,13,l)
350 CALL SCREEN(16)
360 CALL CLEAR

370 CALL HCHAR(5,8,120)
380 CALL HCHAR(10,24,121)
390 CALL HCHAR(14,11,122)
400 GOTO 1430

410 FOR 1=1 TO LEN(MSG?)
420 CALL HCHAR(ROW,COL+I,ASC(SEG?(MSG?,I,l)))
430 NEXT I

440 RETURN

450 REM EXPANDS/CONTRACTS SAUCERS VERTICALLY
460 IF (VEXP=1)*(HEXP=1)THEN 590
470 IF (VEXP=1)*(HEXP=-1)THEN 700
480 IF (VEXP=-1)*(HEXP=1)THEN 810
490 CALL HCHAR(5,8,128)

cont. on next page

56 TI-99/4A Graphics and Sounds

Listing 4-4—cont.

500 CALL HCHAR(5,9,32)
510 CALL HCHAR(10,24,129)
520 CALL HCHAR(11,24,130)
530 CALL VCHAR(10,25,32,2)
540 CALL HCHAR(14,11,131)
550 CALL HCHAR(15,11,132)
560 CALL VCHAR(14,12,32,2)
570 VEXP=-VEXP

580 RETURN

590 REM CONTRACT SAUCERS THAT ARE ENLARGED IN BOTH

DIRECTION

600 CALL HCHAR(5,8,136)
610 CALL HCHAR(5,9,137)
620 CALL HCHAR(10,24,138)
630 CALL HCHAR(10,25,139)
640 CALL HCHAR(11,24,32,2)
650 CALL HCHAR(14,11,140)
660 CALL HCHAR(14,12,141)
670 CALL HCHAR(15,11,32,2)
680 VEXP=-VEXP

690 RETURN

700 REM CONTRACT SAUCERS BACK TO NORMAL SIZE

710 CALL HCHAR(5,8,120)
720 CALL HCHAR(5,9,32)
730 CALL HCHAR(10,24,121)
740 CALL HCHAR(10»25,32)
750 CALL HCHAR(11,24,32,2)
760 CALL HCHAR(14,11,122)
770 CALL HCHAR(14,12,32)
780 CALL HCHAR(15,11,32,2)
790 VEXP=-VEXP

800 RETURN

810 REM EXPAND SAUCERS THAT ARE HORIZ ENLARGED

820 CALL HCHAR(5,8,144)
830 CALL HCHAR(5,9,145)
840 CALL HCHAR(10,24,146)
850 CALL HCHAR(10,25,147)
860 CALL HCHAR(11,24,148)
870 CALL HCHAR(11,25,149)
880 CALL HCHAR(14,11,150)
890 CALL HCHAR(14,12,151)
900 CALL HCHAR(15,11,152)
910 CALL HCHAR(15,12,153)
920 VEXP=-VEXP

930 RETURN

940 REM EXPANDS/CONTRACTS SAUCERS HORIZONTALLY
950 IF (VEXP=1)*(HEXP=1)THEN 1080
960 IF (VEXP=1)*(HEXP=-1)THEN 1190
970 IF (VEXP=-1)*(HEXP=1)THEN 1320
980 CALL HCHAR(5,8,136)
990 CALL HCHAR(5,9,137)
1000 CALL HCHAR(10,24,138)
1010 CALL HCHAR(10,25,139)
1020 CALL HCHAR(11,24,32,2)

AdvancedGraphics Techniques andAnimation 57

1030 CALL HCHAR(14,11,140)
1040 CALL HCHAR(14,12,141)
1050 CALL HCHAR(15,11,32,2)
1060 HEXP=-HEXP

1070 RETURN

1080 REM BOTH ARE CURRENTLY EXPANDED

1090 CALL HCHAR(5,8,128)
1100 CALL HCHAR(5,9,32)
1110 CALL HCHAR(10,24,129)
1120 CALL HCHAR(11,24,130)
1130 CALL VCHAR(10,25,32,2)
1140 CALL HCHAR(14,11,131)
1150 CALL HCHAR(15,11,132)
1160 CALL VCHAR(14,12,32,2)
1170 HEXP=-HEXP

1180 RETURN

1190 REM SAUCERS ARE CURRENTLY EXPANDED VERT NOT

HORIZ

1200 CALL HCHAR(5,8,144)
1210 CALL HCHAR(5,9,145)
1220 CALL HCHAR(10,24,146)
1230 CALL HCHAR(10,25,147)
1240 CALL HCHAR(11,24,148)
1250 CALL HCHAR(11,25,149)
1260 CALL HCHAR(14,11,150)
1270 CALL HCHAR(14,12,151)
1280 CALL HCHAR(15,11,152)
1290 CALL HCHAR(15,12,153)
1300 HEXP=-HEXP

1310 RETURN

1320 REM SAUCERS ARE NORMAL IN VERT BUT ARE HORIZ

ENLARGED

1330 CALL HCHAR(5,8,120)
1340 CALL HCHAR(5,9,32)
1350 CALL HCHAR(10,24,121)
1360 CALL HCHAR(10,25,32)
1370 CALL HCHAR(11,24,32,2)
1380 CALL HCHAR(14,11,122)
1390 CALL HCHAR(14,12,32)
1400 CALL HCHAR(15,11,32,2)
1410 HEXP=-HEXP

1420 RETURN

1430 MSG?="FCTN+1 - EXAND/CONTRACT"
1440 ROW=18

1450 COL=4

1460 GOSUB 410

1470 MSG?="VERTICALLY"
1480 ROW=19

1490 COL=13

1500 GOSUB 410

1510 MSG?="FCTN+2 - EXPAND/CONTRACT"
1520 ROW=21

1530 COL=4

1540 GOSUB 410

1550 MSG?="HORIZONTALLY"
1560 ROW=22

1570 COL=13

cont. on next page

58 TI-99I4AGraphics and Sounds

Listing 4-4—cont.

1580 GOSUB 410

1590 MSG?="PRESS X TO EXIT"
1600 ROW=24

1610 COL=7

1620 GOSUB 410

1630 CALL KEY(3,KEY,STATUS)
1640 IF STATUS=0 THEN 1630

1650 IF KEY=88 THEN 1690

1660 IF (KEY<3)+(KEY>4)THEN 1630
1670 ON KEY-2 GOSUB 450,940

1680 GOTO 1630

1690 CALL CLEAR

1700 END

1710 REM SMALL SAUCERS

1720 DATA 0000187EE77E0000

1730 DATA 003C7EE77E3C0000

1740 DATA 24183CE73C000000

1750 REM EXPAND SAUCERS - VERTICALLY

1760 DATA 18187E7EE7E77E7E

1770 DATA 0000003C3C7E7EE7

1780 DATA E77E7E3C3C000000

1790 DATA 00422418183C3CE7

1800 DATA E73C3C0000000000

1810 REM EXPAND SAUCERS - HORIZONTALLY

1820 DATA 0000033FFC3F0000

1830 DATA 0000C0FC3FFC0000

1840 DATA 000F3FFC3F0F0000

1850 DATA 00F0FC3FFCF00000

1860 DATA 0804030FFC0F0000

1870 DATA 1020C0F03FF00000

1880 REM EXPAND VERTICAL SAUCER TO HORIZ AND HORIZ TO

VERT

1890 DATA 03033F3FFCFC3F3F

1900 DATA C0C0FCFC3F3FFCFC

1910 DATA 0000000F0F3F3FFC

1920 DATA 000000F0F0FCFC3F

1930 DATA FC3F3F0F0F000000

1940 DATA 3FFCFCF0F0000000

1950 DATA 00300C03030F0FFC

1960 DATA 000C30C0C0F0F03F

1970 DATA FC0F0F0000000000

1980 DATA 3FF0F00000000000

Explanation of Program

10-100 Clear screen, center title, and display introduction screen
110-120 Set vertical and horizontal expansion flags to indicate cur

rent size of saucers as normal (small saucers in both
directions)

130-290 Read and set up graphics characters
300-360 Set colors for each of saucers

AdvancedGraphics Techniques andAnimation 59

Fig. 4-4. Expanding Flying Saucers.

370-400 Display three original saucers at different location; go to
main routine for valid key

410-440 Display messagebeginning at any row and column
460 Expandandcontract saucers vertically. Checkto see if both

saucers are already expanded; if so, go to line 590
470 Check to see if saucers are expanded vertically but not

horizontally; if so, go to line 700
480 Check to see if saucers are expanded horizontally but not

vertically; if so, go to line 810
490-580 Expand three saucers vertically and sets flag to indicate

vertical expansion
590-690 Contract expanded saucers in both directions
700-800 Contract saucers that are vertically but not horizontally

expanded (saucers should be back to normal size)
810-930 Vertically expand saucers that are currently horizontally

expanded
950 Expand and contract saucers horizontally. Check to see if

they are expanded in both directions. If so, go to line 1080
960 Check to see if saucers are vertically but not horizontally

expanded. If so, go to line 1190
970 Check to see if saucers are horizontally but not vertically

expanded. If so, go to line 1320
980-1070 Horizontally expandoriginalsize saucers

60 T1-99I4A Graphics and Sounds

1080-1180 Horizontally contract saucers (they were expanded in both
directions)

1190-1310 Horizontally expand saucers (they were expanded
vertically)

1320-1420 Horizontally contract saucers. Return them to normal size
1430-1620 Display keys used to expand/contract saucers. Display the

key used to exit program
1630-1680 Wait for valid key to be pressed. Valid keys are FCTN + 1,

FCTN + 2, andX

1690-1700 Exit program
1710-1740 Data for original size saucers. Each line contains hexade

cimal notation for a saucer

1750-1800 Data for vertically expanding saucers
1810-1870 Data for horizontally expanding saucers
1880-1980 Data for expanding saucers that have been expanded in

either but not both directions

BASIC ANIMATION

We can enlarge or contract graphics characters. Can we move them
around on the screen? In fact, we can do just that. The effect of moving
objects (graphics or normal characters) around on the screen is called
animation. The most basic kind of animation is moving characters across
the screen. It sounds easy, and it is. There is only one thing to remember:
as you move something to a new screen location, you have to erase the
object at the old location. You may think erasing and redisplaying objects
will be slow and cumbersome, but the computer does this so quickly, you
can't tell that that is what is happening.

FLYING SAUCER

In the last program, three flying saucers were stationary. Let's take one
of them and make it move across the screen. The program shown in Listing
4-5 does that. To make it more interesting, I've added some noises so
you'll be able to hear as well as see the flying saucer. When you run the
program, your screen will look similar to Fig. 4-5.

Listing 4-5

10 REM FLYING SAUCER

20 TT$="** FLYING SAUCER **"
30 CALL CLEAR

40 PRINT TAB(INT((29-LEN(TT$))/2));TT$

AdvancedGraphics TechniquesandAnimation 61

50 PRINT :::" THIS PROGRAM DEMONSTRATES ANIMATION.":

60 PRINT " IT MOVES A FLYING SAUCER ACROSS THE

SCREEN."::::::

70 PRINT " PRESS ANY KEY TO BEGIN"

80 CALL KEY(0,KEY,STATUS)
90 IF STATUS<=0 THEN 80

100 CALL SCREEN(12)
110 CALL CLEAR

120 ROW=10

130 CALL COLOR(13,2,l)
140 CALL CHAR(128,"0000187EFF7E0000")
150 FOR COL=2 TO 32

160 CALL HCHAR(ROW,COL,128)
170 CALL SOUND(-200,790,10,-6,12)
180 FOR 1=1 TO 50

190 NEXT I

200 CALL HCHAR(ROW,COL,32)
210 NEXT COL

220 CALL CLEAR

230 PRINT "WANT TO SEE FLYING SAUCER AGAIN? (Y/N)"
240 CALL KEY(0,KEY,STATUS)
250 IF (KEY<>89)*(KEY<>121)*(KEY<>78)*(KEYO110)THEN

240

260 IF (KEY=89)+(KEY=121)THEN 100
270 CALL CLEAR

280 END

Fig. 4-5. Flying Saucer.

Explanation of Program

10-90 Clear screen, center title and display introduction screen
100-120 Set screen color and starting row number for displaying

saucer

62 T1-99I4A Graphics andSounds

130 Set color of saucer

140 Define shape of saucer
150-190 Start loop to movesaucerone columnat a time, making noise

as it moves

200 Erase saucer at first location

210 Repeat process
220-280 Ask if you want to see sauceragain. If not, exit program

SAUCERS WITH TRIANGLES

The program shown in Listing 4-6 combines two sets of animation.
It adds small triangles to the program shown in Listing 4-5. As the
flying saucer moves across the screen, random triangles are displayed at
the same time. When you run the program, your screen will look similar
to Fig. 4-6.

Listing 4-6

10 REM SAUCERS WITH TRIANGLES

20 TT$="** SAUCERS & TRIANGLES **"
30 CALL CLEAR

40 PRINT TAB(INT((29-LEN(TT$))/2));TT$
50 PRINT :::" THIS PROGRAM DISPLAYS":::"TRIANGLES AS

A FLYING SAUCER":::"MOVES ACROSS THE SCREEN."

60 PRINT ::::::" PRESS ANY KEY TO BEGIN"

70 CALL KEY(3,KEY,STATUS)
80 IF STATUS<=0 THEN 70

90 BT=-1

100 RN=2

110 CN=1

120 CALL CHAR(128,"00000018244281FF")
130 CALL CHAR(136,"0000187EE77E0000")
140 CALL COLOR(13,7,l)
150 CALL COLOR(14,2,l)
160 CALL SCREEN(16)
170 CALL CLEAR

180 RANDOMIZE

190 FOR 1=1 TO INT(RND*5)+3
200 ROW=INT(RND*22)+l
210 COL=INT(RND*28)+3
220 CALL HCHAR(ROW,COL,128)
230 NEXT I

240 CN=CN+1

250 CALL GCHAR(RN,CN,WH)
260 IF (WH=128)*(BT=-1)THEN 370
270 IF (WH=128)THEN 410
280 CALL HCHAR(RN,CN,136)
290 IF BT<>1 THEN 330

300 CALL HCHAR(RN-1,CN-1,128)
310 BT=-1

320 GOTO 340

Advanced Graphics Techniques andAnimation 63

330 CALL HCHAR(RN-1,CN-1,32)
340 RN=RN+1

350 IF RN>24 THEN 460

360 GOTO 190

370 BT=1

380 CALL HCHAR(RN,CN,136)
390 CALL HCHAR(RN-1,CN-1,32)
400 GOTO 340

410 REM PUT TRIANGLE IN BACK & THERE IS ONE IN FRONT

OF SAUCER

420 CALL HCHAR(RN,CN,136)
430 CALL HCHAR(RN-1,CN-1,128)
440 BT=-1

450 GOTO 340

460 CALL SCREEN(4)
470 CALL CLEAR

480 PRINT "WANT TO SEE FLYING SAUCER AND TRIANGLES

AGAIN? (Y/N)"
490 CALL KEY(3,KEY,STATUS)
500 IF (KEY<>89)*(KEY<>78)THEN 490
510 IF KEY=89 THEN 90

520 CALL CLEAR

530 END

Fig. 4-6. Saucers with THangles.

Explanation of Program

10-80 Clear screen, center title, and display introduction screen
90-170 Define shape of saucer and of triangle. Set color for charac

ters as well as screen

180-230 Display anywhere from 3 to 8 triangles at random locations
240-270 Check to see if next saucer location already has a triangle. If

64 TI-99/4A Graphics and Sounds

so, remember location so triangle can be re-displayed at same
location after saucer moves

280-320 Display saucer with triangle behind it if necessary
330-360 If triangle need not be placed behind saucer, blank out space.

Check to see if saucer has reached screen's outer edge. If not,
move again

370-400 Move saucer and blank out location where it came from

410-450 Move saucer and re-display triangle when saucer is moved
460-530 Ask if you want to see saucer and triangles again. If not, exit

program

SAUCER THROUGH CUBE

Listing 4-7 is similar to the previous program, but the saucer will
fly through the three-dimensional cube that was drawn at the beginning of
this chapter. When you run the program, your screen will look similar to
Fig. 4-7.

Listing 4-7

10 REM SAUCER THROUGH CUBE

20 TT$="** SAUCER THROUGH CUBE **"
30 CALL CLEAR

40 PRINT TAB(INT((29-LEN(TT$))/2));TT$
50 PRINT :::" THIS PROGRAM PASSES A ":::"FLYING

SAUCER THROUGH A":::"THREE-DIMENSIONAL CUBE."

60 PRINT ::::::" PRESS ANY KEY TO BEGIN"

70 CALL KEY(0,KEY,STATUS)
80 IF STATUS<=0 THEN 70

90 CALL SCREEN(16)
100 CALL CLEAR

110 RESTORE

120 PRINT "PREPARING THE GRAPHICS...":::::::::::

130 CALL CHAR(112,"0000187EE77E0000")
140 CALL COLOR(ll,7,l)
150 FOR CH=0 TO 34

160 READ CD$
170 CALL CHAR(CH+120,CD$)
180 NEXT CH

190 FOR CHARSET=12 TO 16

200 CALL COLOR(CHARSET,2,1)
210 NEXT CHARSET

220 CALL CLEAR

230 ROW=8

240 FOR COL=14 TO 18

250 CALL HCHAR(ROW,COL,106+COL)
260 NEXT COL

270 CALL HCHAR(ROW+l,13,125)
280 CALL HCHAR(ROW+l,14,126)
290 CALL HCHAR(ROW+l,17,127)

AdvancedGraphics Techniques andAnimation 65

300 CALL HCHAR(ROW+l,18,128)
310 CALL HCHAR(ROW+2,12,129)
320 CALL HCHAR(ROW+2,13,130)
330 CALL HCHAR(ROW+2,14,131)
340 CALL HCHAR(ROW+2,16,132)
350 CALL HCHAR(ROW+2,18,133)
360 CALL HCHAR(ROW+3,12,134)
370 CALL HCHAR(ROW+3,13,135)
380 CALL HCHAR(ROW+3,14,136)
390 CALL HCHAR(ROW+3,15,137)
400 CALL HCHAR(ROW+3,18,138)
410 CALL HCHAR(ROW+4,12,139)
420 CALL HCHAR(ROW+4,14,140)
430 CALL HCHAR(ROW+4,15,141)
440 CALL HCHAR(ROW+4,16,142)
450 CALL HCHAR(ROW+4,17,143)
460 CALL HCHAR(R0W+4,18,144)
470 CALL HCHAR(ROW+5,12,145)
480 CALL HCHAR(ROW+5,13,146)
490 CALL HCHAR(ROW+5,15,147)
500 CALL HCHAR(ROW+5,16,148)
510 CALL HCHAR(ROW+5,17,149)
520 CALL HCHAR(ROW+6,12,150)
530 CALL HCHAR(ROW+6,13,151)
540 CALL HCHAR(ROW+6,14,152)
550 CALL HCHAR(ROW+6,15,153)
560 CALL HCHAR(ROW+6,16,154)
570 C0L=2

580 CALL GCHAR(13,C0L,WH)
590 IF WHO32 THEN 670

600 CALL HCHAR(13,COL,112)
610 CALL HCHAR(13,COL-l,32)
620 C0L=C0L+1

630 IF COL>32 THEN 920

640 FOR DELAY=1 TO 75

650 NEXT DELAY

660 GOTO 580

670 CALL HCHAR(13,COL,112)
680 CALL HCHAR(13,COL-l,32)
690 FOR DELAY=1 TO 75

700 NEXT DELAY

710 COL=COL+l

720 CALL GCHAR(13,COL,WH2)
730 CALL HCHAR(13,COL,112)
740 CALL HCHAR(13,C0L-1,WH)
750 FOR DELAY=1 TO 75

760 NEXT DELAY

770 COL=COL+l

780 IF WH2=32 THEN 600

790 CALL GCHAR(13,COL,WH3)
800 CALL HCHAR(13,COL,112)
810 CALL HCHAR(13,COL-l,WH2)
820 FOR DELAY=1 TO 7 5

830 NEXT DELAY

840 COL=COL+l

850 IF WH3=32 THEN 580

860 CALL HCHAR(13,COL,112)

cont. on next page

66 T1-99I4A GraphicsandSounds

Listing 4-7—cont.

870 CALL HCHAR(13,COL-l,WH3)
880 COL=COL+l

890 FOR DELAY=1 TO 75

900 NEXT DELAY

910 GOTO 580

920 CALL CLEAR

930 PRINT "WANT TO SEE SAUCER THROUGH CUBE AGAIN?
(Y/N)"

940 CALL KEY(3,KEY,STATUS)
950 IF (KEY<>89)*(KEY<>78)THEN 940
960 IF KEY=89 THEN 220

970 CALL CLEAR

980 END

990 DATA 000000000000007F

1000 DATA 00000000000000FF

1010 DATA 00000000000003FF

1020 DATA 00000000000000FF

1030 DATA 0000000000000080

1040 DATA 0001020408102040

1050 DATA C040404040404040

1060 DATA 0102040810204080

1070 DATA 8080808080808080

1080 DATA 0001020408102040

1090 DATA 8000000000000000

1100 DATA 4040404040404040

1110 DATA 0102040810204080

1120 DATA 8080808080808080

1130 DATA FF80808080808080

1140 DATA FF00000000000000

1150 DATA FF40404040404040

1160 DATA FF01010101010101

1170 DATA 8080808080808080

1180 DATA 8080808080808080

1190 DATA 4040404040407F80

1200 DATA 010101010101FF01

1210 DATA 000000000000FF00

1220 DATA 000000000000FF01

1230 DATA 8080808080808000

1240 DATA 8080808080808080

1250 DATA 0102040810204080
1260 DATA 0101010101010101

1270 DATA 0000000000000001

1280 DATA 0204081020408000

1290 DATA 8182848890A0C0FF

1300 DATA 00000000000000FF

1310 DATA 00000000000000FF

1320 DATA 01010101010101FF

1330 DATA 0204081020408000

Explanation of Program

10-80 Clear screen, center title, and display introduction screen
90-120 Set color of screen and display message

Advanced Graphics Techniquesand Animation 67

Fig. 4-7. Saucer through Cube.

130-220 Define saucer and three-dimsional cube. Set color for saucer

and each section of cube

230-560 Draw cube

570-910 Move saucer across screen. If saucer crosses cube, remem

ber to re-display pieces of cube when saucer moves on
920-980 Ask if you want to see saucer and cube again. If not, exit

program

990-1330 Data for three-dimensional cube

BOMBARDIER

The program shown in Listing 4-8 combines two different kinds of
animation with music to simulate a computer-type game. The program
includes a bomber airplane which appears to fly across the screen and drop
a bomb. Sounds effects include the engine of the plane as well as the sound
of the bomb dropping, and an explosion when the bomb "hits the ground."
When you run the program, your screen will look similar to Fig. 4-8.

Listing 4-8

10 REM BOMBARDIER

20 TTS="** BOMBARDIER **"

30 CALL CLEAR

40 PRINT TAB(INT((29-LEN(TT$))/2));TT$

cont. on next page

68 TI-99/4AGraphicsandSounds

Listing 4-8—cont.

50 PRINT :::" THIS PROGRAM SHOWS A"::"BOMBER DROPPING

A BOMB"::"WHILE FLYING ACROSS THE":

60 PRINT :"SCREEN."::" IT COMBINES ANIMATION

WITH"::"SOUNDS. THESE ARE THE BASIC":
70 PRINT :"INGREDIENTS FOR FORMING"::"GAMES."

80 PRINT ::" PRESS ANY KEY TO BEGIN"

90 CALL KEY(3,KEY,STATUS)
100 IF STATUS<=0 THEN 90

110 ROW=4

120 COL=l

130 CALL CHAR(128,"008080C0FCFFFF00")
140 CALL CHAR(129,"0038383838381000")
150 CALL CHAR(130,"00925438FE385492")
160 CALL COLOR(13,2,l)
170 CALL SCREEN(6)
180 CALL CLEAR

190 COL=COL+l

200 IF COL>32 THEN 410

210 CALL HCHAR(4,COL,128)
220 CALL HCHAR(4,COL-l,32)
230 CALL SOUND(500,-7,22)
240 IF COL<5 THEN 320

250 IF ROW>24 THEN 320

260 RQW=ROW+l

270 IF ROW>24 THEN 350

280 CALL HCHAR(ROW,COL,129)
290 CALL SOUND(-150,1000-COL*10,32-COL)
300 CALL HCHAR(ROW-l,COL-l,32)
310 GOTO 180

320 FOR DELAY=1 TO 20

330 NEXT DELAY

340 GOTO 190

350 CALL HCHAR(24,COL,130)
360 FOR 1=1 TO 29 STEP 7

370 CALL SOUND(I*10,110,1+1,-5,1)
380 NEXT I

390 CALL HCHAR(24,COL,32)
400 GOTO 190

410 CALL CLEAR

420 PRINT "WANT TO SEE THE BOMBARDIER AGAIN? (Y/N)"
430 CALL KEY(3,KEY,STATUS)
440 IF (KEY<>89)*(KEY<>78)THEN 430
450 IF KEY=89 THEN 110

460 CALL CLEAR

470 END

Explanation of Program

10-100 Clear screen, center title, and display introduction screen
110-180 Define shape of plane, bomb, and explosion. Set screen color
190-270 Move plane across screen with engine noise
280-310 Display bomb dropping and play music
320-340 Delay routine

AdvancedGraphicsTechniques andAnimation 69

Fig. 4-8. Bombardier.

350-400 Display explosion followed by explosion noise
410-470 Ask if you want to see bombardier again. If not, exit program

SUMMARY

It is possible to combine various kinds of graphics with one another.
Text may be added to make the programs more interesting, informative,
and entertaining. Experiment with different combinations to find the ones
most useful to you. Because the TI-99/4A allows you to define graphics
characters, there is almost no limit to the number of exciting and different
pictures, graphs, and games you'll be able to display on your computer.

Chapter 5

Music on the TI-99/4A

We have already explored some of the potential of sounds and noises on
the TI-99/4A. We can also produce music. In Chapter 3, we presented
some defintions that are necessary in working with music. You may find
it helpful to refer to those definitions.

A keyword often used in programming music is the DATA statement.
The DATA statement is used for storing numbers to be interpreted later as
note values (frequencies). We will include, in our DATA statements, the
note to play and the duration for that note. DATA statements are usually
written first, though program lines written later may have lower line num
bers and appear earlier in the program than the DATA statements.

You must "translate" the musical notes into numbers that the TI-99/4A

can recognize as frequencies for the notes. (Appendix E gives a listing of
the frequencies that can be used on the TI-99/4A with their corresponding
notes.) I took the old song, "Swanee River" and converted it into the
DATA statements shown in Listing 5-1.

Listing 5-1

1000 DATA 1000,329,250,293,250,261,250,329,250,293,
500,261

1010 DATA 500,523,250,440,500,523,1000,392,500,329,
500,261

cont. on next page

71

72 TI-99I4AGraphics andSounds

Listing 5-1—cont.

1020 DATA 2000,293,1000,329,250,293,250,261,250,329,
250,293

1030 DATA 500,261,500,523,250,440,500,523,500,392,250,
329

1040 DATA 250,261,500,293,500,293,2000,261,1000,493,
250,523

1050 DATA 500,587,500,392,500,392,250,440,500,392,500,
523

1060 DATA 500,523,500,440,500,349,500,440,2000,392,
1000,329

1070 DATA 250,293,250,261,250,329,250,293,500,261,500,
523

1030 DATA 250,440,500,523,500,392,250,329,250,261,500,
293

1090 DATA 250,293,250,293,2000,261
1100 DATA 0,0

SWANEE RIVER

A DATA statement consists of two parts: duration and frequency. For
instance, the first sections of the DATAstatement the computer reads make
the duration 1000 and the frequency 329. Duration corresponds to how
long in seconds (where 1000 is equal to 1 second) the computer is to play
that note.

For the computer to play the music, other statements must be added
to the program. The complete "Swanee River" program is given in
Listing 5-2.

Listing 5-2

10 REM SWANEE RIVER

20 CALL CLEAR

30 TT$="** SWANEE RIVER **"
40 PRINT TAB(INT((29-LEN(TTS))/2));TTS
50 PRINT : : : " THIS PROGRAM PLAYS SWANEE"::"RIVER.":::

60 PRINT :::::" PRESS ANY KEY TO BEGIN"

70 CALL KEY(0,KEY,STATUS)
80 IF STATUS<=0 THEN 70

90 CALL CLEAR

100 PRINT " PLAYING SWANEE RIVER..."::::::::::::

110 RESTORE

120 READ DUR,FREQ

130 IF (DUR=0)+(FREQ=0)THEN 160
140 CALL S0UND(DUR,FREQ,5)
150 GOTO 120

160 FOR 1=1 TO 800

170 NEXT I

Music on the TI-99/4A 73

180 CALL CLEAR

190 PRINT "PLAY SWANEE RIVER AGAIN? (Y/N)"
200 CALL KEY(0,KEY,STATUS)
210 IF (KEY<>89)*(KEY<>121)*(KEY<>78)*(KEY<>110)THEN

200

220 IF (KEY=89)+(KEY=121)THEN 90
230 CALL CLEAR

240 END

1000 DATA 1000,329,250,293,250,261,250,329,250,293,
500,261

1010 DATA 500,523,250,440,500,523,1000,392,500,329,
500,261

1020 DATA 2000,293,1000,329,250,293,250,261,250,329,
250,293

1030 DATA 500,261,500,523,250,440,500,523,500,392,250,
329

1040 DATA 250,261,500,293,500,293,2000,261,1000,493,
250,523

1050 DATA 500,587,500,392,500,392,250,440,500,392,500,
523

1060 DATA 500,523,500,440,500,349,500,440,2000,392,
1000,329

1070 DATA 250,293,250,261,250,329,250,293,500,261,500,
523

1080 DATA 250,440,500,523,500,392,250,329,250,261,500,
293

1090 DATA 250,293,250,293,2000,261
1100 DATA 0,0

Explanation of Program

10-80 Clear screen, center title, and display introduction screen
90-110 Display message that music is playing

120-150 Read duration and frequency from DATA statement and
play that note

160-240 When music is done, ask if you want to hear "Swanee
River" again. If not, exit program

1000-1100 The duration and frequencies for notes used in "Swanee
River"

SOUND DEVELOPMENT

Sounds, as we have seen, are easy to make. The most useful knowledge,
though, comes from experimenting with different frequencies and different
durations. To help you develop your ability to program your computer for
sounds, a sounds development program is given in Listing 5-3. This pro
gram helps you establish many parameters for the CALL SOUND routine.
When you run the program, your screen will look similar to Fig. 5-1.

74 TI-99I4A Graphics and Sounds

Listing 5-3

10 REM SOUND DEVELOPMENT

20 TT$="** SOUND DEVELOPMENT **"
30 CALL CLEAR

40 PRINT TAB(INT((29-LEN(TT$))/2));TT$
50 PRINT :::" THIS PROGRAM ALLOWS THE"::"USER TO

CREATE A NOISE,"::
60 PRINT "TONE OR A MUSICAL NOTE."::::::::

70 PRINT " PRESS ANY KEY TO BEGIN"

80 CALL KEY(0,KEY,STATUS)
90 IF STATUS<=0 THEN 80

100 CALL CLEAR

"WHAT TYPE OF SOUND?":

1) NOISE"::" 2) MUSICAL
110 PRINT TAB(4);
120 PRINT

NOTE":

130 PRINT

140 PRINT

3) EXIT PROGRAM":::
SELECT (1-3)":::::

150 CALL KEY(0,KEY,STATUS)
160 IF (KEY<49)+(KEY>51)THEN 150
170 ON KEY-48 GOTO 290,450,700

180 REM ENTER DURATION AND VOLUME

190 CALL CLEAR

200 PRINT "HOW LONG SHOULD I PLAY THIS":

(1-4250, 1000=1 SEC)"
210 INPUT DUR

220 IF (DUR<1)+(DUR>4250)THEN 190
230 CALL CLEAR

240 PRINT "PLAY AT WHAT VOLUME?"

250 PRINT "0 (LOUDEST), 30 (QUIETEST)"
260 INPUT VOL

270 IF (VOL<0)+(VOL>30)THEN 230
280 RETURN

290 REM NOISE

300 CALL CLEAR

310 TYPE$="NOISE"
320 PRINT " NOISE MENU":::

330 PRINT " 1) PERIODIC NOISE (TYPE 1)":
NOISE (TYPE 2)"

340 PRINT " 3) PERIODIC NOISE (TYPE 3)":

"SOUND?

2) PERIODIC

4) PERIODIC

NOISE (VARIES
SPECIFIED)"

350 PRINT :" 5) WHITE NOISE (TYPE 1)'
(TYPE 2)":" 7) WHITE NOISE (TYPE 3)":

360 PRINT " 8) WHITE NOISE (VARIES WITH FREQ. OF
THIRD TONE SPECIFIED)"::

370 PRINT " SELECT (1-8)"
380 CALL KEY(0,KEY,STATUS)
390 IF (KEY<49)+(KEY>56)THEN 380
400 ON KEY-48 GOSUB 740,760,780,800,820,840,860,880
410 FREQ=-(KEY-48)
420 GOSUB 180

430 GOSUB 550

440 GOTO 100

450 REM MUSICAL NOTE

460 CALL CLEAR

470 PRINT "ENTER THE FREQUENCY"

WITH FREQ. OF THIRD TONE

6) WHITE NOISE

Music on the TI-99I4A 75

480 PRINT :"(110 TO 44733)"
490 INPUT FREQ

500 IF (FREQ<110)+(FREQ>44733)THEN 450
510 TYPE$="MUSICAL NOTE"
520 GOSUB 180

530 GOSUB 550

540 GOTO 100

550 REM PRINT INFORMATION

560 CALL CLEAR

570 PRINT "YOUR SOUND: ";TYPE$
580 IF SEG$(TYPE$,1,1)="M" THEN 600
590 PRINT ::" ";TN$
600 PRINT :::"FREQUENCY = ";FREQ
610 PRINT :"DURATION = ";DUR
620 PRINT :"VOLUME = ";VOL
630 PRINT ::::"PLAYING SOUND..."

640 CALL SOUND(DUR,FREQ,VOL)
650 IF DUR<=1100 THEN $70
660 DUR=INT(DUR/2)
670 FOR DELAY=1 TO DUR

680 NEXT DELAY

690 RETURN

700 REM EXIT PROGRAM

710 CALL CLEAR

720 END

730 REM GET TYPE OF NOISE

740 TNS="PERIODIC NOISE (TYPE 1)"
750 RETURN

760 TN$="PERIODIC NOISE (TYPE 2)"
770 RETURN

780 TN$="PERIODIC NOISE (TYPE 3)"
790 RETURN

800 TN$="PERIODIC NOISE (VARIES WITH FREQ. OF
THIRD TONE SPECIFIED)"

810 RETURN

820 TNS="WHITE NOISE (TYPE 1)"
830 RETURN

840 TNS="WHITE NOISE (TYPE 2)"
850 RETURN

860 TN$="WHITE NOISE (TYPE 3)"
870 RETURN

880 TN$="WHITE NOISE (VARIES WITH FREQ. OF THIRD
TONE SPECIFIED)"

890 RETURN

Explanation of Program

10-90 Clear screen, center title, and display introduction screen
100-170 Display main menu so you can choose sound, note, or noise
180-280 Ask for duration and volume

290-440 If selection was noise, display another menu to select type;
play selected noise

450-540 Ask for frequency and play
550-630 Display information you have chosen (so you can write infor

mation to use again at later time)

76 TI-99I4AGraphics and Sounds

640 Play note, sound, or noise
650-690 Delay program for duration of note, sound, or noise; return

to main menu

700-890 Set variable equivalent to type (noise, sound, or note) com
puter is playing (so program can display what type is playing)

Fig. 5-1. Sound Development.

TRANSLATOR

To help you develop your ability to program musical notes, the program
shown in Listing 5-4 translates any note into a corresponding DATA value.
That value can then be used in any other program.

In order for the program to translate notes into DATA values, you must
indicate to the computer the octave and note you want to play. The com
puter then displays a numeric value so you can write it down for future
reference. When you run the program, your screen will look similar to
Fig. 5-2.

Listing 5-4

10 REM TRANSLATOR

20 TT$="** TRANSLATOR **"
30 DEF RD(Z)=INT(100*(Z+.005))/l00
40 CALL CLEAR

50 PRINT TAB(INT((29-LEN(TT$))/2));TT$

Music on the TI-99/4A

60 PRINT :::" THIS PROGRAM ALLOWS THE"::"USER TO

TRANSLATE MUSICAL"::"NOTES INTO FREQUENCY DATA"

70 PRINT :"VALUES. I WILL THEN ASK"::"YOU FOR A

DURATION AND"::"PLAY THAT NOTE FOR YOU."

80 PRINT :::::" PRESS ANY KEY TO BEGIN"

90 CALL KEY(0,KEY,STATUS)
100 IF STATUS<=0 THEN 90

110 CALL CLEAR

120 PRINT "ENTER THE OCTAVE"

130 INPUT "(0-LOWEST, 4-HIGHEST)":OC
140 IF (OC<0) + (OO4)THEN 110
150 CALL CLEAR

160 PRINT "NOTES:":::" 1) A":" 2) A SHARP, B FLAT":
"3) B":" 4) C":" 5) C SHARP, D FLAT"

170 PRINT " 6) D":" 7) D SHARP, E FLAT":" 8) E":"
9) F":" 10) F,SHARP, G FLAT"

180 PRINT " 11) G":" 12) G SHARP, A FLAT":::::
190 INPUT " SELECT (1-12) ":NOTE
200 IF (NOTE<l)+(NOTE>12)THEN 150
210 NOTE=(NOTE-l)+(OC*12)
220 FREQ=110*(2"(1/12))"NOTE
230 CALL CLEAR

240 PRINT "TO PLAY THIS NOTE, USE"::
250 PRINT TAB(8);RD(FREQ)::
260 PRINT "AS THE FREQUENCY VALUE IN":"THE CALL SOUND

ROUTINE."::

270 PRINT ::"PLAY NOTE? (Y/N)"
280 CALL KEY(0,KEY,STATUS)
290 IF (KEY<>89)*(KEY<>121)*(KEY<>78)*(KEY<>110)THEN

280

300 IF (KEY=78)+(KEY=110)THEN 400
310 CALL CLEAR

320 PRINT "ENTER DURATION (1-4250)"
330 INPUT "(1 SEC = 1000) ":DUR
340 IF (DUR<1)+(DUR>4250)THEN 310
350 CALL CLEAR

360 PRINT "PLAYING NOTE FOR

OF";DUR::::::::::
370 CALL SOUND(DUR,FREQ,0)
380 FOR DELAY=1 TO INT(DUR/2)
390 NEXT DELAY

400 CALL CLEAR

410 PRINT "WANT TO ENTER MORE NOTES?

420 CALL KEY(0,KEY,STATUS)
430 IF (KEY<>89)*(KEY<>121)*(KEY<>78)*(KEY<>110)THEN

420

440 IF (KEY=89)+(KEY=121)THEN 110
450 CALL CLEAR

460 END

;RD(FREQ)::"AT A DURATION

(Y/N)"

77

Explanation of Program

10-100 Clear screen, center title, and display introduction screen
110-150 Ask you to enter octave from 0 to 4
160-200 Display menu of all possible notes and waits for you to select

note

78 TI-99/4AGraphics andSounds

210-220 Calculate value needed to play selected note
230-300 Display value and ask if you want to hear frequency that is

displayed
310-390 Ask for duration and play note
400-460 Ask if you want to translate more notes. If not, exit program

Fig. 5-2. Translator.

MULTIPLE VOICES

Certainly the most pleasing music on the TI-99/4A is produced by using
three voices. These voices can be used to produce the melody and the
harmony (chords) of a song. In fact, the TI-99/4A can sound like an
electronic organ, complete with chords, when all three voices are utilized.

There are no tricks to getting all three voices running on the TI-99/4AA.
Many people think that the task is difficult and arduous, but it's a fairly
simple, mechanical process.

You need three items to program a three-voice musical piece:

1. The program used in this chapter to perform Brahms Lullaby but
with your own data.

2. The translator program that was previously listed.
3. A piece of sheet music.

It also helps to have a little knowledge about music. You can usually
find out what notes make up a chord by looking in a song book; often

Music on the T1-99I4A 79

chords are shown as letters rather than notes. In many organ books, the
melody will be shown as "C" or "D minor", which doesn't give you a
clue as to what notes make up that chord. That is why the Translator
program listed above is useful for translating these codes into music.

BRAHMS

Once the chords are translated, you are ready to begin. In case you have
nothing ready to play, program Listing 5-5 will play Brahm's Lullaby.

Listing 5-5

10 REM BRAHMS LULLABY

20 TT$="** BRAHMS **"
30 CALL CLEAR

40 PRINT TAB(INT((29-LEN(TT$))/2));TT$
50 PRINT :::" TO DEMONSTRATE THE USE OF":::"THREE

VOICES ON THE TI-99/4A":::"I WILL PLAY BRAHMS
LULLABY"

60 PRINT ::"FOR YOU."

70 PRINT :::::" PRESS ANY KEY TO BEGIN"

80 CALL KEY(3,KEY,STATUS)
90 IF STATUS<=0 THEN 80

100 CALL CLEAR

110 RESTORE

120 PRINT " PLAYING BRAHMS LULLABY..."::::::::::::

130 READ FV,SV,TV,NRP

140 IF (FV=0)*(SV=0)*(TV=0)*(NRP=0)THEN 360
150 IF (FV=0)+(SV=0)+(TV=0)THEN 220
160 VOL1=0

170 VOL2=0

180 VOL3=0

190 DUR=200*NRP

200 CALL SOUND(DUR,FV,VOL1,SV,VOL2,TV,VOL3)
210 GOTO 130

220 IF FV<>0 THEN 260

230 FV=110

240 VOL1=30

250 GOTO 270

260 VOL1=0

270 IF SV<>0 THEN 310

280 SV=110

290 VOL2=30

300 GOTO 320

310 VOL2=0

320 IF TV<>0 THEN 180

330 TV=110

340 VOL3=30

350 GOTO 190

360 FOR DELAY=1 TO 400

3 70 NEXT DELAY

380 CALL CLEAR

cont. on next page

80 TI-99J4A Graphics and Sounds

Listing 5-5—cont.

390 PRINT "WANT TO PLAY BRAHMS LULLABY AGAIN? (Y/N)"
400 CALL KEY(3,KEY,STATUS)
410 IF (KEY<>89)*(KEY<>78)THEN 400
420 IF KEY=89 THEN 100

430 CALL CLEAR

440 END

450 DATA 0,247,0,3
460 DATA 147,247,196,1,147,294,196,6,147,247,196,6
470 DATA 147,294,196,4,147,0,196,3,147,247,196,2
480 DATA 147,294,196,2,147,392,196,4,147,370,196,6

490 DATA 147,330,196,2,147,330,185,4,147,294,185,4
500 DATA 147,220,185,2,147,247,185,2,147,262,185,4
510 DATA 147,220,185,6,147,247,185,2,147,262,185,4

520 DATA 147,262,185,3,147,220,185,2,147,262,185,2
530 DATA 147,370,185,2,147,330,185,2,147,294,185,4
540 DATA 147,370,185,5,147,370,196,1.5,147,392,196,7
550 DATA 147,196,196,4,165,392,196,7,165,330,196,2
560 DATA 165,262,196,2,147,294,196,8,147,247,196,2
570 DATA 147,196,196,2,147,262,185,4,147,294,185,4
580 DATA 147,330,185,4,147,294,196,8,147,196,196,4
590 DATA 165,392,196,8,165,330,196,2,165,262,196,2
600 DATA 147,294,196,10,147,196,196,2,147,262,185,4
610 DATA 147,247,185,4,147,220,185,4,147,196,196,13
620 DATA 0,0,0,0

Explanation of Program

10-100 Clear screen, center title, and display introduction screen
110-120 Display notice that Brahm's Lullaby is being played
130-350 Read data and play music
360-440 Delay program to allow you to hear final note. Ask if you

want to hear Brahms again. If not, exit program
450-620 Data for three voices

SUMMARY

While running the programs shown in Chapter 3, you heard sounds and
noises the TI-99/4A can produce. The programs listed in this chapter
produce songs and even the effect of an electronic organ. By programming
on your own, you can further explore your computer's musical "talents."

Chapter 6

Advanced Techniques

This chapter explains some techniques that can help you get the most
from your TI-99/4A home computer.

ROUGH SCROLLING

One advanced technique is to improve on the computer's normal method
of scrolling the screen. Scrolling is a term associated with how information
displayed on your computer's screen seems to roll toward the top of the
monitor as more information is added. The program shown in Listing 6-1
demonstrates the normal scrolling method of the TI-99/4A.

Listing 6-1

10 REM ROUGH SCROLLING

20 TT$="** ROUGH SCROLLING **"
30 CALL CLEAR

40 PRINT TAB(INT((29-LEN(TT$))/2));TT$
50 PRINT :::" THIS PROGRAM DEMONSTRATES"::"SCROLLING

OF THE SCREEN IN"::

60 PRINT "A ROUGH FASHION."::::::::

70 PRINT " PRESS ANY KEY TO BEGIN"

80 CALL KEY(0,KEY,STATUS)
90 IF STATUS<=0 THEN 80

100 CALL CLEAR

110 FOR 1=1 TO 40
cont. on next page

81

82 TI-99/4A Graphics andSounds

Listing 6-1—cont.

120 PRINT " THIS IS A SCROLLING TEST"
130 NEXT I

140 CALL CLEAR

150 PRINT "WANT TO SEE SCROLLING AGAIN?(Y/N)"
160 CALL KEY(0,KEY,STATUS)
170 IF (KEY<>89)*(KEY<>121)*(KEY<>78)*(KEY<>110)THEN

160

180 IF (KEY=89)+(KEY=121)THEN 100
190 CALL CLEAR

200 END

Explanation of Program

10-90 Clear screen, center title, and display introduction screen
100-130 Print message 40 times to show how screen scrolls
140-200 Ask if you want to see scrolling again. If not, exit program

UPWARD SCROLL

The program shown in Listing 6-2 demonstrates an alternate way of
scrolling the screen upward. This program moves one character at a time
up to the row above it, then displays a line of the same characters on the
vacated line.

Listing 6-2

10 REM UPWARD SCROLL

20 TT$="** UPWARD SCROLL **"
30 DIM CHARR(35)
40 CALL CLEAR

50 PRINT TAB(INT((29-LEN(TT$))/2));TT$
60 PRINT :::" THIS PROGRAM GIVES YOU A"::"DIFFERENT

WAY TO SCROLL THE"::"SCREEN UPWARD."

70 PRINT :::::::" PRESS ANY KEY TO BEGIN"

80 CALL KEY(0,KEY,STATUS)
90 IF STATUS<=0 THEN 80

100 CALL CLEAR

110 LN$=" THIS IS A SCROLLING TEST "
120 FOR 1=1 TO LEN(LN$)
130 CHARR(I)=ASC(SEG$(LN$,I,1))
140 NEXT I

150 CALL CLEAR

160 PRINT LN$;
170 FOR R0W=23 TO 1 STEP -1

180 CTR=1

190 FOR C0L=3 TO 32

200 CALL HCHAR(ROW,COL,CHARR(CTR))
210 CTR=CTR+1

220 NEXT COL

Advanced Techniques 83

230 NEXT ROW

240 CALL CLEAR

250 PRINT "WANT TO SEE SCROLLING AGAIN? (Y/N)"
260 CALL KEY(0,KEY,STATUS)
270 IF (KEY<>89)*(KEY<>121)*(KEY<>78)*(KEY<>110)TIIEN

260

280 IF (KEY=89)+(KEY=121)THEN 150
290 CALL CLEAR

300 END

Explanation of Program

10-90 Clear screen, center title, and display introduction screen
100-160 Set up message to display. Convert each character to its

ASCII representation
170-230 Move each character up one row; display another line
240-300 Ask if you want to see upward scroll again. If not, exit

program

DOWNWARD SCROLL

The TI-99/4A does not provide an easy way for scrolling the screen
downward. But the program given in Listing 6-3 does just that.

Listing 6-3

10 REM DOWNWARD SCROLL

20 TT$="** DOWNWARD SCROLL **"
30 DIM CHARR(35)
40 CALL CLEAR

50 PRINT TAB(INT((29-LEN(TT$))/2));TT$
60 PRINT :::" THIS PROGRAM SCROLLS THE"::"SCREEN

DOWNWARD.":::

70 PRINT :::::::" PRESS ANY KEY TO BEGIN"

80 CALL KEY(0,KEY,STATUS)
90 IF STATUS<=0 THEN 80

100 CALL CLEAR

110 LN$=" THIS IS A SCROLLING TEST "
120 FOR 1=1 TO LEN(LN$)
130 CHARR(l)=ASC(SEG$(LN$,I,l))
140 NEXT I

150 CALL CLEAR

160 FOR ROW=l TO 24

170 CTR=1

180 FOR COL=3 TO 32

190 CALL HCHAR(ROW,COL,CHARR(CTR))
200 CTR=CTR+1

210 NEXT COL

220 NEXT ROW

230 CALL CLEAR

cont. on next page

84 TI-99/4AGraphicsandSounds

Listing 6-3—cont.

240 PRINT "WANT TO SEE SCROLLING AGAIN? (Y/N)"
250 CALL KEY(0,KEY,STATUS)
260 IF (KEYO89)*(KEY<>121)*(KEY<>78)*(KEY<>110)THEN

250

270 IF (KEY=89)+(KEY=121)THEN 150
280 CALL CLEAR

290 END

Explanation of Program

10-90 Clear screen, center title, and display introduction screen
100-150 Set up message to display; convert each character to its ASCII

representation
160-220 Display message at top of screen; scroll downward until en

tire screen is full

230-290 Ask if you want to see downward scroll again. If not, exit
program

SCROLL LEFT AND RIGHT

The program shown in Listing 6-4 scrolls the screen in a left and right
direction.

Listing 6-4

10 REM SCROLL LEFT & RIGHT

20 TT$="** SCROLL LEFT & RIGHT **"
30 DIM CHARR(35)
40 CALL CLEAR

50 PRINT TAB(INT((29-LEN(TT$))/2));TT$
60 PRINT :::" THIS PROGRAM SCROLLS THE"::"SCREEN LEFT

AND RIGHT."::

70 PRINT :::::::" PRESS ANY KEY TO BEGIN"
80 CALL KEY(0,KEY,STATUS)
90 IF STATUS<=0 THEN 80

100 CALL CLEAR

110 LN$=" THIS IS A SCROLLING TEST "
120 FOR 1=1 TO LEN(LN$)
130 CHARR(I)=ASC(SEG$(LN$,I,1))
140 NEXT I

150 CALL CLEAR

160 FOR 1=1 TO 23

170 PRINT LN$
180 NEXT I

190 PRINT LN$;
200 FOR ROW=l TO 24

210 CTR=1

220 FOR COL=l TO 30

Advanced Techniques 85

230 CALL HCHAR(R0W,C0L,CHARR(CTR))
240 CTR=CTR+1

250 NEXT COL

260 NEXT ROW

270 FOR R0W=1 TO 24

280 CTR=1

290 FOR C0L=3 TO 32

300 CALL HCHAR(ROW,COL,CHARR(CTR))
310 CTR=CTR+1

320 NEXT COL

330 NEXT ROW

340 CALL CLEAR

350 PRINT "WANT TO SEE SCROLLING AGAIN? (Y/N)"
360 CALL KEY(0,KEY,STATUS)
370 IF (KEY<>89)*(KEY<>121)*(KEY<>78)*(KEYO110)TEIEN

360

380 IF (KEY=89)+(KEY=121)THEN 150
390 CALL CLEAR

400 END

Explanation of Program

10-90 Clear screen, center title, and display introduction screen
100-150 Set up message to display; convert each character to its ASCII

representation
160-190 Fill screen with message
200-260 Scroll screen two characters to left

270-330 Scroll screen two characters to right
340-400 Ask if you want to see scrolling again. If not, exit program

CREATING CHARACTER SETS

This section describes a method for defining new characters rather than
using the alphabet inherent to the TI-99/4A.

To define character sets, you will have to design the new characters,
then store them in the old ASCII character codes on the TI-99/4A. This is

exactly the same process used to develop the graphics characters in Chap
ters 2 and 4. In those chapters, you mostly used the ASCII codes numbered
from 128 through 159. I mentioned that you could have used the lower
ASCII codes when the graphics characters were stored but that we would
learn more about that later. Well, this is later, and the lower ASCII codes

are exactly where you are going to store the new graphics characters that
are generated. By placing new definitions into ASCII codes 32-127, (see
Appendix B for a list of all the ASCII codes), you'll re-define those
characters. For example, if you want a heart-shaped character to appear
when the A key is pressed, store the hexadecimal notation for a heart in
the ASCII code of 65. Then, whenever the A key is pressed, a heart-
shaped character will appear. NOTE: Once the program ends, the ASCII

86 TI-99I4A Graphics and Sounds

codes will return to their normal (default) alphanumeric and symbol
characters.

ALPHA SCRAMBLER

The program shownin Listing 6-5demonstrates howeasyit is to change
the complete alphabet to nothing but scrambled characters. When you run
the program, your screen will look similarto Fig. 6-1.

Listing 6-5

10 REM ALPHA SCRAMBLER

20 CALL CLEAR

30 GOTO 80

40 FOR 1=1 TO LEN(LN$)
50 CALL HCHAR(RN,CN+I,ASC(SEG$(LN$,I,1)))
60 NEXT I

70 RETURN

80 RANDOMIZE

90 RESTORE

100 RN=0

110 DIM ST$(11)
120 FOR 1=1 TO 11

130 READ ST$(I)
140 NEXT I

150 FLG=1

160 CALL CLEAR

170 FOR 1=1 TO 10

180 PRINT ST$(I)::
190 NEXT I

200 IF FLG THEN 230

210 PRINT ::

220 GOTO 260

230 PRINT :ST$(11)
240 CALL KEY(0,KEY,STATUS)
250 IF STATUS<=0 THEN 240

260 LN$=MALPHA SCRAMBLER WORKING..."
270 RN=23

280 CN=2

290 GOSUB 40

300 FOR ROW=l TO 24

310 FOR COL=3 TO 30

320 CALL GCHAR(ROW,COL,CHR)
330 IF CHR=32 THEN 360

340 CHSET=INT(RND*22)+128
350 CALL HCHAR(ROW,COL,CHSET)
360 NEXT COL

370 NEXT ROW

380 FOR DELAY=1 TO 1000

390 NEXT DELAY

400 CTR=1

410 FOR RN=2 TO 20 STEP 2

420 CN=2

430 LN$=ST$(CTR)

Advanced Techniques 87

440 CTR=CTR+1

450 G0SUB 40

460 NEXT RN

470 RN=23

480 CN=2

490 LN$="RUN SCRAMBLER AGAIN? (Y/N)"
500 GOSUB 40

510 CALL KEY(3,KEY,STATUS)
520 IF (KEY<>89)*(KEY<>78)THEN 510
530 IF KEY=89 THEN 560

540 CALL CLEAR

550 END

560 FLG=0

570 GOTO 160

580 DATA " ** ALPHA SCRAMBLER **"
590 DATA " THIS PROGRAM SCRAMBLES","THE ALPHABET.",

"EACH LETTER WILL HAVE A"

600 DATA "DIFFERENT CHARACTER","ASSOCIATED WITH IT.
, TO","DEMONSTRATE THIS EFFECT I"

610 DATA "WILL LEAVE THIS MESSAGE ON'V'THE SCREEN SO
YOU CAN SEE","THE NEW CHARACTERS."

620 DATA " PRESS ANY KEY TO BEGIN"

Fig. 6-1. Alpha Scrambler.

Explanation of Program

10-30 Clear screen

40-70 Display any message anywhere on screen
80-220 Fill array with messages to display on screen; display mes

sages one by one

88 TI-99/4AGraphicsandSounds

230-250 Wait for you to press any key
260-290 Print messagethatAlpha Scrambler is working
300-370 Start by changing only valid characters (all characters except

spaces) to random character
380-500 Delay program so you can view new character set, then turn

set back to normal alphanumeric and symbol characters
510-550 Ask whether you want to see Alpha Scrambler again. If not,

exit program
560-570 If you want to see program again, reset flag and go to that

routine

580-620 DATA statements containing messages to print

CHARACTERS

The programshownin Listing 6-6changes certain letters of the alphabet
into graphics characters. The program changes the onscreen letters "A,"
"B," and "C" into heart-, diamond-, and arrow-shaped characters,
respectively. After a short delay, the characters are returned to their
normal state. When you run the program, your screen will look similar to
Fig. 6-2.

Listing 6-6

10 REM CHARACTERS

20 TT$="** CHARACTERS **"
30 CALL CLEAR

40 PRINT TAB(INT((29-LEN(TT$))/2));TT$
50 PRINT :::" THIS PROGRAM DEMONSTRATES"::"HOW TO

CHANGE CERTAIN"::

60 PRINT "CHARACTERS. IN THIS PROGRAM"::

70 PRINT "I WILL CHANGE THE LETTERS A,"::"B AND C TO
THREE DIFFERENT"::

80 PRINT "CHARACTERS."::::::

90 PRINT " PRESS ANY KEY TO BEGIN"

100 CALL KEY(0,KEY,STATUS)
110 IF STATUS<=0 THEN 100

120 CALL CLEAR

130 RESTORE

140 PRINT " I WILL LEAVE THIS MESSAGE"::"ON THE

SCREEN WHILE I"

150 PRINT :"CHANGE THE LETTERS A, B, AND"::"C TO THREE
DIFFERENT"::

160 PRINT "CHARACTERS.":::

170 PRINT " AFTER A DELAY PERIOD, I"::"WILL THEN
CHANGE THEM BACK"::

180 PRINT "TO NORMAL."::::

190 FOR DELAY=1 TO 1000

200 NEXT DELAY

Advanced Techniques 89

210 FOR CH=0 TO 2

220 READ CHCODE$
230 CALL CHAR(65+CH,CHCODE$)
240 NEXT CH

250 FOR DELAY=1 TO 2500

260 NEXT DELAY

270 CALL CLEAR

280 FOR 1=0 TO 2

290 READ CHCODE$
300 CALL CHAR(65+I,CHCODE$)
310 NEXT I

320 PRINT "WANT TO SEE CHARACTER":"CHANGER AGAIN?

(Y/N)"
330 CALL KEY(0,KEY,STATUS)
340 IF (KEY<>89)*(KEY<>121)*(KEY<>78)*(KEY<>110)THEN

330

350 IF (KEY=89)+(KEY=121)THEN 120
360 CALL CLEAR

370 END

380 DATA 6699818181422418

390 DATA 0010284482442810

400 DATA 001E060A12204080

410 DATA 003844447C444444

420 DATA 00F84444784444F8

430 DATA 0038444040404438

Fig. 6-2. Characters.

Explanation of Program

10-110 Clear screen, center title, and display introduction screen
120-200 Display message and delay program so you can see message
210-270 Change letters A, B, and C. Delay program so you can see

new characters

90 TI-99/4A Graphics andSounds

280-370 Change characters back to letters; ask if you want to see
program again. If not, exit

380-430 Data for new characters and for changing them back to their
alphabetic form

CHARACTER CHANGER

The program shown in Listing 6-7 changes the entire alphabet and
randomly replaces each letter with one of eight different characters. When
you run the program, your screen will look similar to Fig. 6-3.

Listing 6-7

10 REM CHARACTER CHANGER

20 CALL CLEAR

30 GOTO 80

40 FOR 1=1 TO LEN(LN$)
50 CALL HCHAR(RN,CN+I,ASC(SEG$(LN$,I,1)))
60 NEXT I

70 RETURN

80 RANDOMIZE

90 CALL COLOR(ll,2,l)
100 CALL COLOR(12,13,l)
110 CALL COLOR(13,16,l)
120 CALL COLOR(14,7,l)
130 CALL COLOR(15,ll,l)
140 CALL COLOR(16,14,l)
150 CALL CHAR(112,,,0103070F1F3F7FFF,,)
160 CALL CHAR(120,,,FFFEFCF8F0E0C080")
170 CALL CHAR(128,"FFFFFFFF00000000")
180 CALL CHAR(136,"0F0F0F0F0F0F0F0F")
190 CALL CHAR(144,"F0F0F0F0F0F0F0F0")
200 CALL CHAR(152,n00000000FFFFFFFF")
210 RESTORE

220 RN=0

230 DIM ST$(11)
240 FOR 1=1 TO 9

250 READ ST$(I)
260 NEXT I

270 FLG=1

280 CALL CLEAR

290 FOR 1=1 TO 8

300 PRINT ST$(I)::
310 NEXT I

320 IF FLG THEN 350

330 PRINT :::

340 GOTO 380

350 PRINT ::ST$(9)
360 CALL KEY(0,KEY,STATUS)
370 IF STATUS<=0 THEN 360

380 LN$="CHARACTER CHANGER WORKING..."
390 RN=23

400 CN=2

Advanced Techniques 91

410 GOSUB 40

420 FOR ROW=l TO 24

430 FOR COL=3 TO 30

440 CALL GCHAR(ROW,COL,CHR)
450 IF CHR=32 THEN 490

460 CHSET=INT(RND*6)+1
470 CHSET=CHSET*8+104

480 CALL HCHAR(ROW,COL,CHSET)
490 NEXT COL

500 NEXT ROW

510 FOR DELAY=1 TO 1000

520 NEXT DELAY

530 CTR=1

540 FOR RN=5 TO 19 STEP 2

550 CN=2

560 LN$=ST$(CTR)
570 CTR=CTR+1

580 GOSUB 40

590 NEXT RN

600 RN=23

610 CN=2

620 LN$=" RUN CHANGER AGAIN? (Y/N) "
630 GOSUB 40

640 CALL KEY(3,KEY,STATUS)
650 IF (KEY<>89)*(KEY<>78)THEN 640
660 IF KEY=89 THEN 690

670 CALL CLEAR

680 END

690 FLG=0

700 GOTO 280

710 DATA " ** CHARACTER CHANGER ** "

720 DATA M THIS PROGRAM DEMONSTRATES","HOW TO CHANGE
A CHARACTER","SET TO A DIFFERENT SET."

730 DATA "TO DEMONSTRATE THIS EFFECT"

740 DATA "I WILL LEAVE THIS MESSAGE","ON THE SCREEN
SO YOU CAN","SEE THE NEW CHARACTERS."

750 DATA " PRESS ANY KEY TO BEGIN"

Explanation of Program

10-30 Clear screen and go to main routine
40-70 Display message anywhere on screen
80-140 Set color for each graphics character

150-200 Define each new graphics character
210-370 Clear screen and display messages
380-500 Change each character on screen to random graphics

character

510-630 Delay then change characters back to alphabetic form
640-680 Ask if you want to see changer again. If not, exit program
690-700 If you want to see program again, reset flag and go to that

routine

710-750 Data for messages to display onscreen

92 T1-99I4A GraphicsandSounds

Fig. 6-3. Character Changer.

SUMMARY

There you have it: routines to help you make the most of your TI-99/
4A. I hope you've learned a great deal from this book. Feel free to make
changes to any of the programs in the book. Remember, the best way to
learn is to take someone else's program, look through it thoroughly, then
try making small changes here and there to see what effect your changes
have. Also, take time to explore the TI-99/4A commands. The TI-99/4A is
a powerful machine. Keep studying and working at getting the most out of
your computer.

Appendix A

Color Codes for the TI-99/4A

1 = Transparent
2 = Black

3 = Medium Green

4 = Light Green
5 = Dark Blue

6 = Light Blue
7 = Dark Red

8 = Cyan
9 = Medium Red

10 = Light Red
11 = Dark Yellow

12 = Light Yellow
13 = Dark Green

14 = Magenta
15 = Gray
16 = White

93

Appendix B

Standard ASCII Character

Codes

STANDARD ASCII CHARACTER CODES

ASCII ASCII

CODE CHARACTER CODE CHARACTER

32 (space) 49 1

33 ! (exclamation point) 50 2

34 " (quote) 51 3

35 # (number or pound sign) 52 4

36 $ (dollar) 53 5

37 % (percent) 54 6

38 & (ampersand) 55 7

39 ' (apostrophe) 56 8

40 ((open parenthesis) 57 9

41) (close parenthesis) 58 (colon)
42

* (asterisk) 59 ; (semicolon)
43 + (plus) 60 < (less than)
44 , (comma) 61 = (equals)
45 - (minus) 62 > (greater than)
46 (period) 63 ? (question mark)
47 / (slant) 64 @ (at sign)
48 0 65 A

95

96 Appendix B Standard ASCII Character Codes

ASCII ASCII

CODE CHARACTER CODE CHARACTER

66 B 98 B

67 C 99 c

68 D 100 D

' 69 E 101 E

70 F 102 F

71 G 103 G

72 H 104 H

73 I 105 I

74 J 106 J

75 K 107 K

76 L 108 L

77 M 109 M

78 N 110 N

79 O 111 O

80 P 112 p

81 Q 113 Q

82 R 114 R

83 S 115 s

84 T 116 T

85 U 117 u

86 V 118 v

87 W 119 w

88 X 120 X

89 Y 121 Y

90 Z 122 z

91 [(open bracket) 123 { (left brace)
92 \ (reverse slant) 124 ;
93] (close bracket) 125 } (right brace)
94 A (exponentiation) 126 " (tilde)
95 —(line) 127 DEL(appears on
96 (grave) screen as a
97 a blank.)

Appendix C

Character Sets and Their
Corresponding Character
Codes

Here is a breakdown of the ASCII character codes into their correspond
ing character set numbers. To change the color of any character, use the
character set number to reference that ASCII code.

Character Set Number ASCII Codes

1 32-39

2 40-47

3 48-55

4 56-63

5 64-71

6 72-79

7 80-87

8 88-95

9 96-103

10 104-111

11 112-119

12 120-127

13 128-135

14 136-143

15 144-151

16 152-159

97

Appendix D

Pattern Identifier Conversion

Table

The following is hexadecimal notation for one half of the bit
map:

8 4 2 1 HEXADECIMAL VALUES

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

99

Appendix E

Frequencies for Musical
Tones

Note Frequency Note Frequency

A 110

At^ 117
B 123

C(lowC) 131

Of,I* •
D...

Dtf,E!> .
E...

F ...

FH-Gt .
G...

GtAJ* .

. 139

. 147

. 156

. 165

. 175

. 185

. 196

. 208

A (below middle C) 220

A (below middle C) 220

AJI.Bb- 233
B 247

C (middle C) 262

OH.!* 277
D 294

Dt^» 311
E 330

F 349

FtG^ 370
G 392

GtAl* 415
A (above middle C) 440

A (above middle C) 440

At^ 466
B 494

C (high C) 523

ctr> 554
D 587

DH,g» 622
E 659

F 698

FH.Gi* 740
G 784

GtAl» 831
A (above high C) 880

A (above high C) 880

Afl.B1' 932
B 988

C 1047

CtC* 1109
D 1175

DJt.E^ 1245
E 1319

F 1397

FU.G^ 1480
G 1568

GH.A1, 1661
A 1760

101

	front-page
	Binder2
	content001
	content002
	content003
	content004
	content005

	back-page

