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I dedicate this book to my children,
Mark and Ruth, still being educated.



Preface

This book is designed to help all those who wish to find out more
about the language LOGO, a language which has been around and
developing for almost twenty years.

LOGO is alanguage which has lately become rather more popular
with a wide range of people. Though the established microcomputer
languages (especially the many forms of BASIC) have long been
available for a variety of applications, BASIC had often been used
because there was no appropriately straightforward alternative.
LOGO now provides that alternative.

More than any other language, LOGO is intended to demystify
computers and computer programming, and make the power of
computers accessible to all. A supporter of LOGO must be against
the pointless use of jargon, and against any attempt to make
computers ‘special’. LOGO is an egalitarian language.

The range of applications for which LOGO is suited ranges from
research into Artificial Intelligence, to the design of graphics
applications, and to the teaching of pre-school children. LOGO has
even been used in the teaching of the mentally handicapped,
allowing the handicapped person control over that powerful device,
a computer.

BASIC is often promoted as a language which is simple to learn,
but LOGO is simpler to learn and is also of far greater power and
applicability.

In the writing of this book I have been assisted by conversations
with many people, too numerous to mention or for me to remember
all their names.

I am grateful to many people whose names I do not know. I talked
to teachers using primitive versions of LOGO in schools who found
that education came alive for their pupils, even with that primitive
version. They were enthusiasts for LOGO even though they may
only have used a Turtle Graphics only version.
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The members and officers of the British LOGO Users’ Group
(BLUG), were especially helpful (the address for BLUG is ¢/o Pam
Valley, 26 Tithby Road, Bingham, Notts.). It was at a BLUG
conference that I met the originator of LOGO, Seymour Papert, and
was impressed by his sense of mission. I have also been helped by
many manufacturers, and software providers who have, in some
cases, provided me with preliminary information about their LOGO
versions: Atari, Commodore, Computer Concepts, Digital Research,
Research Machines, Roundhill Computer Systems, Sinclair Research,
Tandy (UK), and Texas Instruments.

The turtle in LOGO is very important, and I would like to thank
Jessop Microelectronics for the use of a photograph of their floor
turtle (Figure 2.1).

LOGO implies a revolution in thinking and learning for all who
are exposed to the language. I hope that this book explains the
reasons behind the revolution, and why the revolution will succeed.



Chapter One
Introduction

I was testing a version of LOGO for the IBM Personal Computer
(actually, Waterloo LOGO), and was being helped to set up the IBM
PC with a colour monitor and colour card. After we had set up the
system, I loaded Waterloo LOGO.

I cleared the screen, and on the screen there appeared a triangle
shape or arrow-head. I typed in

FD 50

and the arrow-head moved up the screen leaving a line behind, from
where it started to where it finished. FD stands for (is a shortened
version of) FORWARD, and the arrow-head had moved forward
50 units.

There was already a fair amount of interest at this simple
movement of the arrow-head, from those who had helped me set up
the PC. These were people who were familiar with fairly
sophisticated computers, and who possessed a fair degree of
competence in general computing. A child who was in the shop
(looking at rather more mundane machines) was not so impressed -
‘We do that at school!’.

Next I typed in

RT90

and the arrow-head turned through 90 degrees, so that the point
faced to the right. The experts were engrossed at that simple change.
Then I typed

FD 50

and another line was drawn in the direction of the arrow-head, the
same length as the previous line. Excitement grew. We agreed that to
draw a square we needed to repeat those moves, and so, after

RT 90
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one of the others entered
FD 50 RT90 FD 50 RT 90

all at once.

We had drawn a square, and had left the arrow-head pointing
straight upwards - in the same direction as it faced at the start of the
drawing.

The experts then tried out other things. For example, they tried to
draw a triangle: they failed at the first attempt, but soon succeeded
and became quite animated. The experts had seen many other
programs and languages, but their experience did not stop them
appreciating the intrinsic interest of the language they were using -
LOGO.

Many children in schools will soon be using LOGO, and they find
LOGO just as interesting as the experts. Children manage tolearna
great deal about mathematics and thinking from LOGO, and the
appeal of LOGO is indeed very great.

The arrow-head is not an arrow-head, but is a visual
representation of a turtle, a turtle which you direct across the display
screen by use of simple commands. The turtle on the screen can also
have a physical counterpart on the floor, a floor turtle, and that
turtle draws real lines on real paper. Turtle graphics is an excellent
way of teaching children to appreciate the beauty of mathematics.
LOGO is very successful with children.

My experts were beginning to learn the limitations of instant
(‘here and now’) commands. Instead of drawing a square by putting
in eight commands (four FDs and four RTs), they wanted to say:

SQUARE

to draw a square. I therefore went on to show them how to form new
commands in LOGO, using a square as an example. I entered, first,

TO SQUARE

I entered this because I needed to tell the system how TO do a thing
called SQUARE. Then I went on to complete the instructions:

TO SQUARE
REPEAT 4[FD 50 RT 90]
END

Being experts they could appreciate without explanation that the
LOGO words meant REPEAT 4 times the commands between
[and]. A child has no problems either.
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I then entered
SQUARERT 180 SQUARE

and a SQUARE was drawn, the turtle/arrow-head turned through
180 degrees (i.e. to face in the opposite direction) and another
SQUARE was drawn. We had drawn two squares, in different places,
just by use of one command and a turn. They were enthralled!

We decided to change the procedure SQUARE so that it drew
squares of various sizes, just as with FD 40 the 40 indicates how far
to move. At this point, I explained about parameters and how to use
the facility to EDIT the procedure (actually I had to read the manual
to EDIT, because editing systems vary so much).

I left them playing, and came back later. They were by then
drawing circles, five-pointed stars and many other shapes, and were
using shapes within shapes. They wanted to know if there was
anything other than turtle graphics to LOGO: for example, could
they use trigonometrical functions (as in BASIC), so I said yes. By
then they were firmly convinced that no BASIC was able (as a
matter of course) to produce graphics of the quality of those
produced by LOGO, without a lot of extra work being put into the
BASIC programming.

‘Were there any other facilities in LOGO? Well, there was list
processing, 1 answered, at which one person’s ears pricked up. He
was trying to learn LISP (on the BBC Microcomputer) because it
was a list processing language. Could he do in LOGO what he could
do in LISP? The answer was; Yes, if it is a full version of LOGO. He
became very excited. List processing is thought to be an esoteric
topic, though it does have many useful applications. Here, he had
been presented with an excellent graphics language - LOGO - which
has list processing too!

Here is a language which can be used in research into artificial
intelligence; can perform all the numerical functions of BASIC and
just as easily; has excellent graphics; and yet is so simple that young
children can use it. Can any other language make that claim?



Chapter Two

An Outline to LOGO

A weightless and perfectly flexible rope is hung over a weightless,
frictionless pulley attached to the roof of a building. At oneend of the
rope is a weight which exactly counterbalances a monkey at the other
end. If the monkey begins to climb, what will happen to the weight?

The Magic of Lewis Carroll, edited by John Fisher

How do you think? How do you think you think? How do you learn?
Do you have problems with learning? What is ‘learning’?

What do you think happens to the weight?

Seymour Papert (in Mindstorms, 1980, page 131) tells us that he
has presented Lewis Carroll’s puzzle to several hundred under-
graduates at MIT (the Massachusetts Institute of Technology). All
of these undergraduates had successfully passed exacting intro-
ductory physics courses.

Three quarters of those who had not seen the problem before gave
incorrect answers, or could not decide how to tackle the problem.
The problem is definitely ‘hard’, and was one of Lewis Carroll's two
favourite problems (the other being ‘Where does the day begin?’).

The problem is not, however, in any way ‘complex’. The reasons
why so many were (and will be) wrong is that the so/ver makes the
problem complex. Many people do not see the easy (and correct)
answer because it is so easy. Sometimes the easy answer is discarded
because it is so simple, and answers have to be complicated.

Thinking and schemas

Seymour Papert is the driving force behind the language LOGO,
and his interest in the Monkey Puzzle is due to his interest in
thinking. LOGO is a computer language which is designed to allow
the user to program the computer, rather than allowing the
computer to program the user.
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In the LOGO vision, the child (and the main emphasis is on the
child learning) gets the computer to do things that the child wants to
do. In conventional computer-assisted learning (CAL), the
computer (i.e. the program) makes the child do what the computer
seems to want to do.

LOGO tries to help children (and older users) to discover tools of
thought which are applicable beyond the mere programming of a
computer. One of the key tools of thought which LOGO encourages
is the notion that we can learn just as much from our errors as from
our successes: for to err is human and should not automatically
incur sanctions.

How many of you will feel slightly guilty if I tell you that the
answer to Carroll’s problem is that monkey and rock both rise - at
exactly the same speed? Remember, most of Papert’s students were
wrong as well (note, I assume you were wrong). Try to think how
you attempted to solve the problem. Try to work out if you fear
failure.

Students at MIT tended to think of the problem in terms of
‘conservation of energy’, or ‘conservation of moments’, and so on.
Only a few saw it as a ‘law of motion’ problem, because most were
not accustomed to think in those terms - it was not included in their
tools of thought.

When it is pointed out that the monkey and the rock are
intimately related, because they are linked by the rope, the answer
becomes rather clearer. Young children, without the benefit of a
physics education, often give the correct answer because they see it
as the monkey pulling the rock towards itself. The distance between
the rock and monkey gets smaller, and (as theyarebalanced) they goup
together. As the monkey climbs the rope (jerks, tugs, or whatever),
the monkey and weight remain directly opposite each other.

There are two key principles in learning:

1. Ideas which are more difficult than those a person already
knows, cannot be learnt from a definition - these higher order
concepts can only be learnt from suitable examples.

2. In any discipline, suitable examples almost always involve
other, less complex, ideas, so it has to be ensured that the
simpler ideas are already known by the learner.

The first principle is broken by the vast majority of text books and
programming manuals. Topics are introduced, not by examples, but
by definitions - usually unintelligible to the learner. Some people
may cope, but many do not.
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Producing a suitable collection of examples requires both
inventiveness and a very clear awareness of the ideas to be
communicated. It also helps if the examples start simply, though to
start simply does not mean that the end will not be complex. In
learning we build up mental ‘structures’ which relate ideas and
concepts, and in psychology the term for a mental structure is a
schema. (See, for example, The Psychology of Learning Mathe-
matics by Richard R. Skemp.)

Schemas are essential tools for the acquisition of further
knowledge. Everything we learn depends on knowing something
else already. The question is where to start in the learning of
‘learning’. In a sense, to ‘understand’ a topic is to put that topic
within some known schema - but sometimes the schema is wrong, of
course.

LOGO tries to develop schemas, with particular emphasis on
mathematics, by allowing the user to explore the world of the turtle,
learning by examples constructed by the user - and learning from
his mistakes.

The turtle

Everybody has to start somewhere, and with LOGO one starts with
the turtle.

Papert (Mindstorms, page 6) thinks it is possible to design
computers so that learning to communicate with them can be a
natural process, ‘... more like learning French by living in France
than like trying to learn it through the unnatural process of foreign-
language instruction in classrooms’. Papert also thinks that learning
to communicate with a computer may change the way other learning
takes place. ~

Children, he says, are learning - through LOGO - to love
communicating with computers, and when this communication
occurs, children learn mathematics as a living language. Mathe-
matics is the key to the future (computers are mathematics
embodied) and children are far more able mathematicians than
many imagine. The reason why so many do so badly is the way the
subject is not taught.

As Papert (Mindstorms, page 7) notes: ‘If we had to base our
opinions on observation of how poorly children learned French in
American schools, we would have to conclude that most people were
incapable of mastering it. But we know that all normal children
would learn it very easily if they lived in France.’
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So, we start with the turtle. The turtle is a computer-controlled
(and therefore child-controlled) cybernetic animal which lives on the
VDU or television screen. The turtle serves no purpose other than
that of being easy to program, and being something with which it is
easy to relate (and think). Some turtles have an even more
substantial existence, as computer-controlled physical objects - a
simple mobile robot, as shown in Figure 2.1.

Fig. 2.1. A floor turtle (photograph of the Edinburgh Turtle, manufactured by
Jessop Microelectronics, London).
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The turtle conforms to the second of the learning principles: you
cannot get a much simpler idea than that of the turtle, and in the case
of the robot you can touch it as well as see it.

You instruct the turtle (by typing in on the computer) to go
FORWARD 100 - or FD 100 - and the turtle goes forward 100
units on the floor, or on the screen (or both). You tell the turtle
to RIGHT 90 - or RT 90- and the turtle turns through 90 degrees to
the right. The number may not mean much to a child early on, but
the child soon learns.

The turtle has moved forward 100, and then turned right through
90 degrees. If the child then repeats the instructions, the turtle has
described an ‘L’ shape. Two more repetitions, and a square has
been drawn (see Figure 2.2). The child can invent new commands to
draw new shapes (where, for instance, FORWARD is an already
existing command).

Fig. 2.2. A square.

Suppose a new command is to be defined to draw a square. All
that is needed is four FORWARD 100 then RIGHT 90 sets of
commands. On the Tandy Color Computer, there is a cartridge
available for a version of LOGO - the TRS-80 Color LOGO. This
cartridge also seems to work on the Dragon 32. In the Tandy version
of LOGO we would enter

TO SQUARE
FORWARD 100 RIGHT 90
FORWARD 100 RIGHT 90
FORWARD 100 RIGHT 90
FORWARD 100 RIGHT 90
END

This set of commands would also work on most other versions of
LOGO.
To draw a square, therefore, having defined the command, all one
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needs to do now is enter SQUARE, and we draw a square of side
100. If we now enter

RIGHT 45 SQUARE

the square of side 100 is turned through 45 degrees to the right (see
Figure 2.3). To enter another

RIGHT 45 SQUARE

e e e ey e i i S Ty

Fig. 2.3. Two squares.

is to draw a square turned through a further 45 degrees (i.e. a total of
45+ 45 = 90 degrees from the original square - see Figure 2.4).

b o e e e e e e e o}

Fig. 2.4. Three squares.
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Proceeding to think

Already we have progressed from the simple ideas of a move and a
turn to the more complex idea that a square is an assembly of moves
and turns. The slightly more complex command SQUARE is a
‘procedure’ and a procedure is one way of taking something more
complex, and making it appear a whole.

To draw a square, therefore, we realise that it is built up of several
very simple elements: four lines, each with a turn at the end. To
concentrate on procedures accentuates the structure of the problem,
which assists greatly in the learning process, and in thinking
generally.

Part of the structure of the square is that all the sides are
effectively the same, i.e. they are all of the same length, with the same
turn at the end. In Tandy Color LOGO (TCL):

TO SQUARE
REPEAT 4 (FORWARD 100 RIGHT 90)
END

will draw a square for obvious reasons. This command/ procedure
definition will not work on many other LOGOs, for a very simple
reason. Most LOGOs use square brackets [ ] where TCL uses the
round brackets ().

In another version of LOGO (i.e. LOGO 2, by Computer
Concepts for the BBC Microcomputer), to draw a square we would
write:

TO SQUARE
REPEAT 4, FORWARD 100: RIGHT 90
END

where there are no brackets of any form, just a comma *,’.

LOGO 2 has a different way of looking at the REPEAT
instruction. In LOGO 2 anything which follows the comma is
repeated the specified number of times - as long as it is separated
from the preceding command by a colon *’. Most other versions of
LOGO (and there is no standard LOGO) separate out the portionto
be repeated by some form of brackets (usually square).

Another way of producing a square, in Research Machines
LOGO (for the RML 380Z and 480Z microcomputers), is

BUILD SQUARE
REPEAT 4 FORWARD 100 AND RIGHT 90
END
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and instead of the word TO there is the word BUILD. In RML
LOGO you build a square, rather than explaining how ro make a
square. Also, the portion after the REPEAT 4 is very like that of
LOGO 2, but instead of the colon thereisthe‘AND’. RML LOGO is
very different from most other versions, though it is a complete
version.

In TI LOGO (for the Texas Instruments T199/4A), a rather more
‘standard’ implementation, the definition would be:

TO SQUARE
REPEAT 4[FORWARD 100 RIGHT 90]

END

and is the most common form of the definition, which should work
for most LOGOs.

Variable thinking

Whatever we say about the procedure/command SQUARE, it is
certainly rather inflexible. How many of us are satisfied with just
one size of a square, even though we can tilt it and move it around?

To draw squares of different size sides in TCL, we modify the
definition of SQUARE to:

TO SQUARE2 :SIDE
REPEAT 4 (FD :SIDE RT 90)
END

and we have introduced a new idea, the idea of a variable (which in
this case is called :SIDE). The variable has a preceding colon *” to
indicate that it is a variable rather than a command - :SIDE is not a
directive to do anything.

The command FORWARD (or, in the shortened version, FD) is
usually followed by a number, where the number can vary and
indicates how far forward we intend to go. The command is said to
take one ‘parameter’, one item which sets limits on what is to be
done. The command RIGHT (or RT) also has one parameter, which
gives the extent to which the turn is to the right.

In SQUARE?2 there is one parameter, the variable :SIDE, and
:SIDE represents all the possible values we might wish for the sides
of the square. We call it :SIDE to make the meaningeasier to follow.
We could have called it :XYZ and it would still have worked. For
example,
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TO ABC :XYZ
REPEAT 4 (FD :XYZ RT 90)
END

would also draw a square of varying side, but its function takes some
working out.
How do we use SQUARE2? We simply

SQUARE2 150

to draw a square of side 150. If we enter
SQUARE?2 100 SQUARE2 200

s s e e, e S S Sy e

e ey o e

Fig. 2.5. A square in a square.

we produce two squares with the same corner, one twice as bigas the
other (see Figure 2.5). When we introduce a left turn of 45 degrees
into the arrangement

SQUARE?2 100 LEFT 45 SQUARE2 200

we produce Figure 2.6.

B
-

Fig. 2.6. Rotated square.
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More variability

There is no reason why we need to only have one parameter (and
therefore one variable). Consider the command MANYSIDES.

TO MANYSIDES :SIDE :TURN
WHILE KEY=0(FD :SIDERT :TURN)
END

This has two parameters (the variables :SIDE and :TURN), a new
controlling command (WHILE), and a special TCL function
(KEY).

If no key on the keyboard has been depressed, then the special
TCL function KEY is equal to zero (i.e. it is true that KEY = 0).
WHILE it is true that KEY = 0, the portion in round brackets is
repeated. To stop the procedure MANYSIDES a key has to be
pressed.

WHILE is a useful command which is not common to all
LOGOs, though it is always possible to define such a procedure
using lists (of which, later). WHILE is also a command in RML
LOGO.

To draw a square of side 100, therefore, we can use

MANYSIDES 10090

and when the square is complete, we press a key to stop. Todraw an
equilateral triangle (i.e. one whose angles are all 60 degrees) let’s use

MANYSIDES 100 60

Instead of an equilateral triangle, however, we have produced the
shape shown in Figure 2.7. This shape is not an equilateral triangle,

Y

Fig. 2.7. MANYSIDES :TURN 60.
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rather it is a hexagon. This is a common error - I remember making
it myself. We can learn from this error, as follows.

The turn we make is the ‘exterior’ angle of the shape, not the
‘interior’ angle, so the correct instructions are:

MANYSIDES 100 120
and we produce Figure 2.8. Trying
MANYSIDES 200 112

Fig. 2.8. MANYSIDES :TURN 120.

produces the rather more complex shape in Figure 2.9.

Fig. 2.9. MANYSIDES :TURN 112,

Editorial functions

To talk glibly of entering new commands, or altering old commands
to produce slightly different results, ignores a basic problem with all

computer languages. Changes do not ‘just happen’, they have to be
made.
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Procedures do not appear out of thin air, they have to be entered
into the computer’s memory, and stored somewhere. The reason I
have used TCL as an example so far (and remember it works on the
Dragon 32 as well) is because the distinction between the various
elements in using LOGO is made very clear.

When LOGO starts on the Tandy Color Computer the user is left
in BREAK mode. On the screen there is

LOGO:

and it is not possible to run any LOGO procedures. BREAK mode is
effectively the organising mode: it is used to control devices such as
the printer or cassette recorder, and is the means by which the other
modes are entered. To press the BREAK key at any time sends you
back to this mode.

The next mode is the RUN mode, the mode in which you type in
the commands, actually to get the turtle to perform some action or
other. Some commands (such as WHILE) cannot be used directly in
RUN mode; such commands can only be used within the body of a
procedure. In RUN mode it is only possible to have one command
on a line.

The lines

FD 200
SQUARE?2 300

are both admissible in RUN mode, but the line
TO RECTANGLE :LENGTH :BREADTH

is illegal. The above line is part of a procedure definition, and one
can only form procedure definitions in another mode (EDIT).
Leaving RUN mode to return to BREAK mode, one enters EDIT
mode from the BREAK mode.

In EDIT mode the definitions are not checked for accuracy, but
definition checking happens in RUN mode.

A final mode, and one that can be entered directly from RUN
mode, is DOODLE mode. By use of the keys on the top line, the
turtle can be instructed to move according to the directions given on
the keys. This is exclusive to TCL (as far as I know), and allows small
children control over the turtle even when they cannot spell.

All LOGOs have to have some form of edit mode, but often it is
possible to enter procedure definitions in the equivalent of a RUN
mode. To edit a definition called BOOBY, for example,

EDIT “BOOBY
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is entered. The double quote “ informs the system to look at the
procedure of that name, and not to activate that procedure - though
for some LOGOS the quotes are not needed. Other names might be
used, e.g. RML uses CHANGE and also has RESTORE which
means ‘forget that last CHANGE".

Making a list

Some LOGOs, e.g. TCL and LOGO 2, are principally mechanisms
for turtle graphics, and - at an introductory level - they have a good
deal to offer.

Once the user wishes to progress beyond mere pictures, LOGO
offers far more than just a nice way to use procedures. LOGO offers
list processing, with many functions taken from an Artificial
Intelligence (AI) language called LISP.

A list in LOGO is normally that between square brackets, which
might explain why both TCL and LOGO 2 have unconventional
methods of showing the list of instructions after a REPEAT (i.e.
they do not possess list processing). In the line

REPEAT 1 [FD 100 LT 37 BK 100]
or
REPEAT 1 [FORWARD 100 LEFT 37 BACK 100]

the command REPEAT expects a list following the first parameter
(in this case 1). The list is the second parameter.

There is a special LOGO word, normally called something such as
RUN, which takes a LOGO list as a parameter, and then treats the
list as if it were a sequence of commands typed in at the keyboard.
The sequence

RUN [FD 100 LT 37 BK 100]

is exactly the same as the REPEAT 1 sequence. RML LOGO is,
again, rather different as it expects the ‘name’ of a sequence, not the
sequence itself. This may be due to RML LOGO not using a list to
follow REPEAT (because REPEAT 1 is the same as RUN).

A simple example of how RUN might be used in a more common
form of LOGO is

TO VARYING.ACTION :INSTRUCTIONS
RUN :INSTRUCTIONS
END
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so that

VARYING.ACTION[REPEAT 4[FD 100 RT 90]]
will draw a square, whereas

VARYING.ACTION[FD 200]

will draw only a line. This is a powerful little facility, with great
potential in more complex procedures.

A proper LOGO has list-processing, but turtle graphics in
themselves are so immediate and useful that a good version of
LOGO-style turtle graphics can be a useful teaching and learning
device. List-processing is so wasteful of computer memory that in
many cheaper (and smaller) LOGOS it is only worthwhile
implementing a version of turtle graphics.

As we will discover, however, a LOGO-style turtle graphics
requires more than a few turtle commands: it requires the
implementation of the LOGO philosophy.



Chapter Three
LOGO Here and Now

It is best to do things systematically, since we are only human, and
disorder is our worst enemy.

Works and Days by Hesiod

There are languages and languages. Some languages, like LOGO,
work as soon as you type something into the machine. Some
languages, like BASIC, work when you ‘run’ a program. For some
languages, such as Pascal, the program instructions have to be
stored away, then ‘compiled’, and only then run. The last method is
the most tedious to use, and the first is the most immediate. LOGO
is a here and now language - which, for the user, is the least difficult
method of entering programs.

Getting the sequence right

When a line
FORWARD 100

is entered, the line is drawn as soon as the carriage return is pressed
(all lines are ended by a carriage return, or the computer would not
know when the end of a line had been reached). Nothing happens
when we enter

RIGHT 90

except that we might see the ‘turtle’ change the direction in which it
is pointing. It all happens there and then, here and now.

It is possible to draw quite complicated shapes at the keyboard, or
‘doodle’ as it is called in Tandy Color LOGO. Though this might
seem rather childish, or pointless, something is being learned. That
which is being learned is the idea of sequential thinking. If it is
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necessary to perform action B before action C, and to perform
action B one needs to have performed action A, then obviously the
sequence of actions is A, B, C. This sounds very simple, yet such a
sequence can often be lost in confusion. Consider the three
commands:

FORWARD 100
RIGHT 90
FORWARD 150

These produce the result shown in Figure 3.1(a). Now make a small
change in the order:

FORWARD 100
FORWARD 150
RIGHT 90

(a) (b) (c)

Fig. 3.1. Three commands.

The result is rather changed (Figure 3.1(b)) - a straight line is drawn
rather than an L-shape. The line points directly upwards, because
this is the way we will suppose that the turtle starts: in the middle
pointing upwards (common to many LOGOs).

As a final change, examine:

RIGHT 90
FORWARD 100
FORWARD 150

and try to predict the result before checking with Figure 3.1(c). How
many different ways are there to arrange these three commands?

Answers: A straight line going from left to right, and six
arrangements of these three commands. Some arrangements have
identical results, because FORWARD 100 FORWARD 150 is
identical to FORWARD 150 FORWARD 100 (and both are the
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same as FORWARD 250). When drawing a shape interactively,
such mistakes in the ordering are soon spotted, and the fact that
commands are in an incorrect order is soon discovered.

To be able to think logically partly involves the ability to ‘think
through’ consequences. With children, one way of helping them to
learn to think is to get them to trace out the workings of the screen
turtle on the floor. They can either use a mechanical turtle, or they
themselves can be the turtle, tracing out the moves by walking
forward so many steps, and turning through so many degrees. At
one time this sequencing was shown by what are called ‘flow charts’,
but LOGO dispenses with the need for flow charts because the
sequencing is made plain within the language (see Chapter 4).

An instant calculator

Just as it is possible to work one’s way through a turtle shape
instantly, it is possible to use LOGO as little more than an instant
calculator. To enter, in - say - Apple LOGO:

PRINT 12-13/5
results in the output
>>9.4

because the computer acts sequentially (in this book, computer
output is preceded by >>>). 12 is taken, then 13 is taken and divided
by 5. The result of the division (2.6) is then subtracted from 12. The
order is important, as is shown in the following examples:

PRINT 13—-12/5
>>10.6

but,
PRINT (13—12)/5
>>0.2

and to disentangle such simple arithmetic examples one needs to
have a feeling for the order in which actions occur.
If we entered the following very simple sum, in any LOGO,

3+4

an error should be produced. The system will tell you that it does not
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know what to do with 7. It’s sensible really; it has calculated the
number 7 but then it is just left hanging around waiting to do
something with the number. It could, for instance,

FORWARD (3+4)
or

LEFT (3+4)

but it needs to be told to do something. The system has nowhere to
put the 7, thus the complaint, ‘What’s up, Doc?.
Trying the commands

FORWARD 50 RIGHT (0+10)

FORWARD 50 RIGHT (10+10)

FORWARD 50 RIGHT (20+10)

FORWARD 50 RIGHT (30+10)

FORWARD 50 RIGHT (40+10)
and onwards produces Figure 3.2. If the progression is continued,
the result is Figure 3.3. There are easier ways to draw Figure 3.3, but
more of that later. o

Fig. 3.2. A few lines and turns.

A list of items

Returning to the last part of Chapter 2, the portion after the
REPEAT and number was called a list, and a list was indicated by
square brackets.

LOGO always expects to have to do something, the ‘What’s up
Doc? syndrome. So, to enter a list as, for example

[THIS IS A LIST]

produces an error. The system has to be told todosomethingwiththe
list. The obvious thing to perform with a list is to print it out. For
example:

PRINT [THIS IS A LIST]
>> THIS IS A LIST
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Fig. 3.3. Many straight lines.

and, if we entered

PRINT FIRST [THIS IS A LIST]
we would produce

>>THIS

The LOGO procedure FIRST takes the following list (i.e. [THIS IS
A LIST]), and isolates the first element of the list. Entering

FIRST [THIS IS A LIST]

will again give an error, because we have not asked LOGO to do
anything with THIS. The converse of the procedure FIRST is
BUTFIRST (though it is called REST by RML),

PRINT BUTFIRST [THIS IS A LIST]
>> IS A LIST

and

PRINT FIRST BUTFIRST [THIS IS A LIST]
>> 18

However,

PRINT BUTFIRST FIRST [THIS IS A LIST]
>> HIS
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The FIRST of the list is THIS (a word) and BUTFIRST either acts
on a list to give all but the first element or - more important here -
acts on a word to give all but the first character.

As with simple arithmetic and simple turtle graphics, the order in
which we enter list operations is very important. The order in which
operations are performed is backwards, in that the first procedure to
be activated is the one on the right, closest to the list.

Names, values, and actions

FIRST can act on a word

PRINT FIRST “WORDEXAMPLE
>>W

where the double quotes “ before WORDEXAMPLE indicate that
the word as such is meant, not its value or its action as a procedure.
To clarify:

® SQUARE is treated by LOGO as a procedure.

® “SQUARE is treated by LOGO as the name of something. (In
RML LOGO it is written ‘SQUARE.)

® :SQUARE is treated by LOGO as the value of the thing named
SQUARE, and in some LOGOs it can also be written THING
“SQUARE. (In RML LOGO it is also written VALUE
'SQUARE).

There are certain distinctions which have to be made. A procedure,
for example, has a name, and if LOGO comes across that name by
itself

A.PROCEDURE

then it will try to activate A.PROCEDURE. If we wish to edit the
procedure, we use the name of the procedure (and not its action).
Thus,

EDIT “A.PROCEDURE

will put us into editing mode in some LOGOS, but in some LOGOs
the quote is omitted. TCL has a different system, and RML has
CHANGE.

To assign a value to a name, we use the procedure MAKE. To
make the value of the variable A.NAME equal to 7, we use

MAKE “A.NAME 7
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That is, use the procedure MAKE to operate on the item named
A.NAME, and store the number 7 in that item. To get hold of the
value stored in the item A.NAME, we use the colon (or THING or
VALUE). Thus,

PRINT :A.NAME
>>7

or (in Apple LOGO and similar)

PRINT THING “A.NAME
>>7

or (in RML LOGO)

PRINT VALUE’A.NAME
>>1

but we can go much further. Figure 3.4 shows what is at work here.
The name of an ITEM is given by “ITEM CITEM in RML), and the

“ITEM :ATEM
| NAME |

Fig. 3.4. Names and values.

item also stores a value, which is given by :ITEM. In a sense, the
name ‘points’ to the value. The operation to move from the item to
its value is the colon (or THING or VALUE).

Try to see if you can work out the reasons for the following
sequences:

(1) MAKE “AUTHOR “BORIS.ALLAN
(2) PRINT :AUTHOR
(3) >>BORIS.ALLAN

and then:

(4) MAKE :AUTHOR [INTRODUCING LOGO]
(5) PRINT :AUTHOR

(6) >> BORIS.ALLAN

(7) PRINT :BORIS.ALLAN

(8) >>INTRODUCING LOGO

The item named AUTHOR stores the value “BORIS.ALLAN (1),
and so when we print the value of AUTHOR (2) we print the name
BORIS.ALLAN (3). The value stored in AUTHOR (i.e. the name
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“BORIS.ALLAN) is made to store the value [INTRODUCING
LOGO] (4). To print the value of AUTHOR (5) still gives the name
BORIS.ALLAN (6). To print the value contained in BORIS.ALLAN
(7) is to output [INTRODUCING LOGO] (8). Figure 3.5 shows the
sequences at work in this example.

“AUTHOR :AUTHOR
“BORIS.ALLAN |
“BORIS.ALLAN :BORIS.ALLAN

L “}———{INTRODUCING LOGO] |

Fig. 3.5. Naming names.

These distinctions will become clearer as we progress, and now we
progress to procedures.

Translating LOGO

LOGO is ‘here and now’, BASIC can be ‘here and now’, and many
other languages (e.g. Pascal or COBOL) are very much ‘there and
then’. The difference comes from the way in which each language is
translated by the computer, translated from words we hope we
understand, to machine instructions that the computer can
understand. Put more simply, as there are many half-way houses, we
can say that computer languages are either interpreted, or they are
compiled.

The easiest to understand is the process of interpretation, which
might be considered as the simplest way out of the translation
problem. On the one hand, interpretation is the simplest method of
translation and, on the other hand, quite often an interpreted
language is easier to use - particularly for the novice.

Suppose we have typed in the line

FORWARD 100

to which we get an instant reaction: the turtle moves forward 100
units. The LOGO interpreter takes that line which has been typed in,
and then the interpreter has to translate the LOGO instruction
(instantly) into machine instructions (sometimes termed ‘machine
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code’). There are many machine instructions needed to perform even
the simplest LOGO command.

Once the line has been interpreted and obeyed, that line is-
forgotten. If, later, another line

FORWARD 100

is encountered, then that line is interpreted anew: therefore an
interpreted language such as LOGO (or BASIC) tends to be slower
than a language (such as FORTRAN) which is compiled.

The difference between an interpreter and a compiler can perhaps
be understood in the context of another form of translation. If one
were filling in a form, written in a foreign language, and one were
being assisted to fill in the form, then the assistance might take one
of two extremes. If the form were complex, but notall parts needed to
be filled in, then the translator might interpret each line as he came
to it. (Note that many lines would not be translated, because they
would not be necessary.) This form of translation is least difficult in
terms of the preparation needed; the translator need only know the
language, and not the form. A rather more thorough method would
be to compile a complete translation of the form into English. Far
more work would go into the initial process of translation but, once
compiled, the English version would be much quicker to use.

The key is the statement ‘Far more work would go into the initial
process of translation’. For a novice experimenting with a language
(whether the language be BASIC or LOGO or whatever), the greater
speed of a compiled version is immaterial given the much greater
time to produce results. With a conventional compiled language it is
impossible to use ‘throw away’ lines such as

FORWARD 100

because it is too difficult to implement.

Translating procedures

‘The moving finger writes, and having writ, nor all thy piety nor wit
can cast it back to cancel half a line’. This is the same as saying that
once

FORWARD 100

has been entered it is lost: it cannot be recalled.
What happens, therefore, when we define a procedure? Consider
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TO TRI
FD 100 RT 120
FD 100 RT 120
FD 100 RT 120
END

in which there are three FD 100 (i.e. FORWARD 100) instructions.
We have to remember these three commands, because we will need
to use TRI on more than one occasion. Why does the turtle remain
still while we enter these commands? (Actually, in some peripheral
versions of ‘pretend’ LOGOs, the turtle does move.) How do I use
the new procedure/command TRI? I use it in this type of way:

TRI MOVE 150 TRI

In this case, the fact that I have used TRI twice is forgotten by the
system as soon as the two TRIs have been obeyed. However, the
system does not forget that TRI does a certain pattern of moves and
turns.

The difference between FORWARD when it is within the
procedure definition (i.e. between the TO and the END), and when it
is used normally, has its parallels in BASIC. In BASIC, to enter the
line

PRINT “#”
is instantly to print a # on the screen. To enter the line
100 PRINT “#”

is to store the line as part of a BASIC program, and the line will only
be activated when the program is RUN and that line is reached.

In LOGO, the FD and RT commands in the procedure TRI are
stored away, under the title ‘TRI’, and are not activated until that
procedure is used. When the procedure is used, the content of the
routine is interpreted in the normal manner (with due allowance for
parameters, local variables, and so on). To change the contents of
TRI is thus simple; the stored sequence is altered merely by use of
some procedure such as EDIT.



Chapter Four

LOGO Proceeds with
Procedures

Creative activity could be described as a type of learning process
where teacher and pupil are located in the same individual.

Drinkers of Infinity by Arthur Koestler

Though, as we have seen, it is possible to use LOGO as an instant
calculator, drawing machine, or player with words, we cannot
progress very far before tedium begins.

LOGO can be used instantly, but to perform anything really
worthwhile we need to have a rather more powerful set of LOGO
procedures than those which come with the language. We want to be
able to draw squares instantly, or have procedures by which we can
collect information in lists (and keep the lists), or we would like
procedures which do rather more than just add, subtract, multiply,
or divide.

Thinking constructively

When we think of ‘a square’ we think of the square in its entirety. We
do not really think of the four lines of equal length and the four right
angles (unless we are excessively mathematically conscious). We see
a square, which on reflection we can resolve into sides and angles. In
a similar way we see a table, and later might decide that it has legs
and a flat surface. We do not normally walk into the room and say
‘Oh look, an object with legs and a flat surface’. Instead, we perceive
the whole.

What happens, though, when we try to solve a problem? How
often do we see the problem as a whole, and only then consider the
constituent parts? In Lewis Carroll’s monkey puzzle, how many
perceive the parts before they see the whole? How many never see the
whole?
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How many books have you read which are no more than separate
little sections (each possibly admirable in itself) with little coherence
in the book as a whole? How many computer games have you
played, in which the game seems to be no more than separate
unconnected little sub-games?

Though it seems that we naturally perceive wholes before parts,
when it comes to problem-solving or creating new items we often
think of the parts before the whole - and the whole suffers. If we act
and think without reflection, we perceive wholes: if we have to think
about how to think, often we find the wholes become invisible.

LOGO tries to emphasize the power of thinking of the whole, and
also the power of then thinking of the whole as being made of parts
(smaller ‘wholes’). The parts might then be resolved into even
smaller parts, and so on. The key aspect to LOGO is that all the parts
are seen to be interrelated - a whole is composed of integrated parts.

Here is a LOGO procedure to make a table:

TO MAKE.TABLE
TAKE.FLAT.WOOD
REPEAT 4[DRILL.HOLE.IN.CORNER]
REPEAT 4 [MAKE.LEG INSERT.IN.HOLE]
STAND.ON.LEGS

END

TO MAKE.LEG
WHILE [NOT ROUND] [TURN.ON.LATHE]
END

and we could invent even more elaborate sub-procedures. To make a
table we still have to make the legs, but we do not first make the legs
and then see if we can find some way of assembling them. (I have
taken certain liberties with the LOGO language in the above
procedures.)

When one learns to play chess, it is easy to learn the moves. It is
more difficult to learn tactics in chess (i.e. combining moves to
produce an advantage), and it is most difficult of all to learn to play
strategically. Strategy is the combining of tactics and moves to
produce a winning, rather than a short-term, advantage. To play
chess well, one needs to be able to see the board as a whole (the
strategy) but also one needs to be able to appreciate the individual
elements, the tactics and the moves.

To think powerfully, to think constructively, we need to learn how
to take problems and resolve each problem into sub-problems so
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that each sub-problem is simpler to solve than the major problem.
Each sub-problem might then be resolved into even smaller
problems if necessary.

To concentrate on each individual element by itself, without any
attempt to see the whole, is a common failing of children - and of
comedians. There is something comical about the person who tries
to stop a table wobbling by cutting off pieces from the three longer
legs - particularly when the person gets it wrong and the table still
wobbles. In a silent movie, the comedian then saws off more pieces,
until the table has no legs left.

In real life, a person makes one more adjustment to a program - to
rid the program of yet another error - and the program gets more
and more complex. As it becomes more complex it gets even more
inefficient, and soon the program’s writer cannot understand the
program that has been written.

Figure 3.3 was the result of a large number of single isolated
LOGO procedures (FORWARDs and RIGHTs) and this is one
way to draw that Figure. There is a better way - there must be a
better way - but the way most people approach problems and
programs is to use many single instructions effectively. What is the
better way?

A better spiral

The initial sequence of LOGO procedures (see Chapter 3) was

FORWARD 50 RIGHT (0+10)
FORWARD 50 RIGHT (10+10)
FORWARD 50 RIGHT (20+10)

and so on. If we examine each line, it is of the form
FORWARD 50 RIGHT (ANGLE+10)

where :ANGLE takes the values 0, 10, 20, 30, 40 ... Suppose,
instead of 50, we just say :DISTANCE

FORWARD :DISTANCE RIGHT (:ANGLE+:INC)

and we replace 10 by :INC.

When we further examine the above line, we begin to analyse the
true nature of the problem, ‘What is :ANGLE?. ANGLE has the
previous value of ANGLE plus the value of INC, so we might write



LOGO Proceeds with Procedures 31

MAKE “ANGLE ((ANGLE+:INC)
FORWARD :DISTANCE RIGHT (:ANGLE+:INC)

and we find another pattern, that of ANGLE+:INC). If we could
use CANGLE®+:INC) only once, instead of twice, then we have
simplified a good deal.

Try defining a procedure, with parameters: DISTANCE, :ANGLE,
and :INC, which we will call INSPIRAL.

TO INSPIRAL :DISTANCE :ANGLE :INC
FORWARD :DISTANCE
RIGHT :ANGLE
INSPIRAL :DISTANCE (ANGLE+:INC) :INC
END

and let us see how this procedure works. Let us see what happens
when we enter: '

INSPIRAL 500 10

First the parameters DISTANCE, ANGLE, and INC take on the
values 50, 0, and 10. The command FORWARD :DISTANCE
moves 50 forward, the command RIGHT :ANGLE turns right
through 0 degrees, and then INSPIRAL :DISTANCE (:ANGLE+:
INC) :INC calls the procedure INSPIRAL with parameters 50, 10
(=0+10), and 10.

Procedure INSPIRAL is thus activated again, with different
parameter values. The main difference is that in the later call
:ANGLE is equal to the previous value of ANGLE plus the same
INC. This may seem complex at first, so we will try again. Instead of
writing

MAKE “ANGLE (:ANGLE+:INC)

we make the passing of parameters from procedure to procedure do
this operation. Each time we activate the procedure, it is termed a
‘call’. As part of the operation of the procedure ‘call’, it calls itself
again. So, when we make the first call of INSPIRAL at the end of
the procedure there is yet another call to INSPIRAL. When this new
call of the procedure is almost completed, it again calls INSPIRAL.
This succession of calls continues until the computer runs out of
memory. If we number the first call as Call 1, the next call will be
Call 2 and so on. Examine the values of the parameters at each call:

CALL 1 INSPIRAL 50010
CALL 2 INSPIRAL 501010
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CALL 3 INSPIRAL 50 2§ 1¢
CALL 4 INSPIRAL 5¢ 3¢ 1¢
CALL 5 INSPIRAL 50 49 1§
CALL 6 INSPIRAL 5p 5¢ 1¢

Note the similarity to the progression of FORWARDs and
RIGHTs, above. To get a procedure to ‘call itself’ can thus be very
helpful. In this case we can omit all the MAKEs, and the procedure
is very short and sweet.

To get a procedure to call itself is so helpful and so valuable that it
deserves a special name. The name is recursion, and Seymour Papert
thinks that recursion is one of the most valuable aspects of LOGO or
of computing languages in general. Thinking often seems to be
recursive, and ideas often reflect on themselves. Recursion is not
mysterious, it is really no more than an easy way to be repetitive -
well, perhaps slightly more.

INSPIRAL is a very simple little procedure, but a procedure
which can produce many outstandingly pretty and different results,
depending on the values we choose for the angle and increment.
Figures 4.1 to 4.5 show different curves for different values of these
parameters.

Fig. 4.1. INSPIRAL. :ANGLE=40 :INC=30.
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2 :INC=11.
10 :INC=80.
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Fig. 4.2. INSPIRAL. :ANGLE
Fig. 4.3. INSPIRAL. :ANGLE

:INC=80.

Fig. 4.4. INSPIRAL. :ANGLE=11
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Fig. 4.5. INSPIRAL. :ANGLE=12 :INC=80.

Learning with procedures

Imagine a child who has been shown the INSPIRAL procedure, and
who is trying different values to see the different results. The child is
the pupil, but the child is also the teacher because it is the child who
is deciding and directing what is to be done.

Papert sees the use of LOGO in schools as a subversive activity,
children taking control of their own computing environment,
children creating what he calls their own ‘microworlds’. What will a
child learn from INSPIRAL, what will anybody learn?

The first, and most obvious, thing to be learnt is the value of
conceptualisation. Any child, any person, who can draw pictures
like those we have seen in Figures 4.1 to 4.5 with so little effort, will
appreciate the value of the general approach. To draw these figures
step by step — as we tried in Chapter 3 - would be immensely tedious,
yet by forethought and some abstraction we have a general and
powerful tool called INSPIRAL.

Any person can appreciate that point - even at an early age - so,
when this person tries to draw other pictures, the incentive to
abstract and conceptualise is there. Conceptualisation works. The
child does not have to be told that this is ‘abstraction’ or
‘conceptualisation’; the child teaches himself that there is a powerful
way of approaching problems. The name is immaterial. It is the idea
that counts.

A second thing to be learnt is rather more mundane. We learn



LOGO Proceeds with Procedures 35

some geometry, the geometry of ‘inward spirals’ (the reason for the
name INSPIRAL). An inward spiral moves forward and keeps on
turning (as do all spirals) but the angle through which the spiral
bends gets greater and greater. Depending on the angles and rate of
increasing bend (i.e. :INC) sooner or later the spiral turns back on
itself.

Ultimately an inward spiral produces a closed curve; that is, the
turtle starts repeating its movements. Abelson and diSessa, in Turtle
Geometry (1980) show how even such a simply produced set of
curves is a rich source of mathematical ideas. The curves are
themselves so intriguing that their mathematical richness is almost a
bonus, and the full richness cannot be properly appreciated by
children at the primary level.

An ‘outward spiral’, as the name suggests, spirals outwards. A
procedure to produce an outward spiral is

TO OUTSPIRAL :SIDE:INC:ANGLE
FORWARD :SIDE
RIGHT :ANGLE
OUTSPIRAL (:SIDE+:INC) :INC :ANGLE
END

and some examples are given in Figures 4.6to 4.10. These curves are
closer to what most of us think are ‘spirals’, and those for angies of
60 degrees and 120 degrees correspond to familiar shapes. Figure
4.6 is the most spiral-like.

Fig. 4.6. OUTSPIRAL. :ANGLE=23.
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:ANGLE=60.

7. OUTSPIRAL.

ig. 4.

ANGLE=120.

.8. OUTSPIRAL.

ig. 4
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Fig. 4.9. OUTSPIRAL. :ANGLE=117.

=80.

Fig. 4.10. OUTSPIRAL. :ANGLE
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With outward spirals the child has an opportunity to find out
about prime numbers and factors. The child teaches himself to
distinguish between those numbers/angles which give regular
spirals (such as the angles 60, 72, 90 or 120) and numbers which
produce less regular spirals (e.g. 117). Sooner or later (and often
sooner) the child teaches himself to divide the angle into 360, to see
if the result is a whole number.

Whole number results produce regular spirals. A regular spiral is
produced when the angle is a factor of 360. One way to produce a
very irregular spiral is to choose a large prime number, and the child
discovers what are prime numbers by doing, rather than by listening.

How does OUTSPIRAL work? Let us try by calls,

CALL 1 OUTSPIRAL 102 117
CALL 2 OUTSPIRAL 122 117
CALL 3 OUTSPIRAL 142 117
CALL 4 OUTSPIRAL 162 117
CALL 5 OUTSPIRAL 182 117
CALL 6 OUTSPIRAL 202 117

For the result, see Figure 4.9. We can see that what happens is that

the turns are regular, but the distance moved forward is steadily
increased.

A regular spiral

Figure 4.11 shows a special spiral, an inward spiral where the

————

e, —

Fig. 4.11. INSPIRAL. :ANGLE=1 :INC=0.
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starting angle is one degree, the size of each step is 50 units, and the
increment to the angle is zero. The result is remarkably like a circle
(though the printer routine used makes the circle look slightly
squashed).

Figure 4.12 shows another circle, drawn by use of OUTSPIRAL.

- .

Fig. 4.12. OUTSPIRAL. :ANGLE=1 :INC=0.

In this case the angle is one, the initial length is 50, and the increment
in length is zero. For the case where there are no increments, both
procedures produce the same result - a circle. When an
OUTSPIRAL meets an INSPIRAL we have a circle.

Isolating the common element of both procedures, when the
increments are nil, we find that the key is the pair of moves

FORWARD :DISTANCE
RIGHT :ANGLE

repeated. The number of times we need to repeat the sequence
depends on the value of ANGLE (i.e. :ANGLE). The child has to
work out how the : ANGLE affects the number of repetitions. In this
way they encounter the ‘total trip theorem’.

Think of the turtle moving round the circle. Simulate (copy) the
action in your mind, or walk round in a circle, or watchaturtle onthe
floor. To draw a circle by turning slightly, going forward, turning
slightly, going forward ... means that the turtle turns full circle - the
turtle turns through 360 degrees. The turtle always turns through
360 degrees, no matter what angle is provided for each turn.

If :ANGLE is 90 degrees, then a square is drawn, but the turtle (on
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its total trip) will go through 360 degrees (4 X 90 degrees). In
MANYSIDES the reason why we had to turn through 120 degrees
to draw an equilateral triangle was that the total trip had to be 360
degrees, and 120 = 360/3. An angle of 60 degrees produced a
hexagon because 60 = 360/6.

A circle is really no more than a many-sided regular figure (it
could be drawn by MANYSIDES with: TURN of ). A procedure to
draw a circle is

TO CIRCLE :SIDE
REPEAT 360
[FORWARD :SIDE RIGHT 1]
END

and this produces circles exactly like those in Figures 4.11 and 4.12.
This is rather a slow way of drawing circles and, given the resolution
of most LOGO graphics, rather too fine. (In Tandy Color LOGO,
the above procedure - i.e. CIRCLE - will produce an octagon,
because TCL cannot cope so well with fine distinctions in angles
over small steps.)

Polygon approximations

Here is a different procedure (which will not work in TI LOGO or
TCL because those two work with whole numbers only):

TO POLYGON :ORDER :SIDE
REPEAT :ORDER
[FORWARD :SIDE/:ORDER
RIGHT 360/:0RDER]
END

and the procedure draws polygons of :ORDER number of sides,
where each side is :SIDE/:ORDER long.
Figure 4.13 is the result of

POLYGON 10800 RIGHT 90
POLYGON 20 800 RIGHT 90
POLYGON 30800 RIGHT 90
POLYGON 360 800 RIGHT 90

which shows that for most visual purposes a thirty-sided polygon
looks like a circle. A child, who realises that a circle is little more
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Fig. 4.13. Polygons.

than a series of many straight lines, has begun to use one of the most
important ideas of mathematics.

It could be thought that this idea started with Zeno and his
parable of Achilles and the Tortoise, and is the idea that the
continuous is no more than the limit of the discrete. The continuous
circle is no more than the limit of discrete polygons. If Seymour
Papert had been English, he might have called his method Tortoise
Geometry (the turtle is an American tortoise).

This powerful idea, and an idea many children soon grasp,
reaches its heights of mathematical applicability in differential
calculus. Children teach themselves to think naturally in terms of
differential geometry, without realising that they are following in the
footsteps of such giants as Newton and Leibniz.

Learning (teaching themselves) to draw circles in this manner,
children realise that the curvature of a circle is constant at all points
on its circumference. This highly abstract and conceptual point is
hidden when the formula of a circle is given as X2 + y2 = r2

What else have they taught themselves? One very important point
is that accuracy is a relative thing. A thirty-sided polygon is not a
circle but it is close enough to be regarded as a good enough circle.
‘Good enough’ is antithetical to some approaches to learning, where
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there are right and wrong answers, and woe betide those who get the
answer wrong! The‘black and white’ school of education is common
in mathematics at all levels. LOGO presents mathematics as if it
were a real, living subject and not some mystical holy writ. Though
mathematics is used extensively in the sciences, mathematics isnota
science. Mathematics is an art, a creative art.

Children teach themselves mathematics through a creative
process, because in producing pictures on the display the child has to
do something. The child is not being taught by a computer to answer
fixed questions - the child is teaching the computer to do new things.
Education is turned from the input of other people’s information to
the production of one’s own information.

The housing problem

One of Seymour Papert’s most arresting examples is that of a child
building a house. The house is as shown in Figure 4.14. The child
(see Mindstorms pages 14-15) has a plan of the house - that in
Figure 4.14, say - and has to decide how to draw the house. The child
examines the whole and then the parts within the whole. The child
sees a square and a triangle.

Fig. 4.14. A rough house.
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Suppose there is a procedure SQUARE :SIDE which draws a
square of :SIDE, and also suppose there is another procedure
TRIANGLE :SIDE. The child’s first attempt is

TO HOUSE :SIDE
SQUARE :SIDE
TRIANGLE :SIDE

END

which produces the result shown in Figure 4.15. It is an error, but
not one to be treated too seriously. We have to establish why there
was the error.

Fig. 4.15. A bugged house.

The error came because the square and the triangle started from
the same point (bottom left) and both were turning in a circle
clockwise - the total trip theorem,

We could sort this out at least two ways. Either we could tilt the
whole triangle left through 60 degrees and then tilt the house; or we
could move the whole triangle up the length of the house.

So, our alternative solutions are either

TO HOUSE :SIDE
SQUARE :SIDE
LEFT 60
TRIANGLE :SIDE

END

to produce Figure 4.16, and then a slight modification to produce a
PROPER.HOUSE

TO PROPER.HOUSE :SIDE
RIGHT 90
HOUSE :SIDE

END
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Fig. 4.16. A fallen house.

as in Figure 4.17. Or,

TO ANOTHER.HOUSE :SIDE
SQUARE :SIDE
PENUP
FORWARD :SIDE
PENDOWN
RIGHT 30
TRIANGLE :SIDE

END

will also result in the house drawn in Figure 4.17.

Fig. 4.17. A proper house.

The new command PENUP is an instruction to the mythical turtle
to raise the pen it pulls along, so that when it moves it doesnotdrawa
line. PENDOWN means that the turtle then draws again. The two
commands are not necessary, but I have used them to illustrate a
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useful facility. A child with an active mind will try to investigate the
different ways in which triangle and square can be combined to
produce a house. A line might be drawn, and the house tilted to be

placed on the hill.
I tried this, and forgot that the house had to be tilted at 90 degrees
to the hill. Figure 4.18 was the result - useful at a firework display,

.

Fig. 4.18. A rocket (?).

but an inconvenient place in which to live. An extra turn right
through 90 degrees gave the correct answer, that is, Figure 4.19. One

learns by one’s mistakes.
:':.“

Fig. 4.19. A house on a hill.
An ingenious person might add a chimney with smoke. Smoke,
remember, always goes straight up no matter what the house’s

inclination.
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Creative procedures

It is worth considering what is the difference between recursive
procedures and non-recursive procedures (those, for example,
which use REPEAT). When we were drawing the circles by use of
the spiral procedures, the drawing was by use of a recursive
procedure. Both INSPIRAL and OUTSPIRAL refer to themselves
within the body of the routine.

The spiral procedures were rather more general than the circle
procedure, or the polygon procedures, and by allowing the
procedure to continue without stopping there were no limits upon
the progress of the procedure. When we knew what had to be done,
we were able to be more deterministic - we could say how many times
an action was to be performed.

With LOGO’s powerful use of procedures (whether they are
recursive, or use REPEAT) the user of LOGO is able to exercise that
highly important, but sadly underused, faculty of imagination.
Though the teacher may assist at times, the true teacher of the child
is the child. The child is teaching himself when he is at work creating
effects, by developing new procedures, to extend his own
information base. Papert would say that the child is creating his
own microworld.

It is of note that, though I have called the child by the
conventional ‘he’, girls seem to benefit more from using LOGO than
do boys. Boys are not held back by LOGO, but girls seem to be able
to teach themselves more by using LOGO. Perhaps this is because
girls are more creative and respond to the challenge in LOGO - but,
then, who knows?



Chapter Five
Arithmetical LOGO

A mathematician, like a painter or a poet, is a maker of patterns. If his
patterns are more permanent than theirs, it is because theyare made with
ideas.

A Mathematician's Apology by G H Hardy

To add two numbers together, and store the result in a variable, is
simple to perform in most LOGOs. Thus,

MAKE “VAR 3+4

and the value stored in VAR is now 7. In Research Machines
LOGO, this line looks rather different:

MAKE'VAR ADD 3 4

and the difference is rather important.

Prefix and infix

In the first example of addition the key operation is +, which is fixed
in between the two numbers. The plus sign is an infix operator, and
conventionally (in arithmetic) most operators are infix. Versions of
LOGO which come from Seymour Papert’s home institution of
MIT tend to use the conventional infix notation.

In the second example the key operation is ADD, which precedes
the two numbers on which it operates. ADD is a prefix operator,
and only one version of LOGO exclusively uses this form: that which
comes from the Department of Artificial Intelligence at Edinburgh
University.

The MIT versions derive very clearly from the Papert philosophy
of the child directing the computer, with very little assistance from
adults. MIT versions (in which are included versions for computers
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from the Apple to the Spectrum) are all intended to assist in the
development of the individual.

The Edinburgh versions follow a different, less radical philosophy.
The Edinburgh versions are seen as being used in more
conventional, more teacher-directed environments, with far more
emphasis on ‘planning’ in an older sense than there is on ‘creation’ in
a newer sense. LOGO, in the Edinburgh version, follows LISP (an
artificial intelligence language) far more closely than does any other
version.

At MIT, LOGO took many ideas - especially those concerned
with analysing lists - from LISP, which was another MIT language
(invented by John McCarthy, it stands for ‘LISt Processing
language’). In the way in which LOGO was developed by Seymour
Papert and his co-workers, it did not take on board many of the
other LISP features, such as the exclusive use of prefix operators.
Edinburgh versions make LOGO appear as if it were a version of
LISP with the addition of turtle graphics.

To add together two numbers in LISP, and then to store the result
in a variable, we write (depending on versions):

(SETQ VAR (PLUS 3 4))

and the correspondence with the Edinburgh version of LOGO is

clear to see. All we need do is to change SETQ to MAKE, PLUS to

ADD, and ignore the brackets: they are then the same. There are

some advantages to the prefix method, in that its supporters claim

that the prefix method is much more inherently logical and,

therefore, clear. In fact, many LOGOS have both systems at once.
Suppose we wrote, in an MIT version,

MAKE “VAR 3 -4

with a space between the 3 and the minus sign. Do we mean that
:VAR is to be 3, and —4 is for something else? Do we mean :VAR is
—1? Is the space important, or is it just there by accident, for no
reason? Note that

MAKE “VAR (3 —4)

is not ambiguous, which is why I have used this method for
collecting terms together.

In Waterloo LOGO (for the IBM PC), there are two forms of
minus sign:

3 4



Arithmetical LOGO 49

means —1, whereas
3~ 4

means 3 and —4. The ~ (tilde) is a ‘unary’ minus. It does not mean

subtract, it just means that this is a minus number. In this LOGO,

3 —4 (wherever the spaces) is always —1 and 3 ~ 4 is always 3 and

—4. There is no unary plus in Waterloo LOGO because we usually

write 3 4 when we mean 3 and 4, and rarely write 3 +4.
Consider the following RML line of program:

PRINT MULTIPLY ADD 12ADD 2 DIVIDE 105
>> 12

and compare it to a more conventional LOGO form:

PRINT (142)*(2+10/2)
>> 12

and then to the equivalent line of LISP (note that LISP is integer
only)

PRINT (TIMES (PLUS 1 2) (PLUS 2 (QUOTIENT 10 5))))
>> 12

LISP is certainly the most confusing version of the three for the
uninitiated. For most people the MIT version makes most sense.

Planning versus creativity

The LOGO developed at Edinburgh is the result of a fairly small
research project (involving only forty children of average ability
between the ages of 12—15 years). Given the small number of
children, and given that those involved in the research project came
from a department of Artificial Intelligence, perhaps the influence of
LISP is not strange.

The MIT LOGOs have been researched on a far greater
number of children, in many more differing environments, than the
Edinburgh style of LOGO. This is one reason why I think that the
MIT versions are superior: they have been tried with many more
children, in a wider range of environments, than has the Edinburgh
version.

Another reason why 1 believe that the MIT versions are
conceptually superior to the Edinburgh version is that I believe the
MIT view of the place of LOGO in education is the correct view.
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Seymour Papert and his co-workers see LOGO as an exercise in
which children are the directors of their own work, they work in
their own way, at their own pace. What the child learns, and in what
order, partly depends on the child, and partly depends on the
suggestions, hints, and clues which others provide. In the Papert vision,
the ‘others’ are as likely to be other children and, in fact, are even
more likely to be other children than they are to be adults.

At Edinburgh, the approach contravened the true spirit of the
free-wheeling LOGO philosophy from MIT. The Edinburgh team
used LOGO within a conventional class situation, with the intent to
teach specific topics in a specific order. In this style the child has to
follow a set pattern of topics, rather than the child creating his own
way through his own topics. Edinburgh LOGO is rather more staid
in its intent than the intentionally radical MIT LOGOs.

As those at Edinburgh did not want to cause confusion over the
meaning of spaces, they set up a very firm (highly LISP derivative)
way of expressing what was to be done. As there might be confusion
over the meaning of ‘3 —4°, for example, this was forbidden by the
Edinburgh dialect of LOGO.

The Edinburgh version seems to be going back to the ‘no errors
here’ attitude towards education. This is more than slightly
unfortunate, as this is the version available on Research Machines,
and many schools in Britain already have RML machines.

The philosophy which underpins Edinburgh LOGO means that it
is not the best version to use. In my opinion, Edinburgh LOGO
needs to be tried out on many more children, and improved as a
result.

An arithmetical procedure

I make no apologies for the choice of my first example. This is an
example which is so frequently used to demonstrate arithmetical
programming that the expert will yawn when I say it is the ‘factorial’.
It is, however, a very good example, particularly if we are also
examining the differences in LOGO philosophies.

The factorial of the variable N is defined is being I)X2X3X.. X(N—1)
XN. In some computer languages, with facilities for loops, the factorial
is most easily calculated as the product of the successive values of the
loop counter. LOGO does not have a loop facility, so what do we do?

The factorial of 1is 1, that of 2 is 2, that of 3 is 6, and the factorial
of 4 is 24. The factorial of N+1, it would seem, is equal to N+1 times
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the factorial of N. If we set the factorial of 0 equal to 1, and disallow
any negative values, then the progression works.

The calculation of the factorial seems rather recursive. Here is an
attempt in a normal (i.e. MIT) LOGO

TO FACT :N
IF :N< 1 THEN OUTPUT 1
ELSE OUTPUT :N*:FACT :N—1
END

where the IF line is typed in as one physical line on the computer.
The new command OUTPUT means that the evaluation of the
procedure is stopped at that point, and the value returned by the
procedure is that which follows OUTPUT.

This should work for most MIT-based LOGOs, even if it is an
integer-only LOGO (other than TCL). In RML LOGO we might
enter

BUILD FACT :N
IF LESSQ :N | THEN RESULT 1 ELSE
RESULT MULTIPLY :N FACT SUBTRACT :N 1
END

and this confusing method of presentation is why I willignore RML
LOGO in the rest of this chapter.

A further way of writing this version of the factorial, for Apple
LOGO, is

TO FACT :N

TEST:N<1

IFTRUE OUTPUT 1

IFFALSE OUTPUT :N*FACT :N—1
END

This is another Apple LOGO version of the IF THEN ELSE.

The factorial will not be calculated if the input is not a number
(e.g. if a person enters ‘five’). It will work, but not give the correct
answer, if the input is not an integer. (The equivalent of the factorial
for non-integer values is the gamma function.) We will ignore the
possibility of non-numerical input, but will allow the possibility of a
non-integer input - though if the user is the person who has created
the procedure, it is not a likely error.
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The revised procedure is

TO FACT :N
IF NOT (INTEGER :N = :N) THEN STOP
IF :N <1 THEN OUTPUT
ELSE OUTPUT :N*FACT :N-1
END

and the extra line says that if the integer part of the number is not
equal to the number (i.e. it is not an integer) then stop evaluating the
procedure.

A function graph

Why not draw a graph of the factorial? To draw a graph all we need
to do is to connect some points by using the turtle. Sounds simple?

To fix the points to which the turtle is to move in its journey, we
use

SETPOS [ :X :Y ]

and this command moves the turtle to those absolute coordinates, as
given by the two elements in the list. If we wish to move to
coordinates 30 and 40, then we enter

SETPOS SENTENCE 30 40
or
SETPOS [30 40]

The new command SENTENCE takes the two inputs and turns
them into a list - and SETPOS expects a list. SETPOS is an Apple
LOGO command, and other versions of LOGO have different
versions of the command. Many of the other versions do not have a
list as input, but I will use Apple LOGO because we learn through its
use of SENTENCE.

Let us start. The first procedure will draw the graph, for values of
the number from 1 to 7,

TO GRAPH
LOCAL“X*“Y
MAKE “X 0
REPEAT 7[MAKE “X :X+1 MAKE “Y FACT :X
SETPOS SENTENCE :X*10:Y/7]
END
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and this is all that is required.

The variables X and Y are defined as LOCAL to that procedure:
this means that if we have defined X and Y in some other procedure,
the two sets will not be confused. X is given the starting value 0.

The next portion is repeated 7 times, X is made larger by 1,and Y
is made equal to the value of the factorial of X. The turtle
is moved to the value of X times 10, and to the value of Y divided by
7. End of graph routine.

Common Denominators

Take two integers, say 48 and 30. We need to find what is the
greatest common denominator, that is, which number is the largest
number which will divide exactly into 48 and 30. The answer is, of
course, 6.

Suppose we wish to mechanise the process, how shall we proceed?
Obviously one way to proceed is to take all the numbers from 1
upwards, and successively divide the numbers into 48 and 30, until
we find the largest number which will divide exactly into them both.
Seems rather complex, really, because we will have to keep a check
on what was the largest number until we have finished.

Try to think how we can simplify matters. If the largest common
denominator is 6, it will also divide into 48-30 = 18. It is this simple
fact which gives an exceedingly easy way to calculate the greatest
common denominator.

If the GCD (greatest common denominator) divides into 18, 30,
and 48, it must also divide into 30-18 = [2. The GCD must also
divide into 18-12 = 6, and then 12-6 = 6. When we reach the stage
6-6 = 0, we know we have solved the problem, the GCD is 6.

Try another set of numbers. Imagine a child has been introduced
to the GCD method, and then has to decide what to do with that
method. The numbers are 96 and 30.96-30=66 which is still greater
than 30, so 66—30=36, and then 36—30=6. Another way of arriving
at 6 is to try 96 MODULO 30, that is, the remainder given when 96 is
divided by 30. The remainder when 30 is divided by 6 is 0, and so
when the remainder is zero, we know the divisor is the GCD.

A final example we can try is 21 and 8. Set it out as a sequence

21 8
8 5 (21 MOD 8)
5 3 (8 MOD 5)
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3 2 (5 MOD 3)
2 1 (3 MOD 2)
1 0 (2 MOD 1)

and the greatest common divisor of 21 and 8 is 1. To define the
routine we will try:

TO GCD :BIGGER :SMALLER
IF:SMALLER =0 THEN OUTPUT :BIGGER
ELSE OUTPUT GCD :SMALLER
REMAINDER :BIGGER :SMALLER
END

and this will work well, as long as :BIGGER is greater than
:SMALLER - but what if it is not?

We need to have some facility to exchange values, if it is necessary.
We can define another procedure to cope with this problem:

TO GCD2 :N1 :N2
IF :N1 >:N1 THEN GCD :N1 :N2
ELSE GCD :N2:Nl
END

though it would be possible to incorporate such a check in GCD this
makes the sequence clearer. The check on the size of the numbers is
only needed -once, because the remainder must be less than the
divisor.

The lowest common multiple is that number which is the smallest
number into which both numbers divide exactly. The LCM is
related to the GCD by the simple arithmetical expression:

:NUMBER1*:NUMBER2/(GCD2 :NUMBER| :NUMBER?2)
so the LCM is defined by

TO LCM :N1:N2
OUTPUT :N1*:N2/(GCD2 :N1 :N2)
END

This shows how we can create a package of little procedures to
investigate elementary number theory, to be related with some of the
work on spirals.

In some LOGOs, we are able to create ‘packages’ which are then
separate entities. These packages are then treated as entities for
storage or erasure. In Apple LOGO, for example,

PACKAGE “NUMBER. THEORY “GCD “GCD2 “LCM
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would put the above routines into the package NUMBER.
THEORY. The package can be protected from accidental erasure
and interference by using BURY “NUMBER.THEORY, which
allows the routines to be used, but not to be altered. (Its reverse is
UNBURY.)

Numbers

As I noted earlier, the size of the factorial rapidly increases. The
factorial of 11 is already 39916800, a number of eight digits.

In RML LOGO it is only possible to have an accuracy of seven
digits, so that 39916800 and 39916802 will both be shown as
39916800. TI LOGO and TCL both only allow integers in the range
- 32768 to 32767, so it can be seen that there are no simple absolutes
here either.

Both Apple LOGO and Terrapin LOGO allow integers in the
range —2147483648 to +214783648, and the calculation of the
factorial would be treated as an integer calculation. If, however, .1
was added to 39916800 the result would be a real (i.e. fractional)
number, and fractional numbers are only stored to an accuracy of
seven digits.

The number 39916800, as a real number, is shown as 3.99168E7 in
these latter two LOGOs,and—39916800,asarealnumber,isshownas
—3.99168E7. The number.0000000001 is shown as IN10 where the N
stands for a negativeexponent(i.e.a number lessthan I). IN10 might be
thought to be the equivalent of the invalid form 1E-10.

Though it might be thought that the accuracy for real numbers of
Terrapin and Apple LOGOs is good (about 1N38 to 1E38), neither
can stand comparison with the accuracy of Waterloo LOGO for
the IBM PC. All Waterloo LOGO arithmetic is performed using
decimal floating-point with 12 digits of precision (greater than the
integer precision of the others).

The size of the exponent varies from 1E ~16384 to 1E16383, and
so in this version N is not used, rather E and the special ~ sign for
unary minus. To show that this extreme accuracy is perhaps rather
wasted, it is worth remembering that the total number of electrons in
the universe is 1E79.
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Operating with numbers

As some LOGOs do not allow fractional arithmetic (especially TCL
and TI LOGO) these LOGOs tend to have the simplest procedures
for dealing with numbers. Both go little beyond the four rules of
number, plus a facility to produce random numbers.

LOGOs with fractional capabilities usually have trigonometrical
ratios as well, though RML does not have an arctangent. (The
arctangent is used for working out angles, when you know the
distances.) Most also have a square root facility.

Suppose we have two sides of a triangle, the included angle, and
wish to find the length of the remaining side. We use the cosine rule
A2= B2+ C2-2BCcos(a). As a LOGO procedure it might look like

TO OTHER.SIDE :B :C :A
OUTPUT :B*:B+:C*:C-2*:B*:C*COS :A
END

We could use, for example:
MAKE “C.SIDE OTHER.SIDE 30 20 23

where we have two sides of 30 and 20, with an included angle of 23.
The other side is now given by :C.SIDE.

The omission of the arctangent in RML LOGO is very strange. It
possibly reflects on its parentage, in that Edinburgh LOGOs are not
designed to be as widely extensible as the MIT versions.

Simple playing with numbers can be seen by some as an end in
itself, but usually it is a means to an end, e.g. graphics, which is
discussed in the next chapter.



Chapter Six
Geometrical LOGO

Men are like trees: each one must put forth the leaf that is created in
him.

Proverbs from Plymouth Pulpit by Henry Ward Beecher

The turtle sits on the graphics screen. It can move forward, it can
move back, it can turn. The turtle can draw lines with its pen down,
it just moves when its pen is up. End of story.

The turtle is a parochial animal, in that it does not care what is
happening anywhere else, all that it does is plough its furrow
regardless. When the turtle is drawing a circle it does not know, or
care, where the centre of the circle is. All the turtle does is go forward
a certain distance, and then turn through a certain number of
degrees.

We know where the centre is, but we draw the circle by starting the
turtle somewhere on the circumference of the circle. We have to
work out where the circumference is situated, and how far forward
each little move has to be. To establish that information requires the
use of some trigonometry.

The screen

Normally the turtle starts in the middle of the screen, pointing
directly upwards. The coordinates at the centre are usually 0,0
where the X axis is horizontal and the Y axis is vertical. Angles are
measured clockwise with 0 being directly upwards.

These are the normal characteristics of most MIT LOGOs (except
TCL for which the origin is bottom left), but for an Edinburgh
LOGO the origin is bottom left and the angle increases in a counter-
clockwise direction from a zero direction pointing right. The
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Edinburgh formulation is that of traditional mathematics (especially
the counter-clockwise measurement of angle).

Personally, I prefer a system in which the origin is at the centre,
the turtle points straight upwards, and the angles increase in a
counter-clockwise direction. No LOGO follows this formulation, as
far as I am aware. Different LOGOs have differing resolutions, that
is, the ‘width’ and ‘breadth’ of the coordinates, but most are
effectively the same (approximately 256 by 192, though there are
variations).

Some of the newest, and most interesting, aspects of LOGOs are
those which come from the use of sprites (e.g. TI LOGO, Atari
LOGO, and Commodore 64 LOGO), or multiple turtles (e.g. TCL).
A sprite is a special type of programmable shape which can be
displayed anywhere on the screen. All the user has to do isto tella
sprite what shape it is, what colour it is, and where it has to go. On
the Commodore 64 and the TI 99/4A, the sprites are controlled by a
special chip within the computer. On the Atari, they are called
‘demons’ and they are controlled only by the software.

‘Proper’ sprites are produced by special hardware facilities; they
have a direction and a speed, but they do not affect the normal
graphics. Sprites add continuous movement to the discrete moves of
the turtle. The potential of sprites in the teaching of science
(especially dynamics) is great, and they are very much in the true
LOGO philosophy of extending the language where possible to
incorporate new, and useful, features of computers.

Sprites in TI LOGO have special variables suchas SPEED (which
can be resolved into the velocities in the X and Y directions, XVEL
and YVEL), and the velocity can be set by SETSPEED. A sprite can
CARRY a previously defined shape, or one can be defined by
MAKESHAPE. Thus it continues.

The tree

There are so many small variations in the way LOGOs describe their
operation. I will, therefore, give an idealised version of LOGO, inthe
following routines, in which the main intent is to clarify what is
happening.

Look at Figure 6.1. Itis a picture ofa V, the angle between the two
lines is 90 degrees, and it is supposed to be symmetrical. Now look at
Figure 6.2, which is Figure 6.1 with another Figure 6.1 at each end of
the lines. When we reach Figure 6.6, the picture is rather more
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complex looking, but we know that it is no more than a series of
Figures 6.1.

Fig. 6.1. Tree 1.
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Fig. 6.4. Tree 4.
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Fig. 6.6. Tree 6.

This ‘tree’ obviously has recursive leanings (some later trees lean
rather more than these). The procedure is:

TO TREE :LENGTH :ORDER
IF:ORDER=0THEN[STOP]
LEFT 45
FORWARD :LENGTH
TREE :LENGTH/2 :ORDER-1
PENUP
BACK :LENGTH
RIGHT 90
PENDOWN
FORWARD :LENGTH
TREE :LENGTH/2 :ORDER-1
PENUP
BACK :LENGTH
LEFT 45
PENDOWN

END
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Start by considering how it relates to Figure 6.1. Ignore for the
moment the relevance of :ORDER and the recursive calls to TREE.
First (ignoring all lines with :ORDER) the turtle turns left through
45 degrees. As originally it is pointing upwards, this means that it
now points left 45 degrees from the vertical. The turtle is now
instructed to move forward :LENGTH units. Now we have drawn
the line on the left.

The pen is raised, so the turtle does not draw, and it travels
backwards (i.e. still facing in the same direction), the distance
:LENGTH. It is now, therefore, back where it started. It still faces 45
degrees left from the vertical.

The pen is lowered after a turn right through 90 degrees. This
means that the turtle now faces 45 degrees right from the vertical. A
line :.LENGTH units long is drawn, the pen raised and the turtle goes
back to the start. A turn is made left through 45 degrees, to bring
back the turtle to its starting point, and the pen is lowered.

Ignoring the commands with :ORDER, the turtle draws two lines,
and then ends back where it started, pointing in the same direction.

Now to consider the second parameter, :ORDER. If the value of
ORDER is 0, then the procedure goes no further, otherwise it draws
the line at 45 degrees to the vertical. When the end of the line is
reached, the procedure TREE is again activated.

TREE is now activated with the length of line halved, and the
order reduced by 1. At that moment the turtle is pointing in the
direction of the line, and so the next call of TREE will be
symmetrical on either side of that direction, as longas :ORDER-1 is
not zero. This is Figure 6.2. As the original parameter :ORDER is
increased, the complexity of the tree increases.

Figure 6.7 shows the result of usinga very large value of ORDER,
in this case 10. The final value of :LENGTH after ten halvings is
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Fig. 6.7. Tree 10.
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about a thousand times smaller than the original value, and so the
little increments are not drawn. Figure 6.7 could be said to be the
final shape of the tree; increasing the order will have no effect.

For these pictures I am using a computer with a very high
resolution, and special routines. Normally such detail cannot be
obtained.

A learning tree

The tree so far calculated is a boring, though possibly pretty, tree.
Even such a mundane little tree can have its uses, because it is on
trees such as this that many searches are based. Note that the tree in
Figure 6.7 has 1024 branch endings.

Start by considering how one can discover a hidden number
between 0 and 127, when the only information available is answers
to the question whether to go higher or to go lower. Think of a
number.

I guess 64, and you tell me that it is higher. The base of the tree is
64. 1 will consider high numbers to be on the right side of the tree, so
you have told me to investigate the right hand portion. My next
guess is 96, because the next node is 96 (mid-way between 64 and
127). You tell me to go lower, and so I know the number must be
between 64 and 96, the left branch from the 96 node.

I keep on making guesses in the same manner, following the same
rules, and slowly we traverse the tree, searching for illumination and
truth. When we have traversed seven nodes, we have the answer.
Each branch ending has a number, and the search is to find the
correct branch end. We only need seven nodes, or a tree where
:ORDER =7, to arrive at a solution because 2*2%2*2%2*2%2 = 128,
and we have 128 different possibilities.

In the radio game Twenty Questions the panel are allowed twenty
questions, which are answered yes or no. Twenty 2s (220) muitiplied
together make 1048576, and so in this game the panelists can sift
through over one million different facts - assuming that they ask
questions which are sufficiently different to count as different
questions. Sometimes they even get a little help.

Showing the progress of a session of questions, by using a tree the
child has constructed, is one place where an aware teacher can be
invaluable.

Another useful item to be learnt from the tree is how the discrete
tends to the continuous. The lengths of successive branches follow a



Geometrical LOGO 63

geometrical ratio (the ratio in changing sizes is constant), and
children can see visually that the summation of a geometrical ratio is
a constant, to which the summation approaches.

The tree with order 10 is sufficient to convince most children that
that is almost where it will end. If the children try to use a higher
order tree, they will find that the time taken increases greatly. They
will also find that the result is no different from what they would
have obtained from a lower order. Just as with the circle, we do not
have to draw a perfect shape to obtain a close enough
approximation.

Instead of dividing by 2 we can divide by other numbers, and find
that if the number by which we divide is less than | then the tree stops
growing outwards. To investigate such summation simulations we
can adapt the TREE to produce TREE2:

TO TREE2:LENGTH :ORDER :FACTOR
TREE2 :LENGTH/:FACTOR :ORDER-1 :FACTOR

END
Here most of the procedure is similar to TREE, except for the
parameters and the procedure calls. If :FACTOR isequal to 1 or is
greater, then the tree just gets bigger and bigger.
If a procedure is produced which varies :FACTOR so that it goes
in the progression 1, 2, 3, 4, onwards, then it will be found that the
tree steadily increases in size without stopping (the harmonic series,

which slowly sums to infinity). The tree can be quite productive at
the secondary school level, or even higher.

A Leaning Tree

It has to be admitted, though, that the binary tree is boring (‘binary’
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Fig. 6.8. Leaning tree 1.
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in this sense means ‘of two possible values’). It is so sensible, so
predictable, so useful, so boring. Why must the tree be so upright?
Why not have different branch ratios. Is not the tree in Figure 6.8
much prettier?

In the tree in Figure 6.8, those branches on the left are relatively
longer than those on the right, and the angle between the branches is
also not 90 degrees. This tree looks more complicated, but it is not.

TO LEAN.TREE :L:A:0 :Fl:F2
IF:0=0THEN[STOP]
LEFT :A
FORWARD :L
LEAN.TREE :L*:F1:A :0-1:F1:F2
PENUP
BACK :L
RIGHT 2*:A
PENDOWN
FORWARD :L*:F2
LEAN.TREE :L*:F1:A:0-1:F1:F2
PENUP
BACK :L*F2
LEFT :A
PENDOWN
END

The most important item to notice about this procedure is the use of
two factors :F1, and :F2. The first sets the size of corresponding
branches from call to call; and the second sets the relative size of the
branches within the call. The angle :A also gives a measure of the
spread of the tree.

Figures 6.8 to 6.11 show the effects of using different values for
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Fig. 6.9. Leaning tree 2.
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Fig. 6.11. Leaning tree 4.

these parameters. Figure 6.10 is possibly the most interesting,
because it is the tree which creeps round the corner. This figure
shows again the way in which limits are reached (there is a nice curve
around the foliage).

Figure 6.10 also shows how the disparity between the lengths of
left and right branches, and the resulting differing degrees of
curvature, affect shapes. If the foliage is examined, blobscanbe seen.
The blobs are not part of the design, they are a part of the way the
screen of the computer implements its graphics.

Looking carefully at the edge of the foliage, straight lines may be
discerned, and the edges have a slight flattening, particularly at the
top. This flattening, and angularity, is possibly clearest in the case
of Figure 6.11. The straightness is implicit in all the other leaning
trees but can be most clearly seen here.

The shapes we can draw by LEAN.TREE also match the growth
processes of plants and trees in nature. Under the influence of a
prevailing wind (from, say, the right) branches to the right will be
restricted in their length compared to those branches pointingto the
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left. Figure 6.8 is probably the clearest example of this phenomenon,
and all the other trees are exaggerated versions of this basic pattern.
These kinds of illustrations have many interesting biological
consequences. It is easy to see how snail shells, seed heads, animal
horns, and many other similar phenomena can be investigated very
simply. This is also work which has relevance at higher levels of
education, and in fact the tree procedures are based on ideas
presented in Patterns in Nature by Peter S. Stevens (1974).

Interference patterns

We have a procedure:

TO CIRCLE :INC
REPEAT 20[FORWARD :INC RIGHT 18]
END

and it draws a circle of 20 sides. That is, we approximate a circle by a
polygon of 20 sides, and each side is of length :INC.

This is a fairly standard procedure, and we could, if we wished,
modify it to accommodate a specific radius, but I want to use it to
show how the video display on the computer can interact with the
patterns we draw. Already we have seen one effect, for we can draw a
circle with 20 sides and it looks fine.

The display on most computer graphics systems is split, visually,
into small rectangles called ‘pixels’. Any one pixel can either be one
colour or another. Part of the pixel cannot be black and another part
white; it is either all black or all white. What happens, then, when we
draw a line?

Find some tiles on the floor, or use a piece of graph paper, and
then draw a straight line. The line is a line, but if the line is at any
angle to the orientation of the tiles the lines will be ragged. Whenever
a line goes through a tile, that tile is coloured black (perhaps only in
the mind) but, when looking at those black tiles, it is easy to see that
the black tiles do not make a black line. The line has kinks as we
move from one line of tiles to another line.

If you go back through some of the earlier figures (of squares and
similar) you will see strange little kinks in lines where there should
not be a kink. Though on the one hand this might seem annoying, it
can lead to some interesting effects. This is why we want to
CIRCLE.
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We use CIRCLE in this procedure:

TO INTERCIRCLE

LOCAL “INC

MAKE“INCO0

REPEAT 40[MAKE “INC :INC+2 CIRCLE :INC]
END

and we produce the effect of Figure 6.12, which is a series of circles
all touching at the same point and slowly getting larger. Unless one

Fig. 6.12. Circles 1.

knew, it might be thought that this was some complex effect to
portray the shading on a distant planet.

Looking carefully at the effect, and knowing what we do, we can
discern how the straight edges to the circle become more noticeable.
The most clearly visible are those sides which are either horizontal or
vertical. A careful person might be able to count five straight lines
per quarter circle.

I noted earlier that my graphical resolution was better than most
(my pixels are smaller, and there are more of them). Figure 6.13
shows exactly the same routine (to the same scale) in a lower
resolution graphical mode.

Notice how in the second example the lines to the circles are that
much thicker, and how the total effect looks so much coarser, and
fairly different to the finer version. The second example is closer to
the normal resolution for most LOGOs.

What we have encountered are called ‘interference patterns’ or
sometimes ‘moiré’ or ‘shot silk’ patterns. If one has a piece of very
fine silk, with its lines of thread going horizontally and vertically,
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Fig. 6.13. Circles 2.

and then one draws lines across the fabric, close together, a shot silk
effect is produced. The shot silk effect is also called a moiré effect, or
a moiré pattern.

By drawing lines of colour on the silk, we are replicating the effect
of drawing lines on the computer screen (or should it be vice versa?).
The line on the silk is a series of dabs which can only catch on the
horizontal and vertical threads. As the colour does not spread, we
get a similar effect with pixels. This is particularly noticeable in
Figure 6.13.

Graphing a function

We can modify CIRCLE to draw another shape.

TO CIRCLE.TRIG :INC
LOCAL “J
MAKE“J 0
REPEAT 20[MAKE “J :J 18 FORWARD ABS SIN :J
RIGHT 18]
END

In the above program, CIRCLE.TRIG varies the length of side of the
20-sided polygon according to the absolute size of the sine of the
angle turned through by the turtle so far in its total trip. I use the
absolute value because otherwise the curve will not return to base -
but more of that later.

The sequence:
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CIRCLE.TRIG 100
RIGHT 180
CIRCLE.TRIG 100

results in Figure 6.14. The two curves are exactly the same, but one is
turned through 180 degrees.

—

Fig. 6.74. SIN function.

The reason why I inserted the ABS (for ‘absolute value’) in the
FORWARD parameter was because I did not get a closed curve.
Instead, I produced a curve which looked just like a conventional
picture of a bird - that is, two curved lines joined in the centre.

As a final fling, I substituted COS for SIN to produce Figure 6.15.

et e mtten 048,

Fig. 6.15. COS function.

The two curves are very similar to the previous two, but with each
separate figure rotated through 90 degrees. Funnily enough, COS
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:ANGLE = SIN (99 - :ANGLE), so perhaps that is why? There is
plenty here to keep fairly advanced learners busy.

Graphics is fun (and some of the examples in earlier chapters
show that clearly, perhaps more clearly than this chapter). However,
graphics can also be used very easily to present esoteric information
in a manageable way.



Chapter Seven
Lists, Words, and

Naming LOGO

Words are all we have.

Samuel Beckett

As I have noted on many occasions, LOGO takes many ideas from
LISP. For at least one version (that from Edinburgh) the similarity
to LISP is very close, and programs in LOGO and LISP have many
common features.

LISP was developed to manipulate lists of items (called ‘atoms’)
and has been very successful in artificial intelligence work. There is a
strong argument that in education many of the problems with
conventional programming methods, and ways of using computers,
might be ameliorated by an intelligent application of ideas from
artificial intelligence.

A recent book on this subject, Learning and Teaching with
Computers — Artificial Intelligence in Education by Tim O’Shea and
John Self (1983), claims that ‘The designers of computer systems to
be used in education should take account of the subject of artificial
intelligence, and the users of such systems may expect them soon to
provide facilities considerably more sophisticated than those
available today’. Both authors have been associated with Edinburgh
University in some way or other.

Words again

We have already touched on the difference between names and
values, so what is in a name? LOGO treats any sequence of printable
characters (with some exceptions) as a legitimate word. A word is
basically a chunk of characters which can all be used as a unit.
Words need not be as they seem:
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PRINT “A.WORD
>> A.WORD

PRINT “100

>> 100

PRINT 100

>> 100

PRINT “100/2

>> 1002

PRINT 100/2

>>50

PRINT A.WORD

>> **THERE IS NO PROCEDURE CALLED A.WORD

so let us go through the sequence.

“A.WORD is treated by LOGO as a word (though RML would
use ‘A.WORD), asis “100. So, to ask it to print out “A.WORD is the
same as asking it to print out A. WORD. When it prints out “100 as
100, the system does not consider that the item it is printing out is
the number 100; it is the string of characters 1,0, and 0.

To print out “100/2 is to ask the system to print out the string of
five characters, the word “100/2. To leave out the preceding quote is
to ask the system to evaluate the expression, to produce a result, and
the result is 50.

The set of characters A.WORD, without the preceding quote, is
also treated by LOGO as something to be evaluated. As it is not a
number, LOGO thinks it must be a procedure, but as it is not (we
accidentally missed the quote from the front), LOGO gives an error
message.

In a sense, LOGO - like LISP before it - treats the sequence
“A.WORD as a list of characters, so that is why so many of the list-
manipulating procedures of LOGO can be used on words. A word is
the basic list. In some LOGOs (e.g. Atari LOGO), where words and
lists are treated as being in some way the same, the general word/ list
is called an object.

A word can also be evaluated, just as can a number or a
procedure, and how it is evaluated depends on the context:

PRINT “100/2
>>100/2
PRINT “100/ 2
>>50

LOGO encounters PRINT, so it knows that it has to expect
something to print. It next encounters “100, so it is ready to print



Lists, Words, and Naming LOGO 73

100 - the space after “100 signals the end of that word. Next in the
sequence is /and so LOGO then expects to have to divide the
number it already has, by the number to come.

There is no number, just the word “100, and so the LOGO
translator sees if that word could be treated as if it were a number,
and it can. The final item in the print list is 2, so that is divided into
100 to produce the result 50, which is then printed.

Making names

We have met MAKE before, in the context of numbers. For
example:

MAKE “VAR 3+4
PRINT :VAR
>>1

Here the name is “VAR and the value contained in VAR (shown by
:VAR) is 7. We can make more complex things.

Take the IF statement (either Apple LOGO or Atari LOGO, for
example). There is no THEN or ELSE, and it takes the form

IF TRUTH.VALUE [ACTION.TRUE] [ACTION.FALSE)]
So, to emulate
IF :N<O[STOP][PRINT “POSITIVE]

we must first work out what is happening. If a value :N is less than 1
then stop, otherwise print out the word POSITIVE. Here goes:

MAKE “CONDITION[:N< 0]
MAKE “TRUE.RESULT[STOP]
MAKE “FALSE.RESULT[PRINT “POSITIVE]

and then
IF RUN :CONDITION :TRUE.RESULT :FALSE.RESULT

to perform the test. All the variables are lists, that is, sets of
consecutive items delimited by [ and ).

The first list is composed of three items :N, <, and 0: and to
activate this list as a condition, we have to treat it as if it were
composed of instructions. This is the meaning of RUN - treat the
following list as if it were program instructions.

The second and third lists are treated as lists by the IF, and so they
do not need modifying in any way. Suppose we try
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MAKE “OPUSI [ [INTRODUCING LOGO] [BORIS
ALLAN] [GRANADA PUBLISHING] ]

and then we investigate, for example,

PRINT FIRST :0PUSI

>> [INTRODUCING LOGO]

PRINT FIRST BUTFIRST :0PUS|

>>[BORIS ALLAN]

PRINT FIRST FIRST BUTFIRST :0PUSI

>> BORIS

PRINT FIRST FIRST FIRST BUTFIRST :0PUS|
>>B

to see how lists can be embedded in lists, how words are embedded in
lists, and how letters (or ‘characters’) are embedded in words.
This is a simple example, but think how it could be extended:

MAKE “OPUS2 [ [ANNA KARENINA] [LEO TOLSTOY]
[OXFORD UNIVERSITY PRESS] ]

MAKE “CATALOGUE [ :OPUSI :0PUS2]

PRINT FIRST :CATALOGUE

>> [ [INTRODUCING LOGO] [BORIS ALLAN]
[GRANADA PUBLISHING] ]

PRINT LAST LAST :CATALOGUE

>>[OXFORD UNIVERSITY PRESS]

and soon we could have the British Library at our finger tips.

Lists

When we come to manipulate symbols, rather than numbers, lists
are very useful ways of proceeding (this is why my main example, in
Chapter 9, is mainly list processing, no turtle graphics, and few
numbers).

If you think back to the search tree, perhaps you can see some
congruences with list processing. In the analysis of lists, there are
two ways of getting at parts of the list. We can find the first element
(by use of FIRST) or all but the first element (i.e. BUTFIRST).
Alternatively, we can extract the last element (i.e. LAST) or all but
the last (i.e. BUTLAST).

Both these choices are binary, and to extract LEO from the
“CATALOGUE, we choose the LAST element of “CATALOGUE
(i.e. :OPUS2). We then find all BUTFIRST of “OPUS2 (i.e.[[LEO
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TOLSTOY][OXFORD UNIVERSITY PRESS]]), so all we need
is the FIRST of this remaining list (a list of two elements, the name
of a person and his publisher).

PRINT FIRST BUTFIRST LAST :CATALOGUE
>>[LEO TOLSTOY]

We search through a tree, eliminating alternatives.

The whole topic of list processing is far more technical (in the
sense of theideas involved) and LOGO can be used for very complex
purposes. It has been found that LOGO is eminently suitable for
constructing adventure games, in which the adventure takes place in
sets of highly interconnected scenes. The scenes are set up as lists of
lists of environments.

Here is a dummy game:

TO ADVENTURE
LOCAL “LOCATION “CARRIES
PRINT
PRINT [AMAZING MAZE]
MAKE “LOCATION “START
MAKE “CARRIES [ ]

JOURNEY :LOCATION :CARRIES

END

TO JOURNEY :LOC :CARRY
DESCRIBE :LOC
MAKE “CARRY ACTION
MAKE “LOC MOVEMENT
JOURNEY :LOC :CARRY
END

Here, DESCRIBE is a procedure which describes the location. The
location is itself a list and the words in the list actually give the
description of thatlocation. ACTION isa procedure whichallowsthe
adventurer to fight, pick up items ordiscard them, storing the new list
of items in “CARRY.

The adventurer moves by the procedure MOVEMENT, which
outputs the value of the new room to be stored in “LOC. The
JOURNEY is continued by a recursive callto JOURNEY. I will not
expand any more on this game but it can be seen how it would
develop.

Lists will appear in the next chapter when we see how we control
LOGO, though (as we have seen) the true control in LOGO comes
from the way in which it is written.
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Linked lists

Lists can be used to examine how a computer works, and they can
also be used to discover how to store information flexibly. Look at
this list:

MAKE “X1 [ :CONTENT1 “X2 ]

The list X1 has two parts - the first element we will suppose contains
the value of CONTENT], and the second element contains the name
X2. We find (assuming the value of CONTENT]1 is [THIS IS X1])
that:

PRINT FIRST :X1
>> [THIS IS X1]

PRINT LAST :X1

>> X2

To obtain the value stored in X2 we use the LOGO word THING (or
VALUE in RML LOGO), to produce

PRINT THING LAST :X1
>> [THIS IS X2] X3

and this is explained by the assignment
MAKE “X2[ [THIS IS X2]“X3]

We now have what is termed linked lists (see Figure 7.1).

X1 [:CONTENT1] -

G xe [conrental 1
G xs

Fig. 7.1. A linked list.

Linked lists allow us to go through an ordered sequence of items,
and also allow us easily to insert a new item in the sequence. Try a
little example of landmarks and distances on a motorway.

Each item will be of the general form: first, the name of the
landmark; second, the distance from the previous landmark; and,
third, the name of the next landmark. The form is:

MAKE “LANDMARK [:NAME :DISTANCE “NEXT.
LANDMARK]
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[:NAME [:DISTANCE| 1—)

s next [:NAME |:DISTANCE| 1—)

L»TERMINAL [:NAME|:DISTANCE| {>EMPTY

Fig. 7.2. Linked landmarks.

And, as motorways (thankfully) do not go on forever, we must reach
a TERMINAL. The last landmark thus points to the TERMINAL
(i.e. the final item is not the NEXT.LANDMARK, it is the
TERMINAL) where we might define

MAKE “TERMINAL[[END OF MOTORWAY]O0[ ]]

In any list of items we have to know where to stop. The idea behind
this use of lists is shown in Figure 7.2.

The third element is called a ‘pointer’, it ‘points’ to the nextitem in
a set of linked lists. We can access the third element by:

PRINT LAST :LANDMARK
>> NEXT.LANDMARK

To access the NAME given to the third element, we might then use
THING, to get at the value of the third element,

PRINT FIRST THING LAST :LANDMARK
>>[WATFORD GAP SERVICES]

and to find the distance from the Watford Gap Services to the
previous LANDMARK

PRINT FIRST BUTFIRST THING LAST :LANDMARK
>> [AN ETERNITY]

Note that the distance does not necessarily have to be numerical!

Suppose a new landmark is created (an almost permanent road
works, for example). How could a new landmark be inserted? Let
there be two landmarks X and Z (and after Z there is A):

MAKE “X [[FIRST OLD] 90 “Z]
MAKE “Z[[SECOND OLD] 11 “A]

X is the FIRST OLD landmark, which is 90 units away from the
previous landmark, and Z is the next landmark. Z is the SECOND
OLD landmark, it is 11 units away from X, and the next landmark
on from Z is A (see Figure 7.3).
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Cx[ FIRSTOLD |90] b

C>Z|SEC0NDO|.D|11] })
Ga

Fig. 7.3. Two landmarks.

A new landmark appears between X and Z - obviously it must be
Y. Y is 9 units from X and 2 units from Z (11=9+2). There are rather
more sophisticated ways of achieving the insertion of Y between X
and Z, but here are the bare bones of the method:

MAKE “X LIST BUTLAST “X[“Y]
MAKE “Y [[THE INTERLOPER] 9 “Z]
MAKE “Z LIST FIRST “Z“2 LAST “Z

The first says MAKE the item named X a LIST composed of all
BUT the LAST of the old list named X, plus the item “Y. The second
is just a straight definition of what MAKEs Y. The final line says
MAKE the item named Z a LIST which is the FIRST item of the old
list Z, the word “2, and the last item of the old list Z.

What we have produced is a set of new definitions, equivalent to:

MAKE “X [ [FIRST OLD] 90“Y]
MAKE “Y [ [THE INTERLOPER] 9“Z]
MAKE “Z [ [SECOND OLD] 2“A]

and you will appreciate that all this could be turned into a set of
simple procedures. (See the diagrammatised form in Figure 7.4.)
‘We could do all this with arrays’, I hear some say.

For those who do not know, an array is an ordered sequence of
information, where the content of each element of the array has to be
of the same type. A distance cannot be a number or AN ETERNITY
depending on how you feel, rather it has to be either a number or a
description. Before we use an array we have to say how many

Cxl FIRSTOLD (90 +——v [ THEINTERLOPER][ 9] 1-)

(>z| SECONDOLD [2] 13
Goa

Fig. 7.4. Three landmarks.
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elements there are to be at maximum - adding many new landmarks
will mean we will run out of room in our arrays.

Linked lists are far more flexible than arrays - the adding of a new
landmark with an array is also far more tedious.

The program as a list

A list is a set of ordered items, and a program is a set of ordered
items. A routine or procedure is also a set of ordered items. As we
have noted many times, the idea of sequence in LOGO is very
important. Earlier we cursorily examined the LOGO command
RUN. RUN is a very useful command, because it takes a list (a set of
ordered items) and treats the list as if it were a piece of program
(which is a set of ordered items).

Some LOGO systems treat even the definition of a procedure asa
list. For example, take the procedure SQUARE,

TO SQUARE :SIDE
REPEAT 4[FD :SIDE RT 90]
END

which in a sense is almost like saying

MAKE “SQUARE[REPEAT 4[FD :SIDE RT
901]]

To write SQUARE 100 is, therefore, equivalent to

MAKE “SIDE 100 RUN :SQUARE

with the added proviso that the value we MAKE for SIDE in the last
line is only a temporary value (SIDE does not exist outside the
SQUARE procedure).

To take this analysis slightly further, suppose we now produce a
parameter-less procedure (because it makes life simpler),

TO NEW.SQUARE

REPEAT 4[ FD 100 RT 90]
END

to be followed by

TO TWO. SQUARE
SQUARE
RT 180
SQUARE

END
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Thus we have produced two squares diagonally opposite each other.
In the MAKE form,

MAKE “NEW.SQUARE[REPEAT 4[ FD 100 RT 90]]
MAKE “TWO.SQUARE[SQUARE RT 180 SQUARE]

where the last is equivalent to

MAKE“TWO.SQUARE[ [REPEAT4[FD 100 RT90) JRT 180
[REPEAT4[FD 100 RT90]] ]

It is clear to see how program structure, lists and list-processing,
cohere in the case of LOGO. It is also clear to see that the RUN
command is not an add-on extra to the language, but is an integral
part. Lists are tremendously important in LOGO!



Chapter Eight
Controlling LOGO

If he knew where he was going, it is not apparent from this distance.
He fell down a great deal during this period, because of a trick he had
of walking into himself.

The Thurber Carnival by James Thurber, on himself as a child

Seymour Papert tells the story of a girl who had written a game. The
girl wanted to have a facility to run the game again, if the person
playing so wished. After thinking about it for a while, and asking
advice from others, she wrote

IF RL = [YES] [PLAY]
IF RL = [NO] [STOP]

where RL is the short form of READLIST, a procedure which reads
in a list from the keyboad (terminated by a carriage return). If the
input word is YES then the game should be played again (to start
playing, one types PLAY). If the input word is NO then the
procedure should be stopped.

What the girl had not realised was that the READLIST in the first
line was different to the READLIST in the second line. The
program would have enquired DO YOU WISH TO CONTINUE?,
and you would have typed in NO. The first line would have checked
whether YES had been typed in. It had not, so control passed to the
next line.

The second line, however, expected another input. The user had
to type in NO again, before the STOP was activated. Thus, to stop
the game the user had to type in NO twice, but to play again the user
only had to type in YES once. The obvious solution is

IF RL=[YES] [PLAY][STOP]

but the girl and her friends had not yet met the ‘else’ list on an IF.
The moral of the story is that one has to keep in one’s mind the
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importance of sequencing (here, for example, the first RL is not the
same as the second RL). The girl, however, met herself coming back
and said ‘This computer won’t take no for an answer’.

Sequencing

The whole idea that the order in which things are performed is
important is itself very important. As we found earlier, LOGO, by its
very nature, tries to help children learn this important idea. If a child
has to control multiple turtles, or multiple sprites, he has to get the
sequence of events very clear - otherwise chaos will follow.

Multiple anything naturally leads on to the notion of lists, an
assemblage of similar items, and in Atari LOGO there is acommand
EACH which takes a list as a parameter. The list is RUN for each
active turtle, in the order of the turtle number. As different turtles
can be different colours, EACH can produce the same effect at
different positions in different colours, according to a fixed
sequence given by the turtle number.

In Tandy Color LOGO there may be 255 turtles available for use
and when only a few are active it seems as if they are all working
simultaneously. At present, very few computers can perform truly
simultaneous operations, and in the case of TCL there is an order to
the operation of turtles. This becomes apparent if a large number of
turtles are on the screen.

To produce new turtles, one HATCHes them. Here is the tree
procedure implemented with HATCHing:

TO TCL.TREE :S :0
IF ME = 0 (CLEAR SETY 0)
IF:0=0 (STOP)
FORWARD :S
LEFT 45
HATCH |
TREE (:S/2) (:0-1)
RIGHT 90
HATCH 2
TREE (:S/2) (:0-1)
VANISH

END

Effectively, what happens is that each branch is given its own turtle
(1 or 2, but that only holds within that procedure). The line with the
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IF means that if ME (the current turtle) is number 0 (the master
turtle) then clear the screen and go to Y=0, which for TCL is at the
bottom of the screen. Though the earlier procedure for a tree is
possibly easier to write for a person not used to TCL (especially if we
forget about PENUP and PENDOWN), TCL.TREE has a certain
extra educational value.

As TCL also enables turtles to communicate with each other, it
can be very useful in that respect (though most of the newer sprite-
using LOGOs have the capacity for inter-sprite communication).
The main draw-back to TCL is the lack of list-processing.

Control commands

The essential LOGO control commands are IF and REPEAT.
REPEAT, however, is not a true control command because it is very
inflexible.

The IF command is usually of the form IF THEN ELSE, where
both the THEN and the ELSE may not actually appear, as in many
MIT LOGOs. Apple LOGO has the extra (though equivalent)
sequence TEST IFTRUE IFFALSE which has the advantage of
being rather more explicit. There is, theoretically, no need for any
other control command - but practically there are many reasons
why others should be present. One good reason is ease of use.

Take the case of REPEAT. Suppose that we would like to repeat a
sequence called “SEQUENCE, :COUNT number of times. We can
either write

REPEAT :COUNT :SEQUENCE
or define a procedure RPT

TO RPT :COUNT :SEQUENCE
IF :COUNT = 0[STOP]
RUN :SEQUENCE
RPT :COUNT-1 :SEQUENCE
END

which has exactly the same effect as REPEAT. Actually, it might be
worth altering the IF line to

IF :COUNT< 1 [STOP]

so that if a negative number were entered the procedure would not
continue for ever. Note that all we need is IF and a recursive call.
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In LOGO there is no GOTO command because it is not clear how
GOTO might be used in LOGO programs (for a start there are no
identifiers of lines, so GOTO where?). In some languages, the use of
GOTO is frowned on, but it is not frowned on in LOGO - you just
are not able to use it, because it isn’t there.

The main way programs are controlled in LOGO is via the
structure of the language itself, by taking a holisticapproach with the
emphasis on how the whole can be resolved into relevant sub-
wholes. As LOGO is a list-processing language, it can act upon lists
as if they were program text. Thus, any control structure one might
want for the sake of convenience - and usually it is for the sake of
convenience - can be constructed.

Some LOGOs have a few of these convenient extra commands,
but we will try to concoct them, partly to see how they might work.

Concocting control

We will implement a WHILE construct. While something is true,
then do something; if it is not true at first then nothing happens. The
definition

TO WHILE :CONDITION :ACTION
IF NOT (RUN :CONDITION)[STOP]
RUN :ACTION
WHILE :CONDITION :ACTION

END

has great similarities to that for RPT, and a WHILE is a non-
numerical version of REPEAT. In RPT we could evaluate the
:COUNT directly, but in WHILE we had to RUN the
:CONDITION.

If we wanted to set bounds on the movement of a turtle we might
have a condition that the movements were to continue while the
coordinates were within certain bounds. WHILE would be very
useful at this point.

Another means of controlling a sequence of operations is to
continue UNTIL a certain condition is met. The action is best
explained by a definition:

TO UNTIL :CONDITION :ACTION
RUN :ACTION
IF (RUN:CONDITION)[STOP]
UNTIL :CONDITION :ACTION
END
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and the UNTIL is clearly an inverse\WHILE. The IF and RUN lines
are reversed, and the sense of the IF test is reversed.
We might use an UNTIL in some manner such as

UNTIL[XCOR > 75][FORWARD 20 RIGHT 20]

This means ‘until the X coordinate is greater than 75, make these
moves’. An almost similar WHILE is

WHILE [XCOR < 75][FORWARD 20 RIGHT 20]

This means ‘make these moves while the X coordinate is less than
75,
A final control beloved by some is the loop construct:
TO LOOP :COUNTER :START :END :ACTION
IF:START > :END[STOP]
MAKE :COUNTER :START
RUN :ACTION
LOOP :COUNTER (:STARTH+1) :END :ACTION
END

This could also be written as
LOOP “I 1 20 [PRINT :I*:I]

where :I is the value of the loop counter, 1 the starting value, 20 the
end value, and [PRINT :I*:I] the action to be initiated (printing out
the squares of numbers from | to 20). This is the most complex of
the procedures to understand.

The IF line is pretty easy to follow - it is the next line which might
cause difficulty (though we discussed a similar state of affairs
earlier). MAKE the value of COUNTER take the value START,
that is, do not make the name “COUNTER take the value of
START. The value of COUNTER is in fact I, and so the MAKE
assigns the value of START to L.

However, as I have stressed all along, the important aspect is that
of recursion, which combined with just one binary decision method
(IF THEN ELSE) can be used to form all these items. Personally, I
do not see much need for a looping procedure in LOGO.

I hope to have shown that only IF and recursion are needed to
control the flow of a program. In what follows I will ignore the
LOOP method of control. This is partly because it is only an
unsophisticated version of the WHILE construct (it is so restrictive),
and partly because it is not necessary.

The best way of controlling the progress of a program is to
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construct it well, in a sensible and coherent manner (and by now you
will have realised that a program is only another procedure). LOGO
as a language leads to well-constructed programs by the way in
which it is designed.

By accentuating the importance of procedures, and a procedural
way of thinking, LOGO helps the user to begin to think in a coherent
way about programming (and about thinking). To illustrate the
benefits of the procedural mode of programming let us examine the
above control mechanisms in more detail. In so doing we will show
why we only need an IF THEN ELSE (however it is named) and
recursion.

First of all, let us see what is the structure of the IF THEN ELSE
combination.

The basis of control : 1

The IF construction takes a condition, tests to see if it is true, and
then if it is true proceeds with action 1, otherwise action 2 is
instigated. But what is the basis of control implied in this schema?

The first to be investigated is the CONDITION. If the
CONDITION is false (shown as FALSE? in Figure 8.1) the control
jumps to ACTION2. When ACTION?2 is complete, the program

IF CONDITION
ACTION1 |FALSE?
ALWAYSl ACTION2
Fig. 8.1. IF control.

continues with the item immediately following ACTION2. As the
normal way of progressing in LOGO is sequentially (i.e. one item
after another) there is no need for any special operation following
ACTION2; all progresses normally.

Suppose that the CONDITION is true. In this case, therefore, the
next item in sequence (ACTIONI) is activated, and no special
operation is needed. If the CONDITION is FALSE? then the special
operation activated is to jump to ACTION2, otherwise the default
occurs (the next, ACTIONI, is activated).

What happens, though, when the end of ACTIONI1 is reached?
The next item (i.e. ACTION2) should not be activated, thus there is
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a need for a special operation to jump over ACTION2, and this
‘jump’ ALWAYS has to happen. In Figure 8.1 this operation is
called ALWAYS to emphasise that it always occurs, i.e. there is no
condition to be met.

In a more primitive language, this is shown clearly by the
following:

IF NOT.CONDITION THEN GOTO

LABEL:FALSE?
ACTIONI
GOTO LABEL:ALWAYS
FALSE?  ACTION2
ALWAYS CONTINUE

Here the first line is the check on the falseness of the condition (that
is why the item checked is shownas NOT.CONDITION). When the
condition is not true, the control goes to the line indicated by the
label FALSE? (In BASIC the label would be a line number, and all
lines would be labelled - i.e numbered.)

The line which is simply ACTIONI is shorthand for possibly
many lines (in BASIC almost certainly more than one line), and
after those lines of program comes the line which is an unconditional
jump to label ALWAYS. At this line the jump is ALWAYS to the
label so named.

It is worth noting at this stage something extra to IF and recursion
which allows LOGO to develop all these flexible control structures.
LOGO allows the user to treat a list as a piece of program text and
RUN it. ACTIONI (and ACTION2, below) are not fixed - they can
be input as variable parameters. Unless a language has list-
processing capabilities, this facility is rare. It is a very powerful
facility.

When the jump has been to the line labelled FALSE?, the word
ACTION2 possibly stands for many lines of program (as with
ACTIONI). When ACTION2 is complete, the program auto-
matically (sequentially) progresses to line ALWAYS, so the same
line is reached (ultimately) whether the condition is true or not.

In BASIC this sequence might be written as:

1000 IF NOT (CONDITION) THEN GOTO 1030
1010 GOSUB 2000

1020 GOTO 1040

1030 GOSUB 3000

1040 REM END OF SEQUENCE
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but when we come to incorporate this little sequence in a program
which already has line numbers from 1000 to 1040 (and possibly
subroutines at lines 2000 and 3000) it becomes a trifle confusing.
And it is only a little sequence! The use of GOTO can create much
confusion in BASIC, unless the programmer is very expert.

The above point about variable actions becomes even more
apparent here. How are we to change the content of subroutines
2000 and 3000, while the program is actually in progress? No
BASIC I know will allow that to be done (unless you use machine
code routines to PEEK and POKE, with much difficulty).

LOGO uses GOTOs, but it hides them in the IF statement, and
thus makes them portable.

The basis of control : 2

The other method of control which LOGO provides as part of the
original specification is recursion. Recursion does not necessarily
have to be used as it has been used already above to construct
WHILE and UNTIL. The actual range of application of recursion is
far wider than just control (as we have seen). Remember, therefore,
that the use of recursion we will discuss in this section is very special,
and not always true of recursion in general.

How does recursion work as a control mechanism? The sequence
is very simple: a procedure is called (usually with parameters), and at
the end of the procedure the procedure calls itself - possibly with
changed values for the parameters. Note that the procedure calls
itself at the end of the procedure: many recursive procedures do not
wait until the end of the procedure to call themselves. See Figure 8.2.

PROC
ALWAYS r ACTION
CALL.PROC

Fig. 8.2. Recursive control.

Let us analyse the flow of control again. The procedure is called,
an ACTION occurs, and then after the action a recursive call is made
to the procedure. In terms of the jumps made with IF, there is
ALWAYS a jump made to the head of the same procedure. Any
discretion (any FALSE?) must be part of the ACTION. Again we
can simulate this unconditional recursion ina more primitive language.
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First, let’s try doing it in a non-line-number language:

ALWAYS PROC (COMMENT A
DUMMY LINE)

ACTION

GOTO LABEL:ALWAYS (COMMENT
A CALL.PROC)

Or, we could do it in a version of BASIC (two routines are
possible)

1000 REM
1010 GOSUB 2000 : REM ACTION
1020 GOTO 1000

or

1000 REM
1010 GOSUB 2000 : REM ACTION
1020 GOSUB 1000

The latter of the two routines actually makes the equivalent of a
recursive call in BASIC. The problem about renumbering, and
merging routines still hold for the non-LOGO versions, though not
for many other languages with similar capabilities to LOGO. Most
languages which allow recursion still cannot cope with changeable
actions, because they do not have facilities to RUN pieces of text as
programs. Some BASICs have a VAL function which when applied
to a string gives the value of the string, but VAL does not have the
flexibility of RUN and a list.

A recursive control procedure is almost like writing, in LOGO,

REPEAT 32767[ ACTION ]

where the 32767 is a big number, and probably the largest number
possible for a REPEAT loop. This REPEAT loop effectively says
‘Go on forever, almost’. The recursive procedure control will not go
on forever because sooner or later the computer will run out of space
in memory. Each time the procedure is called the LOGO translator
has to keep tabs on which procedure has been called.

If the procedure has been called by itself 100 times, then there will
be 100 tabs (in case at some time, for example, with the factorial, we
go back up the procedures). Some LOGO systems, when they are
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nearly full, lose tabs on the early procedures (without telling the
user). This is fine for the version of recursion we are using, but pretty
drastic for other versions.

WHILE revealed

The actual structure of the WHILE control command is shown in
Figure 8.3, and the structure is very much in the abstract.

aLways [ WHILE CONDITION
ACTION | FALSE

Fig. 8.3. WHILE structure.

WHILE comes to a CONDITION and, if false (i.e. FALSE?) a
jump is made to the item following the ACTION. If the
CONDITION is true then the program proceeds with the next item
which is the ACTION. The ACTION is obviously variable, and is
input to the WHILE procedure as a list parameter. When the
ACTION is complete then an unconditional jump is made back to
the CONDITION, which is again evaluated.

Earlier we saw how the WHILE control command could be
implemented by use of IF and recursion. Figure 8.4 takes that
implementation and shows how the control within the implementa-
tion of commands operates, in terms of IF and recursion. (Compare
with Figures 8.1 and 8.2.)

PROC.WHILE

IF NOT.CONDITION
STOP \ FALSE?
ACTION

CALL PROC.WHILE

ALWAYS

ALWAYS
Fig. 8.4. WHILE control.

Examining Figure 8.4, the first line is the procedure line, with
parameters, and the next line is the IF. IF the CONDITION is NOT
true then control moves to the next item, which is STOP. STOP
activates an unconditional jump out of the procedure (an
ALWAYS).
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If the NOT.CONDITION is untrue (i.e. FALSE?) then a jump is
made to the ACTION. If it is not true that the condition is not true,
then the condition must be true (work that one out). All this means
that if the CONDITION is true then ACTION is activated.

The item following ACTION is a call to itself (possibly with
modified parameters), and is an unconditional (ALWAYS) jump.
What this means is that WHILE the (possibly changing)
CONDITION is true, the ACTION will be taken, otherwise the
looping will STOP.

It is worth trying to analyse RPT (see above) in the same way.
Also, before reading the next section, try to see if you can display the
UNTIL command. When you have tried the exercise, see if you
agree with me.

UNTIL revealed

The structure of the UNTIL - shownas Figure 8.5 - is the simplest of

all.
ACTION
I FALSE?
UNTIL CONDITION

Fig. 8.5. UNTIL structure.

The ACTION is commenced, and the next item is an UNTIL
decision. If the result is false (FALSE?) then the ACTION is
repeated.

Figure 8.6 shows how the UNTIL control command is
implemented. There is a line which defines the PROC. UNTIL (with
parameters), and an ACTION is taken without further ado.This
means that the ACTION is bound to occur at least once, because the
ACTION occurs before the test.

PROC.UNTIL
ACTION
ALWAYS IF CONDITION
STOP l FALSE?
CALL PROC.WHILE

ALWAYS

Fig. 8.6. UNTIL control.
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The next item is the test. If the CONDITION is not true (i.e.
FALSE?) then a jump is made to the item which is the recursive call.
If the CONDITION is true then STOP is activated, which is an
unconditional jump (ALWAYS) out of the procedure. At the
recursive call, an unconditional jump (ALWAYS) is made to the
start, possibly with modified parameters. Remember that the
ACTION is a list parameter.

An interesting variant on the WHILE and UNTIL commands is
the WHILE UNTIL. Try to plan the control structures for a system
which operates WHILE something is true and UNTIL something
different is true: e.g. WHILE it is Sunday and UNTIL I get tired, 1
will go to the gym. Answers of sorts are provided in the Appendix.



Chapter Nine
LOGO at Length

If the nineteenth century was the age of the editorial chair, oursis the
age of the psychiatrist’s couch.

Understanding Media by Marshall McLuhan

A classic program with artificial intelligence pretensions is Eliza or
the Doctor Program. The concept was originally invented by Joseph
Weizenbaum, also from MIT. He developed the program to try to
emulate the practice of a non-reactive psychiatrist, that is, a person
who never answered any of your questions but merely turned the
answers back upon you.

Just after the program was first finished (written in LISP, I
believe) he tried it out on his secretary, who got so carried away with
her ‘conversation’ with the computer, that she asked Weizenbaum to
leave the room. Her conversation was, she said, ‘Private’.

This does not indicate that the program was intelligent, rather
that humans have tremendous ability to imagine themselves to be
part of unreal situations. There are those who are hooked on video
games, there are those who weep at films like Love Story. In fact,
humans have a tremendous imaginative power. LOGO tries to tap
that imaginative power.

Program outline of ‘Eliza’

First of all we have to decide on how our psychiatrist is to respond to
our questions and answers. How would a true psychiatrist respond?

A true psychiatrist would probably respond to what we said, but
would also respond to what was unsaid, the implications and
nuances. The psychiatrist would probably try to read the patient’s
body language. We cannot do most of that, all we can do is respond
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to some small part of what the user communicates, via the keyboard.

When something is typed in, therefore, we have to have the
program examine the text to try to see if any sense can be made of it.
The text will be stored as a list of separate words, and so we have to
go through those words to find significant elements. Sometimes the
program will not be able to find a word that can be recognised, so
then we have to fall back on a different program strategy.

Somewhere we have to store keywords — words, that is, that we
wish the program to recognise and to which we plan responses. If
thereisa‘YOU’ in the input text we might wish to respond ‘WE ARE
TALKING ABOUT YOU, NOT ME’ or similar. To each of our
keywords we have to associate a response and, in a more complex
version (which would take up even more space), possibly more than
one response.

As well as those responses to keywords, there has to be a list of
responses which are used randomly when there is no keyword to be
found. The user/patient might enter ‘XANADU’ and there is no
answerto that. We need a list of dummy responses, whichdo not mean
anything, but use up time while the psychiatrist/ program is stumped
for a relevant response.

The program

This program was written for the RML Link 480Z, using the
Edinburgh version of LOGO. First a routine sets up the system,
called ELIZA:

BUILD ELIZA

NEW *KEY 'RESPONSES "DUMMIES

SAY [WELCOME TO ELIZA - PLEASE WAIT]

MAKE'KEY [COMPUTER COMPUTERS PROGRAM
OFF LIFE YOU I]

MAKE 'RESPONSES [ARE YOU WORRIED ABOUT
MACHINES?] [WE ARE INTELLIGENT!]
[1 LIKE LOGO] [NO]
[LIFE - DO NOT TALK TO ME ABOUT LIFE]
[WE ARE CONSIDERING YOU NOT ME]
[DO YOU OFTEN TALK ABOUT YOURSELF?]]

MAKE’DUMMIES [[REALLY, ARE YOU SURE7]
[CAN YOU ELUCIDATE YOUR THOUGHTS?][WHY
DO YOU SAY THAT?] [YES, YES, I SEE]
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[WHY?] ]
SAY[]
SAY [WHAT IS YOUR PROBLEM?]
SAY []
CONVERSATION
END

ELIZA has three new local variables, each of which is a list. The
RML command SAY is like many other LOGOs’ PRINT, in that it
prints without enclosing the response within brackets (which is what
it does with PRINT).

The list KEY (note the single quote preceding) is made to hold a
series of elements, each of which is a keyword. For this example 1
have only provided seven possible keywords, for economy, and so
that the listing does not become too complicated. Note that KEY isa
very simple list, whose elements are all simple objects - i.e. words.

The next list RESPONSES is rather more complex. RESPONSES
is a list of lists, where, for example, an element of the listis[ WE ARE
CONSIDERING YOU NOT ME], not a word suchas YOU. YOU,
however, is an element of the list[WE ARE CONSIDERING YOU
NOT ME]. The elements of KEY are related to the elements of
RESPONSES in a simple one-to-one manner.

KEY LIST RESPONSES LIST

COMPUTER [ARE YOU WORRIED ABOUT MACHINES?]
COMPUTERS [WE ARE INTELLIGENT!]

PROGRAM [l LIKE LOGO]

OFF [NO]

LIFE [LIFE - DO NOT TALK TO ME ABOUT LIFE]
YOU [WE ARE CONSIDERING YOU NOT ME]

I [DO YOU OFTEN TALK ABOUT YOURSELF?]

The reasoning behind most of the responses to keywords is probably
clear, and the reason why OFF is singled out for a response of [NO]
is that rude comments often end with OFF.
DUMMIES, mentioned in ELIZA, is a short list of non-
commital replies.
The next procedure, CONVERSATION, was in the last line of
ELIZA, and does a slight bit more:

BUILD CONVERSATION
NEW’PLACE 'SEARCHPHRASE
INPUT
MAKE 'PLACE STEP :KEY :SEARCHPHRASE
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IF EQUALQ :PLACE 0 THEN NOTFOUND ELSE
FOUND :PLACE
CONVERSATION
END

PLACE and SEARCHPHRASE are local variables new to this
activation of the procedure, and the line INPUT calls a procedure
(given later) to read in a string. PLACE is made equal to the result of
comparing the list of keywords with the input SEARCHPHRASE
(the procedure is called STEP).

If the value of PLACE is zero then there was no match, and a
procedure NOTFOUND is called, otherwise the procedure
FOUND is activated. CONVERSATION is then called recursively,
and the process repeats (without end; there is no facility to stop the
program, other than breaking in).

The INPUT procedure is very simple:

BUILD INPUT
MAKE’SEARCHPHRASE ASK[ ]
END

It merely requests input (using the RML procedure ASK).
The procedure STEP is rather more complex:

BUILD STEP :ALIST :BLIST
NEW 'PLACE
IF EMPTYQ :BLIST THEN RESULT0
MAKE 'PLACE MEMBERQ FIRST :BLIST :ALIST |
IF EQUALQ:PLACE O THEN RESULT STEP :ALIST
REST :BLIST ELSE RESULT :PLACE
END

STEP needs to be seen in conjunction with:

BUILD MEMBERQ :OBJECT :LIST :COUNTER
IF EMPTYQ:LIST THEN RESULT 0
IF EQUALQ :OBJECT FIRST :LIST THEN
RESULT :COUNTER
MAKE 'COUNTER ADD :COUNTER 1
RESULT MEMBERQ :OBJECT REST :LIST:COUNTER
END

Take it slowly. If you go back to CONVERSATION, you will see
that STEP is designed to find any match between the keywords and
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the input list of words. ALIST in STEP is the KEY words list, and
BLIST is initially the SEARCHPHRASE.

A new variable is made (PLACE), and first of all there is a check
to see if the BLIST is empty, i.e. whether it has no elements. It could
have no elements, either because the user returned a null string (i.e.
just pressed return) or because in later processing the SEARCH-
PHRASE had been exhausted. If the string is empty (EMPTYQ)
then the procedure returns a result of 0.

'PLACE is then made equal to the position of a matching
keyword in the list of keywords, if there is a match at that stage. This
makes use of MEMBERQ.

When MEMBERQ s first called, the third parameter is unity, and
s0 :COUNTER starts at 1. A check is made to see if the keyword list
(:LIST) is empty. If so, 0 is returned. If the :OBJECT (a word from
the original SEARCHPHRASE) is the same as the first element in
the list of keywords then the value of COUNTER is returned. If not,
the value of COUNTER is incremented by 1, and the result of
MEMBERQ is another call to MEMBERQ for the REST of the
keyword list (REST is the same as BUTFIRST). The recursive calls
continue until the keywords are exhausted, and so back to STEP. If
:PLACE is equal to 0 then the result of STEP is a recursive call to
STEP for the REST of the input list of words, otherwise the result is
the value of PLACE.

At this point it might be worth going back over the argument to
try to firm it up. Essentially, what is happening is that STEP goes
through the input list word by word (i.e. by FIRST :BLIST where
:BLIST gets shorter and shorter). MEMBERQ takes that word
from the input list, and compares it word by word with the list of
keywords (i.e. FIRST :LIST). Try to keep that in mind.

We can now examine FOUND and NOTFOUND.

BUILD FOUND :POSITION
SAY :RESPONSES # :POSITION
END

BUILD NOTFOUND
SAY PICKANY :DUMMIES
END

In FOUND, we have one of the few examples (and I do not know
why) of infix notation. The # says ‘choose the following element
number from the preceding list’. In NOTFOUND, PICKANY is a
provided routine to pick any element at random.
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The writing

The above program was written in a fairly short time by a fairly non-
expert person — me. Though I had used other LOGO facilities
before, I had never seriously tried any list processing. Apart from
MEMBERQ and STEP, which were slightly tedious, it took less
time to write than it would in BASIC, for example. What is more
important is that it is easy to change the program to incorporate new
keywords, new responses, and new dummies, without having to
renumber and similar tedious chores.

This program shows the real power of LOGO, far more than the
graphics - though the graphics are far prettier.

A relational database

A database is an ordered set of information, a basis of data. A
relational database is one which searches for information whichisin
a certain relation to the input query. People often talk of ‘querying’a
database.

Again, we are talking of an ordered set of items which, in the case
of a relational database, is a rather more complex ordering. LOGO
is very good at teasing out complex relationships, and discerning
orderings.

We will construct a very simple database but, even so, this
database is far beyond the capabilities of most BASICs or Pascal in
terms of complexity. It is possible to construct a relational database
in these languages, but the interface is very difficult to construct.

We want to be able to query easily (or, another term, ‘interrogate’)
the database. In LOGO we do not have to use any special feature,
but in Pascal and BASICs we do have to write special routines to
allow the user to ask questions of the database.

We need two main types of user routine: one to allow the user to
enter data, and the other to interrogate the database. In LOGO these
are merely two ordinary procedures - there is no need to create any
special effects. Let the putting of information into the system be
performed by the procedure INFO, and the asking for information
by WHATIS.

The data which we will relate will be very simple, of the ‘PEOPLE
EAT CATS’ or ‘LOGO RULES LISP’ variety. There is an ‘object’
(e.g. ‘PEOPLE’ or ‘LOGO’) which is in a certain defined relation
(e.g. ‘EAT or ‘RULES’) to another object (e.g. ‘CATS’ or ‘LISP).
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The structure can be seen as the basis for many sentences - in a
rather more complex form.

Suppose that we have put the following eight immensely
interesting items of information into the database:

INFO  [BORIS LIKES LOGO]
INFO  [BORIS LIKES FORTH]
INFO  [RICHARD LIKES LOGO]
INFO [RICHARD LIKES MONEY]
INFO  [RICHARD HAS BEARD]
INFO  [BORIS HAS EYES]

INFO  [BORIS EATS FOOD]

INFO  [LOGO IS STRUCTURED]

I want to find outeverything Icanaboutthat marvellouschap BORIS,
so I ask:

WHATIS[BORIS*R*O]

(The * prefix shows that this is a category to be examined.)
For this example, the answer is:

>> [BORIS LIKES LOGO]
>> [BORIS LIKES FORTH]
>> [BORIS HAS EYES]
>> [BORIS EATS FOOD]

and, to the query:

WHATIS [*A HAS BEARD]
we should find:

>> [RICHARD HAS BEARD]

INFO and WHATIS

Let us start with INFO - written again in RML LOGO -

BUILD INFO :DATUM
IF NOT EQUALQ COUNT :DATUM 3 THEN SAY
[OOPS!]
AND ESCAPE
MAKE 'DATA PUTLAST :DATA :DATUM
END

This procedure mentions two lists. The first list is DATUM, and it
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should contain the three elements of a relationship - object, relation
object. In the IF check, when there are not three elements in the list
DATUM, the user is warned and an ESCAPE is made from the
routine.

The second listis DATA, and it is a list of lists. The lists of which it
is a list are relationships, and the MAKE line adds an extra element
(DATUM) onto the list DATA. The list DATUM is PUTLAST of
the elements of the list DATA. This routine tacks on valid lists to the
end of the list of lists: it adds a datum to the database.

One part of the routine which might be puzzling is the portion
NOT EQUALQ COUNT :DATUM 3, and to solve the sense of
sequence we work from right to left (see Figure 9.1). We start with 3,
and remember it: we come to the list DATUM and remember it: we
then encounter COUNT, which is a procedure we apply to the last
item we remembered, i.e. :DATUM.

The result of COUNT :DATUM (i.e. the number of elements in
DATUM) is remembered. EQUALQ is a procedure which expects
two parameters, the two items we still remember, and it compares
the values of the two remembered items. The result of the
comparison is a truth value (TRUE or FALSE), and the truth value
is negated by NOT.

NOT

EQUALQ

COUNT
:DATUM 3

Fig. 9.1. Structure tree.

The upshot is that, if there are not three items in DATUM, the
result of the portion after IF is true.
The other procedure we use to relate to the database is:

BUILD WHATIS :QUERY
IF NOT EQUALQ COUNT :QUERY 3 THEN SAY
[OOPS!]
AND STOP
INFOPRINT CHECK :QUERY :DATA
END
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The IF line should be familiar, but the next line is less transparent.
We do not know what is INFOPRINT or CHECK - we know
:QUERY and can guess :DATA.

CHECKS and PRINTS

INFOPRINT prints out information on relationships which fit with
our QUERY, and CHECK is a routine which compares our
QUERY to the database. Neither of these routines has been written
yet. Let’s start with INFOPRINT.

BUILD INFOPRINT :MATCHES
IF NOT EMPTYQ :MATCHES
THEN PRINT FIRST :MATCHES
AND INFOPRINT BUTFIRST :MATCHES
END

The list of relevant relationships is to be contained in the list
MATCHES. IF MATCHES is not empty THEN the FIRST
element of the list (i.e. the first relationship) is PRINTed - to PRINT
(rather than SAY) is to put square brackets around the output. Note
the recursive use of INFOPRINT - this procedure emulates the
equivalent of an UNTIL loop.

When we try to CHECK, we find:

BUILD CHECK :RELN :DBASE
IF EMPTYQ :DBASE THEN RESULT[]
IF SAME :RELN FIRST :DBASE THEN
RESULT PUTFIRST FIRST :DBASE
CHECK :RELN REST :DBASE
RESULT CHECK :RELN REST :DBASE
END

First, note that there are three possible RESULTS to the procedure.
The first RESULT is nothing (the empty list [ ]) if the DBASE list is
empty.

The second possible RESULT is that there is something in
common between the RELN and the DBASE lists (they are partly
the SAME). In this case, the RESULT is to PUT the FIRST
(matching) element onto the front of any other matching elements.
The other matching elements are shown as being the result of the
same CHECK on all but the first element of the DBASE list (i.e. the
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REST). In this way each successive element of DBASE is examined
to see if it has some items which are the SAME.

I will not attempt to go through the most complex procedure, that
of SAME, but I will indicate how it might operate. We need to
examine the first element of the database list, and compare it, item
by item, with the query relationship.

We compare by looking at the first item of both. There are several
options: the lists are both empty, or one is empty, so exit; or the item
in the query list starts with a *, so move to the first item of the rest of
the list; or the two items are different, so stop; or the two items are
the same, so move to the first item of the rest of the list.

As an example, consider the part of SAME which examines the
item for *

IF EQUALQ FIRST FIRST :RELN ** THEN
RESULT SAME REST :RELN REST :DBASE.ITEM

This means that if the FIRST character of the FIRST item is the
same as * ("* means the character or name, not any procedure or
operation), then apply SAME to the REST of the RELN list and the
REST of the DBASE.ITEM list.

LOGO allows us to put in a routine SAME as part of CHECK,
without SAME having been written - this is very much part of the
LOGO approach. The user starts with the problem and cuts it into
little manageable bits. Each little bit then can possibly be further cut
up, or treated as a whole. We can put aside difficult problems for
later by saying ‘Here we will have a routine to do this, and it will be
called XXX’ without actually writing XXX. If the program is run
without XXX, then the program will not work, there will be an
error, and the system will tell you something like ‘I do not know how
to XXX

To instate our database, we need to initialise the database list (i.e.
DATA):

MAKE 'DATA[ ]

Then we can enter information by INFO, and retrieve it by
WHATIS. Obviously such a system can be extended to cope with
rather more complex tasks, but that is for more advanced users.



Chapter Ten
Why LOGO?

In this book I write about children but, in fact, most of the ideas
expressed are relevant to how people learn at any age. | make specific
references to children as a reflection of my personal conviction that it
is the very youngest who stand to gain the most from change in the
conditions of learning.

Mindstorms by Seymour Papert

LOGO began to be evolved round about 1967, by Bolt, Beranek and
Newman, a research institute in Cambridge, Massachusetts, and the
team which started LOGO included Wally Feurzeig, Danny Bibron,
and Seymour Papert. Later, in the early 1970s, work began at
Edinburgh University.

The early versions of LOGO focussed on words and sentences, but
it was found that playing with words and symbols did not have the
immediacy which had been hoped for. The language continued to
evolve - as even now - and then Seymour Papert invented the
notion of Turtle Graphics. The name ‘turtle’, the American for
tortoise, was taken from Gray Walter’s tortoise, an early attempt at
an ambulatory robot (a moving hemisphere).

In 1972, at the University of Exeter, there was a conference on
computers and education, at which Seymour Papert and some
fellow workers (including Cynthia Solomon) brought along a
version of LOGO to be tried out on what was then a large computer.
Children from the neighbourhood participated in what Cynthia
Solomon calls ‘the first computer camp, ever’. The camp was very
successful and encouraged others to try to use LOGO. It was
at about this time that work in Edinburgh started.

Slowly, the language improved but it was still used on fairly large
machines. Then, with the advent of the personal microcomputer,
LOGO became available on microcomputers. The first micro-
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computer versions were written for the Apple II and the TI 99/4A
machines (the first using real arithmetic and the second using integer
arithmetic, though with sprites).

The language has now spread widely and versions are becoming
available for most microcomputers. As there are now one million
home computers in Britain, this means that education by computers,
in the home, in a well thought out manner, is now a reality.

How is LOGO learned?

Children should learn LOGO, so many of its advocates believe (as
do 1), by active engagement with the computer. The child is left to
develop his or her own style of programming, (really, ‘style of thinking’)
ina rich computing environment. The child should not be stifled bya
rigid curriculum, with marks for progress when the child has
reached a certain stage.

One teacher told me of her experiences with a very rudimentary
version of LOGO - LOGO 2 for the BBC Microcomputer, a turtle
graphics only implementation. The boys in her class were very keen
at first, but as time went on their enthusiasm waned, particularly as
the girls seemed to be getting on at a far faster pace. The boys wanted
to get back to ‘proper’ arithmetic, with ticks and crosses in their
book, and a feeling of safety, being on familiar ground. The boys felt
they ‘should’ be better than the girls at playing with gadgets, but the
girls discovered the aesthetic aspects to computing and the joy of
discovery.

To have LOGO in a classroom does not remove all need for a
teacher. As Papert himself makes clear, LOGO does not remove all
need for guidance, rather it changes the form of guidance one has to
give. It might be a straight answer to a question, a passing remark of
the ‘I bet you can’t ...’ type, or a session on the blackboard to
examine why the sum of a geometrical series converges to a fixed
value.

Another teacher (using Apple LOGO this time) found that,
contrary to her expectations, children did not work successfully in
mixed ability groupings (she had them working in groups of about
four children). She also found that children worked better, and
progressed further, in groups rather than alone. She found, in fact,
that the streaming of children by ability worked, but she had to
stream by computer ability, which did not seem to be too highly
related to other abilities.
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What are the consequences?

The consequences for education are tremendous. Just as a child is
deeply immersed in a culture, and grows up in a society, so LOGO is
learning by being immersed in a computer culture. The computer is
the most flexible machine yet developed by Man, and does not sit
easily with conformity.

The conformist way of using the computer in education has
already been suggested by some politicians. The computer is to be
used to cut the numbers of teachers, because ‘packages’ will be
developed so that children need onlysitinfront ofatelevision,anddo
their exercises. The computer will mark the exercise and, possibly in
time - so they hope - set the questions.

If we wanted a nation of conventionalist, non-innovative citizens
this is one way of achieving that wish. This may possibly be one of the
reasons for introducing computers into schools: ultimately, it is
hoped, they would come to replace some of the teaching staff.

When we have nine-year-old children with great access to
computers, with computers being used for constructive, nay, even
creative, purposes, the education system will not be in a position to
accommodate these children later in their educational careers.
Many teachers will be able to cope, but the system will have many
problems, particularly if the emphasis is still on the passive use of
computers in secondary education. If the system tries to force
children into a non-reactive mode of computer use, given the
experience many will have at their primary school and/or at home,
the system will be flaunted.

Though many teachers try to act against it, the structure of school
tends to promote a uniform approach. If we care for the future there
needs to be an end to fruitless uniformity. Thisis where LOGOcanbe
so helpful, in encouraging children to assert their own individual
creativity in tackling problems.

Turtle graphics

Turtle graphics is a brilliantly conceived idea. Turtle graphics are
immediate, gripping, and thought-provoking, but they also have a
fascinating richness at the higher levels in mathematics - in topology
and relativistic mechanics, for example.

I have included only one chapter specifically concerned with
graphics, but many of the illustrations of other points could also best
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be made by using pictures. People react well to visual stimuli, and
those graphics produced by the differential geometry method, which
is what turtle graphics really are, have greater applicability than
most.

The graphics examples I have shown could all be produced by
more traditional coordinate geometry methods which require such
an increase in programming skill that most persons would remain
debarred. Most could actually do it if they had the time, but
conventional coordinate geometry fits well with advanced mathe-
matics, and not with elementary arithmetic.

Conventional coordinate geometry is needed, even by those who
implement LOGOs, so the teaching of such skills will still be
performed, but at a different time in a different order. It is
interesting to note that UCSD Pascal (a programming language for
the educationally more able) makes extensive use of the turtle
approach.

When we come to turtle graphics, it is the ‘good news, bad news’
situation. The good news is that turtle graphics are very successful,
and work exceptionally well. The bad news is that many people
never think that there is anything more to LOGO than turtle
graphics.

The number of ‘LOGO’ implementations which are only
implementations of turtle graphics (and some are very good) is an
indication that the success of turtle graphics has led to a failure to
appreciate there is more to LOGO. 1 hope I have redressed the
balance.

Seymour Papert strongly asserts that any LOGO worthy of the
name should incorporate list processing (and remember that is
actually where LOGO started), but when you say that a LOGO
should have list processing there is often a slightly patronising look
which says ‘Who are you trying to kid? What good is that for
anything useful in schools? Or anywhere?".

I have seen elementary adventure programs, much as the
illustration I gave, written by primary school children. An adventure
game is a ‘microworld’, a special little pretend world where the child
or adult can act out many vicarious roles. There are now LOGO
simulations of historical events, which allow the child to be an actor
in the events: all built up using list processing.

That LOGO is used for teaching on artificial intelligence courses
at Edinburgh University indicates that the power of LOGO (on the
computer in your home) is tremendous. You are limited only by
your computer’s memory and your imagination.
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After LOGO

At LOGO conferences there is always the question ‘What comes
after LOGO?. As somebody commented, ‘I wonder if they have
conferences about FORTRAN, and ask what comes after
FORTRAN?. LOGO is anend initself; it is remarkably flexible and
has many uses.

It is, however, generally speaking, a slow language to run. Turtles
often crawl round the screen, they seldom sprint. As it has well
developed list processing capabilities, LOGO is expensive in terms
of computer memory. LOGO is still happiest with a computer of
large memory. This is not likely to change because, as LOGOs
continually develop to capitalise on more hardware features of
computers, so there is a demand for increased capabilities of
computers. LOGO will always, I feel, be near the front of the
capacities of our machines, and there will never be one LOGO.

At the moment there are many excellent versions of LOGO, all
slightly or not so slightly different, and as machines develop new
characteristics so LOGOs will also develop. There can be no
standard LOGO, because that contradicts the exploratory nature of
the language.

There are certain things that LOGO will never do well. For
example, it cannot control devices as easily and quickly as FORTH.
It is not, therefore, a universal language, and it is not intended to
be one. Universal languages, anyway, are for people with closed minds.



Appendix

Here is one solution, in LOGO, to the WHILE UNTIL control
structure question at the end of Chapter 8.

TO WHILE.UNTIL :CONDITIONI :ACTION
:CONDITION2

IF NOT (RUN :CONDITIONI) THEN STOP
RUN :ACTION

IF (RUN :CONDITION2) THEN STOP

WHILE.UNTIL :CONDITIONI :ACTION :CONDITION2
END

The control structures are shown in Figures A.l and A.2.

WHILE CONDITION =]
ACTION FALSE?
UNTILC

ONDITION FALSE?

Fig. A.7. WHILE.UNTIL control.

PROC.WHILE.UNTIL

IF NOT.CONDITION1

STOP ' FALSE?
ACTION

IF CONDITION

STOP ’FALSE?
CALL.PROC.WHILE.UNTIL

Fig. A.2. WHILE.UNTIL control.

ALWAYS
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It is never worth buying a computer just because it is the only one
with a certain piece of software. If a piece of software is sufficiently
popular, it will become available on other computers too, before
long. If you are going to buy a new microcomputer, obviously,
therefore, it is worth keeping an eye open for the languages which
are potentially available. LOGO is available (or will be available
shortly) for many computers.

LOGO comes in two main classes: proper LOGOs with turtle
graphics and list processing; and varieties of turtle graphics. In the
following list I will consider only proper LOGOs (though Tandy
Color LOGO and Computer Concepts LOGO 2 are reasonable
variants of turtle graphics). This list is not in any way complete, as
no list could be complete given the speed at which LOGOs are
appearing, and in some cases the information is based on that
provided by the supplier.

Apple I

Two varieties of LOGO are available, both of long standing, and
both of a reasonable standard. There is Terrapin LOGO, and there is
Apple LOGO, both of which are MIT versions. Apple LOGO is
notable because it has the support of Harold Abelson (writer, with
diSessa, of Turtle Geometry). Both versions provide list processing
and real arithmetic, and come on disk.

Atari

An MIT LOGO, with a good pedigree (Cynthia Solomon - Head of
the Atari Research Laboratory - was in at the beginning of LOGO).
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It is a list processing version, with real arithmetic, and with software
sprites known as demons. It comes on disk or cartridge for any Atari
machine.

Commodore 64

A version of the well established Terrapin LOGO (see Apple II),
with the addition of hardware sprites, comes as a cartridge (and
possibly disk).

IBM Personal Computer

Two versions of LOGO are available for the IBM PC. Waterloo
LOGO (from the University of Waterloo, Ontario) is an MIT
LOGO with additions (such as the unary minus), and comes on disk
with its own operating sysem. Digital Research LOGO (i.e. DR
LOGO) is an MIT LOGO, and it comes on disk to run under Digital
Research’s CP/M-86. Both versions incorporate list processing and
real arithmetic.

Research Machines 380Z2/4802

This is a strange, very idiosyncratic, version of LOGO developed by
Edinburgh University. It has list processing and real arithmetic, and
comes on disk. Personally, however, I cannot recommend this
version,

Sinclair Spectrum

This is an MIT LOGO with list processing and real arithmetic. It has
been written by those responsible for Atari LOGO (and others) and
comes on cassette.

TI 99/4A

This is a new version of one of the oldest and most well-established
LOGO:s. List processing is not so well developed as with some other
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versions, and there is only integer arithmetic, but TI LOGO does
have excellent graphics handling with hardware sprites. It might be
the first LOGO to become available for more than one language
(American, French, German, Italian, Spanish, and Dutch). It comes
on cartridge, cassette, or disk.
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The new computer language Logo is becoming ever more
popular. It is very clear and straightforward with very |
many powerful features, and is being used increasingly in
schools. Many parents, for example, are finding that their
children are using Turtle Graphics at school, and want to |
find out more.

Others will have read about Logo: computer magazines
recently have had a spate of articles about Logo, at a very
superficial level. There will be computer hobbyists who
may want to try out Logo on their own computer; they will
want to know what Logo is, and how to evaluate
commercial offerings. They will need an annotated guide

z to various versions for more common microcomputers.

| _ This book explains the philosophy behind Logo and why it
_ is different from many other languages such as BASIC. It
shows you how to program in Logo, with many useful
examples, and explains Turtle Graphics and other
applications in detail. You are also shown what versions
of Logo are available and what to look for in making a
suitable choice.
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