

Introduction to

Tl BASIC

Introduction to

Tl BASIC

Don Inmon

Ramon Zamora

Bob Albrecht

ffl
HAYDEN BOOK COMPANY INC.

Hasbrouck Heights, New Jersey

Library of Congress Cataloging in Publication Data

Inman, Don.

Introduction toTI BASIC.

Includes index.

1. Basic (Computer program language) 2. Tl 99/4
(Computer)—Programming. I. Zamora, Ramon, joint
author. II. Albrecht, Robert L., joint author.
III. Title.

QA76.73.B3I54 001.64'24 80-12825

ISBN 0-8104-5185-9

Portions of this work appeared originally in Texas Instruments' BEGINNER'S
BASIC, copyright ©1979 by Texas Instruments Incorporated, and are used with
the permission of the copyright holders.

Copyright © 1980 by HAYDEN BOOK COMPANY, INC. All rights reserved.
No part of this book may be reprinted, or reproduced, or utilized in any
form or by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying and recording, or in any infor
mation storage and retrieval system, without permission in writing from
the Publisher.

Printed in the United States of America

8 9 PRINTING

83 84 85 86 87 88 YEAR

Preface

This book is designed especially for those people with beginning to intermediate
experience with the small home computer. In the early chapters, the authors assume
that the readers arenewcomers to the expanding world of personal computing. The
material is presented slowly, and the users are led on a joyous and informative tour of
the Texas Instruments 99/4 - an exciting new entry in the growing list of machines
designed for use in the home. The readers are encouraged to examine the color, sound
and graphics capabilities of the Tl 99/4. The introduction of programming concepts
and technical material is pursued within an overall context of exploration and discovery.
New users will find that they can start using the Tl 99/4 in the first chapter.

For the personswith intermediate skills, the later chapters contain a number of demon
strations of the machine's capabilities for use with larger programs. Animation on the
screen, color graphics, sound, and music become the topics of discussion. Based on
the material in the early parts of the book, the later chapters expand upon these seed
ideas —providing the readerwith the opportunity to see the same examples in a variety
of situations. In the second half of the book, there is also a chapter on screen editing
for the Tl 99/4. This chapter shows the userhow to access the various editing commands
of the Tl Home Computer —commands that facilitate making program changes and
corrections.

At the end of each chapter is a set of review questions. The questions and accompanying
answers coverthe high points of the material that hasbeen presented.The reader can
use the self-testing nature of the exercises to see just what has been learned, and to point
out areas where more exploration may be needed. The exercises are designed to rein
force the learning process.

Do you need a computer in order to use the book? No! Although there is no complete
substitute for sitting in front of a Tl 99/4 as you read through this book, you can still
use the book without a computer. In those cases where sound and color result, you will
have to use your imaginations to try and "picture" what is being discussed. But for the
most part, you can learn quite a lot about the Tl Home Computer by working your way
through the book. In fact for those persons who are "thinking" about getting aTl 99/4,
this book is an excellent resource in helping them make that decision.

On the other hand, many readers of this book will have recently purchased a new Tl
Home Computer. In the box with the computer there is a booklet that was also written
by the authors of this book. The material in the booklet and the present book overlap
to some degree, but the book you are now reading goes well beyond the contents of
the booklet. We have expanded each topic area, added new material, and, in general,
designed a tour of your new machine that answers many of the questions you are likely
to encounter on your adventure with your personal computer. The book you are holding
will be invaluable as you make your journey into the rich land of the Tl 99/4 —a land
filled with many exciting hours of learning and recreation.

Chapter One is called the Gateway to Adventure. You are now approaching the Gateway
your adventure is about to begin. Congratulations to you for making this journey with
us —a journey where there is much to learn, and much to enjoy! The gate appears to be
opening . . . hurry and come along with us on this adventure.

••1--

TnLT
*" * »

Don Inman
Ramon Zamora
Bob Albrecht

**lft*, m.. .J'""'.

Contents

Chapter One — Gateway to Adventure 1

Do It Now, 3
The CALL CLEAR Statement, 5
The IMMEDIATE Mode, 6
The PRINT Statement, 6
Correcting Mistakes, 8
The LET Statement, 11
Summary, 17
Exercises, 18
Answers, 19

Chapter Two — Do It Now: Sound and Color Graphics 20

The CALL SOUND Statement, 20
More Than One Tone, 22
Noisy Sounds, 24
Graphics, 25
Summary, 32
Exercises, 33
Answers, 35

Chapter Three — Simple Programming 36

Your First Program, 36
Your Second Program, 38
More About LISTing a Program, 44
The INPUT Statement, 45
Identifying the Answer, 49
String Variables, 49
Summary, 54
Quick Review of Program Structure, 54
Exercises, 55
Answers, 57

Chapter Four —Looping Sound and Color 58

The GO TO Statement 58

GO TO With CALL SOUND, 60
Loops, 62
Musical Scales, 66
A GO TO Loop with the CALL COLOR Statement, 68
Error Messages, 73
Summary, 75
Exercises, 76
Answers, 78

Chapter Five — More Programming Power 80

The FOR-NEXT Statement, 80
The FOR-NEXT Delay Loop, 83
"Nested" FOR-NEXT Loops, 84
Subroutines, 86
Animation, 89
Flashing Letters, 90
Flashing Color Squares, 91
Moving Color Squares, 92
Error Conditions with FOR-NEXT, 93
Summary, 94
Exercises, 95
Answers, 97

Chapter Six — Beginning Simulation 98

The INTeger Function, 99
The RND Function, 103
A Two-Dice. Simulation, 111
Error Conditions with RND, 114
Summary, 115
Exercises, 116
Answers, 118

Chapter Seven — More Program Control Statements 119

The IF-THEN Statement, 119
A Number Guessing Program, 123
Random Notes, 127
Musical Interlude, 129
IF-THEN-ELSE Statement, 130
The ON-GO TO Statement, 131
The ON-GOSUB Statement, 133
Summary, 134
Exercises, 135
Answers, 137

Chapter Eight - Using Data Files 138

READ and DATA Statements, 138
More Than One DATA Statement, 140
The RESTORE Statement, 143
READ a List, 143
String DATA, 144
Plain and Fancy PRINTing, 145
Comma Spacing, 148
Semicolon Spacing, 148
The TAB Function, 150
Rectangles and Squares, 153
"Holes," 157
Summary, 158
Exercises, 159
Answers, 161

Chapter Nine —One Dimensional Arrays 162

Tone Guessing Game, 165
Color Organ, 166
Customizing the Color Organ, 168
Other Uses for Arrays, 170
Calculating Salesmen's Commissions, 172
How To Run the Program, 175
Exercises, 178
Answers, 179

Chapter Ten — Two Dimensions and Beyond 180

Three-Dimensional Arrays, 189
Exercises, J 98
Answers, 200

Chapter Eleven — Color, Graphics, Sound, and Animation 201

The CALL SCREEN Statement, 201
Introducing CALL CHAR, 202
COLOR with CHAR, 203
PRINTed Patterns, 205
Rectangles and Squares, 205
"Triangular" Rectangles and Squares, 208
Animation and Sound, 209
Musical Interlude, 210
The CALL CHAR Statement, 211
A Block Figure with CALL CHAR, 216
The Giant, 221
Summary, 223
Exercises, 224
Answers, 226

Chapter Twelve — More Strings 228

The Length of a String, 228
Selecting a Substring of a String, 231
How to Use the Program, 235
Concatenating Strings, 236
ASCII Codes, 239
Finding a Character from its ASCII Code, 242
Searching a String, 243
Comparing Two Strings, 245
Numbers to Strings and Strings to Numbers, 247
Summary, 249
Exercises, 250
Answers, 252

Chapter Thirteen — Editing 253

Editing More Than One Line, 256
Deleting a Whole Line, 259
Ignoring All Changes, 260
Automatic Line Numbering, 261
The RESequence Command, 262

Summary, 264
Exercises, 265
Answers, 267

Chapter Fourteen —Subroutines and Your Personal Library 268

The Delay Subroutine, 269
Delay and Clear Subroutine, 270
Putting a Border Around the Screen, 271
Redefining a Block of Characters, 272
Using VCHAR/HCHAR to Reward a Successful Guess, 272
A Sound and Color Subroutine, 273
Removing Spaces in a String, 274
Removing Sets of Characters from a String, 276
Rolling Dice, 277
A Music Maker Subroutine, 278
What's Next in Adventureland?, 280
Summary, 281

Appendix A — Musical Notes and Frequencies 282
Appendix B —Character Codes 283
Appendix C - Color Codes 284
Appendix D — Mathematical Operations 285
Appendix E — Error Messages 297

Index 304

Introduction to

Tl BASIC

Chapter One
Gateway To Adventure

You are embarking on an adventure into the land of computers —a land filled with color,
sound and visual effects. This book is your guide; with it you will learn how to use your
Texas Instruments Home Computer. Even if you've never worked with a computer
before, you can teach yourself, your family and friends to use, program and enjoy your
TI Home Computer.

This book will help you to understand and use the computer language called BASIC.
BASIC was developed in the middle 1960s at Dartmouth College by John Kemeny and
Thomas Kurtz (Thanks, John and Tom!). BASIC is the most popular computer language,
especially for beginners. BASIC is simple to learn, yet powerful enough to do most any
thing you want to do with computers.

Learning to program is not mysterious. It is merely learning to communicate with the
computer. You learn the language the computer understands so that you can "talk" to
your Home Computer, telling it what to do and when to do it.

We assume that this is your first direct contact with a computer and that you want to
use it immediately. Great! You will begin by learning interesting tricks the computer
can perform. Then, you will learn to program it to successfully complete tasks for you,
your family and your friends. You will find that you need little information to begin
using your Home Computer and that you can quickly make use of its color, sound and
graphical capabilities.

You stand at the Gateway to Adventure. Please enter; we will guide you as well as
we can.

Introduction to TI BASIC

As you wend your way through this adventureland guide, try out the friendly encounters
we provide for you and your computer. You will find that BASIC is much like English.
You'll see words like PRINT, STOP and LIST. Most BASIC words and meanings are
similar to the English words and definitions you already know. This feature makes BASIC
easy to learn and fun to use.

Typing BASIC words into the computer is easy. Whether you are familiar with a type
writer or not, one look at your computer's keyboard tells the story. You see there the
letters of the alphabet, punctuation marks, numbers, and other special characters.

Ei m 3
$
4 q m m

Q00Q000Q00

• h m 0 m m»*<*. A 1 S 0

SHIFT 1 Z! 1
X [s • b m m •

Everything you need isat your fingertips, right there on the keyboard. You type infor
mationon the keyboard. This information goes into the computer and is stored in the
computer's memory. The information is also displayed on the TV screen so that you
can see what you have typed. The computer uses the TV screen to display its responses
to your instructions. It's easy! But, enough introduction - let's get started.

Gateway To Adventure

DO IT NOW

Plug-in and turn on your Home Computer. If you need help, consult the User's Reference
Guide that came with your computer. Also, take a few minutes to review the operation
of the keyboard. The User's Reference Guide contains a complete "key tour" of your
Home Computer.

When you first turn on your Home Computer, the TV screen will look like this:

%

TEXAS INSTRUMENTS

HOME COMPUTER

READY-PRESS ANY KEY TO BEGIN

. ©1979 TEXAS INSTRUMENTS

Press any key on the keyboard. The TV screen will then show the main menu of
selections available to you.

r
TEXAS INSTRUMENTS

HOME COMPUTER

PRESS

1 FOR TI BASIC

2 FOR EQUATION CALCULATOR
If a memory module is plugged
into its slot on the console, its
title will appear in the third
position

In this book, we will talk only about option 1, TI BASIC. For information about other
options, consult your friendly User's Reference Guide.

Introduction to TI BASIC

Since we want to use TI BASIC, let's do it! Press the 1 key to select TI BASIC. This
is what you see:

r

TI BASIC READY

>•

The prompt
/ \

The cursor

The computer is ready for you to use. The right pointing arrow without a tail (>) is
called the prompt. The blinking rectangle (•) is called the cursor.

It is your turn to do something. The prompt (>) and the cursor (•) tell you that the
computer is waiting patiently for you to type something on the keyboard.

If you don't type something on the keyboard, the computer will wait, and wait, and wait.
Computers are very patient!

Type something. If you can't think of anything to type, type your name. Since we
don't know your name, we will show you what happened when Kit typed her name.

TI BASIC READY

>KITD

The prompt/ \
The cursor

Interesting. As Kit typed her name,the cursor moved to the right. The prompt didn't
move. The prompt marks the beginning of a line at the left edge of the screen. The
cursor tells you where you are now. The cursor marks the place where the next
character you type on the keyboard will appear.

Gateway To Adventure

Kit has finished typing her name. She knows that she has finished, but the computer
doesn 't know that Kit has finished. After all, her name could be Kitty or Kitrinka or
Kitterina.

To tell the computer that you are finished typing, press the ENTER key.

Kit, having finished typing, presses the ENTER key. This is what happens.

r

TI BASIC READY

>KIT

* INCORRECT STATEMENT

>•

Huh? How can Kit's name be an "INCORRECT STATEMENT"? After all, one does
know one's name, doesn't one?

The computer should have said "I DON'TUNDERSTAND." That's what really happened.
The computerdid not understand the word "KIT" typed immediatelyafter a prompt (>).
The computer was waiting for a statement. A statement is an instruction to the computer,
telling it to do something. A statement must begin with a special word, understood
by the computer.

Yes, that is what this book is all about, those special words of TI BASIC, which the
computer understands. So, get ready for your first special set of words.

The CALL CLEAR Statement

Occasionally, as you journey into the fantasyland of computers, you will encounter under
brush. You may notice clutter on the TV screen, especially if your fingers stumble as
they seek the appropriate keys. If you want to clear the screen (get rid of the clutter),
you can use the words CALL CLEAR.

r
CLUTTER

CLUTTER

CLUTTER

CLUTTER

>CALL CLEARD .Type CALL CLEAR and
then press ENTER

Introduction to TI BASIC

CALL CLEAR wipes the slate clean for your next request.

>D Only the prompt
and cursor show

As you work through this book, you'll see several BASIC statements that begin with
the word CALL. Your computer has been "taught" to do certain things by having
some especially useful programs built into it. The CALL statement tells the computer to
"call" the built-in program named in the CALL statement.

The IMMEDIATE Mode

Your Home Computer is as easy to use as a calculator. In its IMMEDIATE Mode, certain
BASIC statements can be used to introduce you to the language. Your computer
immediately executes, or performs, an immediate BASIC statement when you press the
ENTER key. Since you see an instant response on the screen, this is an excellent way to
explore the language of your Home Computer.

The PRINT Statement

You can quickly communicate with the computer by using the PRINT statement. You
type the work PRINT followed by a string of characters enclosed in quotation marks.

Space

\
PRINT/THIS IS A MESSAGE

/ /*
The word PRINT / String

Beginning quotes End quotes

Remember to press the ENTER key after the ending quotation marks! This is the
computer's cue to do what you have told it to do.

Gateway To Adventure

After you have pressed the ENTER key, the display will look like this.

Prompt and -
blinking cursor

r

TI BASIC READY

>PRINT 'THIS IS A MESSAGE'
THIS IS A MESSAGE

>•

You typed this and
then pressed ENTER

The computer follows your
directions and prints this

Inour example, the string, enclosed in quotation marks in the PRINT statement, isa
readable message. However, a string can be most any bunch of keyboard characters.
The computerwill print whatever you put between quotes in a PRINT statement.

The quotation marks tell the computer where the string begins and where it ends. The
computer does not PRINT the quotation symbols, only the string between the marks.

Let's try another PRINT statement. Type this:

space space

PRINT*"HELLO TRIEND"
\ T
Remember the quotes

Now press ENTER, and once again your computer does just what you tell it to do.

These are left on the
screen from the
previous message

r
TI BASIC READY

>PRINT 'THIS IS A MESSAGE'
THIS IS A MESSAGE

>PRINT "HELLO FRIEND" -«-
HELLO FRIEND -«

>•

•You typed this
•The computer prints this

Introduction to TI BASIC

Did you notice the way the lines move up the screen when you press ENTER and again
when the computer finishes printing the next line? This procedure is called "scrolling."
Each time the computer prints a line, everything on the screen moves up one line to
make room for the next line. The blinking cursor tells you that it's your turn and shows
you where the next line will begin.

Press the ENTER key several times. Each time you press ENTER, the information on
the screen will move up one Une. If you keep pressing ENTER, you will eventually push
information off the top of the screen, leaving only the prompt (» along the left edge
and the cursor (•) on the bottom line.

Correcting Mistakes

Every computer user makes typing mistakes. Here are some possible mistakes that your
computer doesn't like in a PRINT statement.

(1) Misspelling the word PRINT

(2) A missing or extra quotation mark

(3) Spaces in the word PRINT

Experiment with intentional errors to familiarize yourself with error messages.

(1) Misspelling the word PRINT

Misspelled on -
purpose for
demonstration

r

>PIRNT 'THIS IS A MESSAGE" -«-

* INCORRECT STATEMENT +

>•

You typed this and
pressed ENTER
Error message

When your computer gives you an error message, examine the line that you typed to
identify the error. Then retype the statement correctly.

Gateway To Adventure

(2) Missing or extra quotation marks.

r

>PRINT 'THIS IS A MESSAGE

•INCORRECT STATEMENT

The prompt and cursor tell you
that everyting is OK. The computer
is very patient —you can make as
many mistakes as you wish. The
computer will respond to each mis
take and wait.

(3) Spaces in the word PRINT

space

>P RINT 'THIS IS A MESSAGE'1-*-

* INCORRECT STATEMENT

>•

Missing "

Press ENTER after
this line is typed

Press ENTER

There are several ways to correct typing errors before you press ENTER, and thus avoid
error messages.

(1) Holding down the SHIFT key ana pressing C tells the computer to disregard what
you've typed on the line. The incorrect line or partial line is not erased from the
screen. It moves up one line, and the cursor moves to the next line so that you
can start over.

>PIRNT'TGISISZMESS

>•

At this point we note that the line is
a mess and press SHI FT C

10 Introduction to TI BASIC

(2) If you spot the mistake just after you've made it, use the backspace key (hold down
SHIFT and press the -*- key) to move the cursor back to the error. Retype the Une
from that point on, and then press ENTER

PR INYD -*-

PRINH -*-

PRINTD -*-

Oops!

We used backspace key.f Cursor
is in position over the mistake.
We typed the correct letter.

(3) If you finish typing a line and find a mistake near the beginning of the line, use
the backspace key as previously shown, and retype the letter or word. Then, use
the forward key (SHI FT -»•) to move the cursor to the end of the line. Then,
press ENTER. Note that the forward key does not erase as it moves the cursor to
the right. If you want to erase characters use the "space" key (space bar) to erase
characters. Each space replaces a character.

>PIRNT 'THIS IS A MESSAGE"D

>P IR NT "THIS IS A MESSAGE

Oops! Fortunately, we have not yet
pressed ENTER.

Using SHIFT +• , we position the
cursor over the first mistake.

>PR [[N|T "TH IS IS A MESSAGE" We correct the mistake by pressing
R and I .

>PRINT 'THIS IS A MESSAGE"D

> PR INT 'THIS IS A MESSAGE'
THIS IS A MESSAGE

>•

REMEMBER

Using SHIFT ->• , we move the cursor
to the end of the line.

We press ENTER.
The computer typed this.

To move the cursor to the left, hold down the SHIFT key and press -

To move the cursor to the right, hold down the SHIFT key and press

fRemember, hold down the SHIFT key and press -«-.

Gateway To Adventure

The LET Statement

The LET statement assigns a value to a variable. A variable is the name of a place in
the computer which can store ("remember") a number or a string.

Variables come in two flavors, numeric variables and string variables. In this section,
we will consider only numeric variables. The value of a numeric variable must be a
number.

In the LET statement, the word LET is followed by the variable (the "name"), an
equals sign (=), and finally, the numeric value that you're assigning to the variable.
Variables can be up to 15 characters long, but are generally kept short for typing
convenience.

Let's try a few examples. Type in the following lines. Press ENTER at the end of
each line.

LET B = 2

LET B2 = 37

LET BETA = 123

You have just assigned numeric values to the numeric variables B, B2 and BETA.
Or, you have just put numbers into the "boxes" B, B2 and BETA.

Examples:

BASIC STATEMENT PICTORIAL

LET B = 2

B = 2

LET B2 = 37

B2 = 37

LET BETA = 123

BETA = 123

11

12 Introduction to TI BASIC

Of course, you can't see the "boxes." They are deep down inside the computer
too small to be seen by ordinary eyes.

To find out what is in a "box," use the PRINT statement

>PRINTB

2 ^—
-You type this and press ENTER
•Obedient as always, the computer prints the valueof variable B

While we are at it, let's check boxes B2 and BETA.

>PRINT B2

37

> PR INT BETA

123

>•

£ Yup,just what
v. we expected!

Only one value at a time may be assigned to a given variable. However, at some time
in the future, a new assignment may change the value.

Consider the following successive LET statements.

(1) LETB = 6

(2) LETB=17 •*

C Farewell, 111 be back
r ifyouneedme!

LET statement (1) assigned 6 as the value of B. Then, LET statement (2) assigned 17
as the value of B. The new value (17) replaced the old value (6) in box B. To convince
yourself of this, do the following.

From now on, we will
usually omit the prompt
(>) and the cursor (•)

LET B = 6

LETB = 17

PRINT B

17 -*—

You type these statements

The computer types the most recent value of B

Do you notice any differences between our PRINT statement above (PRINT B) and
the PRINT statements that printed strings?

Above PRINT Statement:

Earlier PRINT Statement:

PRINT B

PRINT "HELLO FRIEND"

The difference is . .. (suspense). .. quotation marks!

Gateway To Adventure 13

The statement: PRINT B

tells the computer to print the value of the variable B.

The statement: PRINT "HELLO THERE"

tells the computer to print the string (HELLO THERE) which is between quotation
makrs, following the word PRINT. Try this.

PmNTUKRUTRV5}^-Y0UtyPethese
15 « The computer responds

Let's put strings and numeric variables together to say something about Kurt. But first,
we want to remind you to use CALL CLEAR (and press ENTER) before you try out
our examples. Down with clutter!

CALL CLEAR (and press ENTER)

The screen is clear, except for the prompt and the cursor, hovering expectantly near the
bottom of the screen. Yes, it is your turn.

You type.
V Aha! A semicolon

KURT =15 /
PRINT "KURT IS" ; KURT
KURT IS 15

The statement: PRINT "KURT IS" ; KURT

does not say KURT IS KURT although that is, indeed, very true. Instead, it says

(1) Print the string: KURT IS

(2) Then, print the value of the variable, KURT. Since the value of KURT
is 15, our ever-obedient computer prints Kurt's age, which is 15.

The semicolon (;) is a separator, or delimiter (as named by the High Priests of computer
jargon). The semicolon separates one thing from another. How about another outrageous
example?

CALL CLEAR (and press ENTER)

The screen is clear, ready for whatever we wish to do, uncluttered by our past efforts.

LET ANSWER = 7
PRINT "2 + 3 =" ; ANSWER
2 + 3 = 7

u Introduction to TI BASIC

Now you know why your phone bill or gas and electric bill or department store bill is
sometimes wrong. Computers do only what people tell them to do! If you tell a
computer that the moon is made of blue cheese, the computer will believe it . . . and,
perhaps tell it to everyone who "talks" to that computer.

Here is another look at the PRINT statement that lied to us.

PRINT "2 + 3 = " ; ANSWER

The above PRINT statement tells the computer to:

(1) Print the string: 2 + 3 =

(2) Then, print the value of ANSWER

If ANSWER had contained the correct answer, the computer would have been truthful.
Let's teach our computer to be truthful.

METHOD 1

LET ANSWER = 5
PRINT "2 + 3 =" ; ANSWER
2 + 3 = 5

METHOD 2

LET ANSWER = 7
PRINT "2 + 3 = IS NOT" ; ANSWER
2 + 3 IS NOT

Gateway To Adventure

After variables are assigned values by LET statements, arithmetic operations can be
performed on the variables within a PRINT statement

> LET A2 = 4 Semicolon
>LETA3 =9 /
>PRINT A2 + A3 ; A3 - A2

13 5

>•

Yes, of course, since A2 is 4 and A3 is 9, it is quite reasonable that A2 + A3 = 13 and
A3 —A2 = 5. Our always clever computer picks up the value A of A2 and A3 adds
these values in expressions such as A2 + A3 and A3 - A2.

This is an expression

15

You can also perform multiplication (*) and division (/) within expressions in a PRINT
statement. The following PRINT statement is allowed in TI BASIC:

PRINT A2*A3; A3/A2

Instead of a semicolon, you may use a comma (,) as a separator, or delimiter (computer
jargon) between items in a PRINT statement. Try this.

PRINTA2 + A3,A3-A2

The screen now shows:

Answers are close together

>LET A2 = 4

>LET A3 = 9

>PRINTA2 + A3;A3-A2 -«-
^•13 5

>PRINTA2 + A3,A3-A2 -*•
13 5

»\ /
Answers are far apart

Old stuff with a semicolon

New line with a comma

16 Introduction to TI BASIC

The semicolon in a PRINT statement tells the computer to display the values close
to eachother. A comma in a PRINT statement tells the computer to place the values
far apart. In fact, a comma tells the TI computer to place just two values on each line.
Try this:

PRINT 1,2,3,4,5

The screen should now show

>LETA2 = 4
>LETA3 = 9
>PRINTA2 + A3;A3-A2

13 5

>PRINTA2 +A3,A3-A2
13 5

> PR INT 1,2,3,4,5
1 2

3 4
5

>•

If you were to use a semicolon between values in the last PRINT statement, all five
values are displayed on the same line. Try it for yourself; enter the following

PRINT 1; 2; 3; 4; 5

Gateway To Adventure yj

Chapter Summary

Time to review what we have covered in this chapter and try the set of exercises that is
provided. At the end of each chapter, you will find a set of exercises. Do as many of
the exercises as you can. They help you review and remember what was talked about
in the chapter. Exercise time!! 1-2-3-4; 1-2-3-4;...

The prompt symbol is a right pointing caret (>)
The cursor symbol is a blinking square (•)

The computer executes a BASIC statement only after the ENTER key is pressed

PRINT statements may include strings in quotes

The shifted C key tells the computer to disregard the line just typed

The shifted +• key moves the cursor left

The shifted •+ key moves the cursor right

The LET statement is used to assign values to variables. (The word LET is optional)

When a comma is used as a separator in a PRINT statement, the results are printed
far apart

When a semicolon is used as a separator in a PRINT statement, the results are printed
close together

Arithmetic operations may be performed in a PRINT statement

The CALL CLEAR statement clears the screen

18 Introduction to TI BASIC

Chapter One Exercises

(1) What is the name of the computer language used in this book?

(2) You "talk" to the computer by pressing keys on the

(3) Where does the stuff you type appear?

(4) Two important symbols are the prompt and the cursor. What do they look like?

(a) cursor (b) prompt

(5) If you type: PRINT "YOU PASS THE TEST" and then press the ENTER key,
what will the computer display?

(6) Each time the computer prints a hne, everything on the screen moves up one line.

What is the procedure called?

(7) Your screen shows:

PRINT "SOMETHING IS MISSING

* INCORRECT STATEMENT

Explain why the error message is printed.

(8) Tell the purpose of each of the following:

(a) SHIFT +•

(b) SHIFT ->

(c) SHIFT C

(9) Which of these two statements causes the values of A and B to be printed closer
together than the other statement?

(a) PRINT A;B (b) PRINT A,B

(10) Can arithmetic operations be performed in a PRINT statement?

(11) What statement is used to erase the screen?

(12) Write a statement to print the product of A and B.

Gateway To Adventure -jg

(13) Pretend that you are the computer. Show what you will print.

>A = 7
>B = 5

>PRINT"A + B=";A + B

Answers to Chapter One Exercises

(1) BASIC

(2) keyboard

(3) The TV screen, or video display, etc.

(4) (a) cursor •
(b) prompt >

(5) YOU PASS THE TEST

(6) scrolling

(7) No quotation mark on the end of the PRINT STATEMENT

(8) (a) moves the cursor to the left
(b) moves the cursor to the right

(c) tells the computer to disregara what you've typed on the current line
(everything on the screen is scrolled up one line)

(9) PRINT A;B

(10) Yes

(11) CALL CLEAR

(12) PRINT A*B

(13) A + B = 12

Chapter Two
Do It Now: Sound and Color Graphics

The CALL SOUND Statement

You can CALL upon your TI Home Computer to perform feats of musical magic. Simply
use the CALL SOUND statement to play single notes, chords, or interesting "noise"
through the audio portion of your TV monitor.

You can use the CALL SOUND statement to produce musical sounds over a range of
several octaves, from 110 cycles per second (A below low C on a piano keyboard) to
over 44,000 cycles per second, which is well above the limits of human hearing. Hmmmm.
perhaps our computer can help us talk to dolphins.

Computer scientists electronics practitioners, audiophiles and others refer to "cycles
per second" as "Hertz."

1 cycle per second = 1 Hertz.

Perhaps you can guess why Hertz (named after Heinrich Rudolph Hertz, a German
physicist) is shorter than cycles per second. However, in practice, even "Hertz" is
abbreviated to "Hz."

1 cycle per second = 1 Hertz = 1 Hz

Your TI computer can make musical sounds ranging from 110 Hz to 44,000 Hz. Lousy
bass but dynamite treble! You can also control the duration and the loudness of the
sounds.

The duration can range from one millisecond to 4275 milliseconds. One thousand (1000)
milliseconds equals one second, so the duration can range from 0.001 second to 4.275
seconds.

Loudness can be varied on a scale of 0 to 30. Zero (0) and one (1) produce the same
sound levels and are the loudest. Thirty (30) produces the quietest sound. Remember,
though, that the actual loudness level is ultimately determined by the volume control on
the TV monitor.

20

Do It Now: Sound and Color Graphics 21

Let's make music. Try this example.

Be sure you have a space here

\
CALLSOUND(1000,440,2)

/ t \
Duration, in Frequency, Loudness
milliseconds in Hz Quite loud!

OK, type the above CALL SOUND statement and press ENTER.

r

j>
>CALL SOUND(1000,440,2)

>•

You should hear a tone of 440 Hz with a duration of 1000 milUseconds (one second) and
a loudness value of 2 (quite loud!). Musicians call this tone "A above middle C."

Remember, the CALL SOUND statement looks like this:

CALL SOUND (duration, frequency, loudness)

Let's try another —we will check out the computer's lowest bass note.

CALL SOUND(500,110,15)

This time,

duration = 500 milliseconds = .5 seconds
frequency = 110 Hz
loudness = 15

We suggest that you try several CALL SOUNDstatements in order to explore the ranges
for duration, frequency and loudness.

Remember these ranges:

duration: 1 to 4275 milliseconds
frequency: 110 to 44000 Hz
loudness: 0 or 1 (loud) to 30 (soft)

22 Introduction to TI BASIC

What is the highest frequency that you can hear? Can you hear a sound of duration
1 millisecond? How soft is soft (loudness = 30)?

If you have a quitar or piano, try the frequencies suggested by the following chart.

MiddleC (262 Hz)

otve

String

EADGBE

6 54321

- VI Y
Frequency]]Q 147 196 247 330

More Than One Tone

Let's add a second note and see how this enhances the sound.

4 4
CALL SOUND(1000,440,2,659,2)

^ ' t ^XDuration First tone / Second ^Second
frequency / tone tone
"A" / frequency loudness

"E"

First tone
loudness

We assume, of course,
that your guitar is
tuned to these notes!

Do It Now: Sound and Color Graphics

Type the above statement and press ENTER.

Be sure you havea space between
CALL and SOUND

L
>CALL SOUND(1000,262,330,2)

>•

23

Because the statement above contains exactly 28 characters (letters, spaces, and symbols),
the cursor moves down to the next line as soon as you type the close parenthesis symbol.
Be sure that you remember to press ENTER.

Notice that you type the durationparameter (the number code that determines how
long the sounds last) only one time - at the beginning of the CALL SOUND statement.
The two sounds occur together for the same length oftime. One the other hand, you
can vary the loudness parameters. What would happen if you typed 5, instead of 2,
for the second note's loudness? Try it!

Remember, with two tones, CALL SOUND looks like this:

CALL SOUND(duration,frequency,loudness,frequency.loudness)

I
space

Next, try three tones

CALLSOUND(1000,262,2,330,2,312,2)

first second third

Type in the above statement and press ENTER.

First Second

J ^
>CALL SOUND(1000,262,2,330,2,

392,2)

>D ^ Third

24 Introduction to TI BASIC

Part of this CALL SOUND statement extends to the second line, since TI BASIC uses
only 28 positions per line. This gives large, clear, readable text on the screen.

When you press ENTER, you will hear a three tone chord for one second.

Noisy Sounds

You can also produce noise instead of music notes. Usually,we want to avoid noise
when making music, but it may be usefulat times. "Noise" is rather hard to define in
words - it's best for you to experiment and hear for yourself what it sound like.

To produce a noise, use a negative integer from -1 to -8 as the "frequency." This
will select one of eight possible built-in noises.

Try an example:

«r
Same duration and loudness as before

CALL SOUND{1000,-2,2)

\
"noise" instead of tones

Explore the noises that your Home Computer can make. Try -1,-2 and so on, down
to -8. Also try different durations and loudnesses.

Do It Now: Sound and Color Graphics

You can simultaneously produce up to three tones and one"noise" over agiven time
duration.

r
in i -fi

>CALL SOUND(1000,440,2,659,2,
880,2,-3,2)

>• ^ Noise

25

In the above example, we used the same loudness (2) for all three tones and the noise.
Experiment with other values for duration, frequency, loudness and noise within the
required range of values for each. (A list of musical note frequencies is includedin the
Appendix.) You'll soon be able to create imaginative sound effects for use in your future
programs. The IMMEDIATE Mode is helpful for this type of experimentation.

Graphics

One of the most exciting things that you can do with your computer is to create colorful
designs on the video display. This feature isoneof the more significant advances for the
home computer. Programs that might otherwisebe dull come alive with the creativeuse
of graphics. With your computer's capability, you can make adesign, draw a picture,
create a gameboard, draw a graph - let your imagination run wild.

In this section,we introduce two simple graphics statements,CALL VCHAR and CALL
HCHAR. They position a character or draw a line of characters on the television screen.

26 Introduction to TI BASIC

A good way to begin is to think of the screen as a "grid" of square blocks, made up
of 32 columns and 24 rows.

These are
ROWS
(1 to 24)

These are COLUMNS (1 to 32)

!

2

3

4

5

6

7

K

Q

1(1

11

12

13

14

15

16

17

IK

10

2(

21

22

2.\

24

25

2f>

27

2H

20

3D

31

32

1

3

5

7

q

11

13

15

17

1Q

21
-

23

»

Each square on the grid is identified by two values (called coordinates) - arow number
and acolumn number. For example, the coordinates 5,7 mean the fifth row and the
seventh column. The coordinates 12, 10 mean the twelfth row and the tenth column
These are illustrated in the following diagram.

1

2

3

A

5

f)

7

H

0

u)

11

i;

l.

H

COLUMNS

lf> in

15 17 1«J

2(

21

22 2<

23 25

2t

2"

2Ji

29

M

M

32

1

~L|
)

3 :c lu nr 7 f; ? t)

5 1 15 7!
R m 5

7

—0

11

1
13

(2. K
15

17

l«>

21

(? | '• ?)
23

1

ROWS 12

Do It Now: Sound and Color Graphics 27

Thenext thing you need to know is how to place a character into a particular square on
the screen.

For the time being, let's consider that a character is any one of 26 letters of the alphabet,
the numbers 0 through 9, and certain other symbols, like the asterisk (*), the plus and
minus signs (+ and -), and the slash mark (/). (Later, you'll learn how to "define" other
characters for graphics.) Each character is assigned an identifying numeric value of its
own, and the values for the full character set are given in the Appendix.

You can place a character in any spot you choose to by using either CALLVCHAR or
CALL HCHAR, naming the two coordinates (rowand column) and identifying the
character by its numeric value.

Let's try a few examples. First, clear the screen. Type CALL CLEAR and press ENTER.

Now type:

CALL VCHAR(15,10,65) Check your typing and then press ENTER.

(Don't forget the parentheses in the statement - they're important!)

The parameters for this statement are:

15 = row number

10 = column number

65 = numerical value for the letter A

This is what you see

r Remember. See the Appendix for a
list of numbers to use for characters

>CALL VCHAR(15,10,65)

>•

The character you
identified

/l\
row number column the numeric value

number for the letter A

The character A is placed in the 15th row, 10th column. Try another one. Type:

•CALL VCHAR(1,3,66) (and press ENTER)

28 Introduction to TI BASIC

This will put the character B (code 66) at the upper left corner of the screen (row 1,
column 3). We call this location the "corner" even though the column is not at position
1. The reason for the "corner" being at this place is that some TV screens chop off
columns 1,2,31 and 32. Characters printed in those columns do not appear on the screen.

One more time:

CALL VCHAR(1,30,67)

/ t \
row column code for C

This time, the letter C (code 67) appears at the upper right "corner" of the screen in
row 1, column 30.

Hmmm ... have you noticed? The code for A is 65, the code for B is 66 and the code
for C is 67. As you have probably guessed, the code for D is 68, the code for E is 69
and so on.

Remember, the general form for CALL VCHAR is as follows:

CALL VCHAR(row,column,code)

where row is an integer from 1 to 24, column is an integer from 1 to 32 and code is the
numeric code for a character.

You can also place a character in a particular position by using the HCHAR statement.
Let's try it!

Again, type CALL CLEAR and press ENTER to clear the screen. Then type:

CALL HCHAR (15,10,65)

>CALL HCHAR(15,10,65)

>•

When you pressed ENTER
an "A" appeared in row 15
column 10

The entry order for the row number, the column number, and the character's numeric
value is the same for both CALL VCHAR and CALL HCHAR. They both do the same
thing when you are positioning a single character on the screen.

Do It Now: Sound and Color Graphics 29

If you want to draw a line of characters, however, you'll find that there is a distinct
difference between the functions of the two statements. CALL VCHAR causes a vertical
column of characters to appear, while CALL HCHAR draws a horizontal row of
characters. To draw a line with either statement, you must add a fourth numeric value
to the statement - the number of repetitions that you want. This number controls the
"length" of the hne.

Clear the screen (by typing CALL CLEAR and pressing ENTER), and let's try a
vertical line.

10th column

/ snumber of repetitions
CALL VCHAR(2,10,86,13)

\ "numeric value for letter "V

starting row number

After you press ENTER, the screen looks like this.

r V

V

V

V

V

V

V

V

V

V

V

V

V

>CALL VCHAR(2,10.86,13)

>•

Remember, there are 24 horizontal rows of character blocks on the "grid" of the screen.
Therefore, you can draw a vertical line (column) that is up to 24 characters tall. You
printed 13 rows in the above example. If you print all 24 rows, part of your CALL
VCHAR statement will be destroyed by the Vs.

What happens, then, if you enter a repeat value greater than 24. Let's give it a try. Clear
the screen and then type:

CALL VCHAR(1,8,86,50) You've asked for 50 repetitions this time

30 Introduction to TI BASIC

When you press ENTER, the screen should show:

Your statement is partially
replaced by these lines

vvv

vv

vv

vv

vv

vv

vv

vv

vv

vv

vv

vv

vv

vv

vv

vv

vv

vv

vv

w

vv

vv
vv

>CALL WHAR(1,8,86,50)
•W

>D

After V's are printed in column 8,
the printing continues at the top
of the next column, and so on

(Note: Graphics in the Immediate Mode only are affected by the scrolling of the screen.
That's why you don't actually see all 50 of the V's above —some have already scrolled
off the top of the screen. In order to make room for the prompt and cursor, which are
printed after the CALL VCHAR statement has been executed, everything on the screen
is scrolled up on line. This pushes some of the V's off the screen's top.

V
V

wv

vv

vv

w

vv

vv

V

Do It Now: Sound and Color Graphics 31

Wealso mentioned earlier that there are 32 vertical columns. Therefore, it would seem
that you could draw a horizontal line 32 characters long. However, some TV screens
may "clip off" the first two and last two columns (columns 1, 2, 31 and 32). The only
way to know what your television screen shows is to experiment. So let's clear the
screen and try drawing some horizontal lines. Type in:

numeric value for "H"

/ .number ofrepetitions

CALL HCHAR(10,1,72,50)
V ^ column number

row number

r

HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH

HHHHHHHHHHHHHHHHHH

>CALL HCHAROO/1,72,50)

Again, the printing fills one line (horizontal, this time) and then starts over on the next
line. Count the H's. If you only see 28 in the full line, columns 1, 2, 31 and 32 do not
show on your television screen. You should use only columns 3 through 30 to avoid
losing any part of your graphic design.

3rd column, /k.—•,««••..—.-.„——_^\ 30th column,

y/// /// //A
x/A/ /// ///1
v^yy/^y/y

3rd column,
24th row

v//y/////y\
LL^L^^C^LyL^y ' ^1 a 30th column,
\j ^ mz/ 24th row

32 Introduction to TI BASIC

For a big finale let's fill the screen with asterisks (numeric code 42). Type these lines,
pressing ENTER at the end of each line.

CALL CLEAR

CALL HCHAR(1,1,42,768) 24 rows x 32 columns = 768 positions

Count the asterisks on your screen. How many do you see? (Don't forget some of them
may have disappeared off the screen.)1

Continue to experiment on your own. Try different characters (see the Appendix for
the codes) and different positions. For example, can you fill the screen with your
first-name initial?

Summary of Chapter Two

The summary concludes our "tour" in the IMMEDIATE MODE. In this chapter you've
been introduced to these BASIC statements.

• CALL SOUND

• CALLHCHAR

• CALLVCHAR

Chapters One and Two have given you a slimpse of the BASIC language and your computer's
capabilities. Try the chapter exercises, and then you're ready to get into the real fun-
learning to program your computer ^vith stored programs.

Do It Now: Sound and Color Graphics 33

Chapter Two Exercises

(1) The CALL SOUND statement controls three parameters. What are they?

, , and

(2) Two things control the volume of the sound resulting from the CALL SOUND
statement. One is controlled by a parameter of the statement. What is the other?

(3) How many tones (notes) can be simultaneously played?

(4) How many notes would be simultaneously played by the statement:

CALL SOUND(1000,440,2,659,2) ?

(5) Can variables be used as parameters in CALL SOUND?

(6) The graphics statements CALL VCHAR and CALL HCHAR use a grid of how many
rows and how many columns?

rows = columns =

(7) Give the row and column used in this statement:

CALLVCHAR(14,5,67) row =

column =

(8) Give the function of each of the parameters in this statement:

CALL VCHAR(5,8,72,20)

5=

8=

72=

20 =

(9) Describe the difference between the screen displays resulting from these two
statements.

(a) CALL VCHAR(3,10,67,8)

(b) CALL HCHAR(3,10,67,9)

3U Introduction to TI BASIC

(10) Draw a sketch of 9(a) and 9(b).

9(a) 9(b)

(11) In one big finale, we used CALL HCHAR to fill the screen with asterisks. Redo
the finale, using CALL VCHAR.

Do It Now: Sound and Color Graphics

Answers to Chapter Two Exercises

(1) Frequency, duration, and volume (not necessarily in that order)

(2) The volume control of the TV monitor

(3) 3 (4 if you count noise)

(4) Two

35

(5) Yes

(6) Rows = 24

(7) Row =14

Columns = 32 (or 28 if the TV chops off the first and last two positions)

Column = 5

(8) 5 = row (of starting position)

8 = column (of starting position)

72 = value for character (H)

20 = number of repetitions (in the column)

(9) (a) Causes a vertical column of 8 C's to be printed starting at row 3, column 10

(b) Causes a horizontal row of 9 C's to be printed starting at row 3, column 10

(10)
9(a)

c

c

c

c

c

c

c

c

(11) CALL.CLEAR

CALL VCHAR(1,1,42,768)

9(b)

cccccccc

Chapter Three
SimpleProgramming

In Chapters One and Two you used the Immediate Mode statements to instruct the
computer to do one thing at a time. Each statement was performed immediately after
you pressed the ENTER key.

You typed: PRINT "HI THERE!" and pressed ENTER

The computer printed: HI THERE!

Now we will discuss programs, sets of statements that are not done immediately but
are, instead, stored in the computer's memory. Then, when you are ready, you can tell
the computer to "run" (or "execute") the program that is in its memory.

Your First Program

Let's begin by using a familiar friend, the PRINT statement, in your first program.
Start by typing the word NEW and pressing ENTER. The word NEW is a command that
tells the computer to erase any programs that may already be in its memory. NEW clears
out the memory for a fresh start. We don't want the computer to be confused by having
parts of two different programs.

Type NEW and press ENTER.

NEW clears the screen, erases
any old program from the
memory, and lets you know
that it is your turn —^—

Tl BASIC READY

•*- >•

Simple Programming

Now type this program, pressing ENTER at the end of each program line:

space space

\ I
10 PRINT "NOW YOU LEARN"

20 PRINT 'TO PROGRAM IN BASIC
30 END

37

In computer terminology, you have just "entered" a program Nothing to it! Each line
was entered into memory when you pressed the ENTER key. ENTER is a signal to the
computer that the line you typed is complete and ready to be stored.

If you have made no typing
errors, the screen will look
like this

Tl BASIC READY

>10 PRINT "NOW YOU LEARN"
>20 PRINT 'TO PROGRAM IN BASIC.
>30 END

>G

If there is an incorrect line, just retype that line correctly, including the numberat the
beginning of the line. You can make the corrections right there at the bottom of the
screen. Then press ENTER. The computer will automatically replace the old line with
the new, correct one.

Ifyou see an error before you press ENTER refer to Chapter One,
for methods of correcting typing errors.

Your program is displayed on the screen and is also stored in the computer's memory.
When you're ready to see the program in action, type CALL CLEAR and press ENTER.
The screen will be cleared, but your program won't be erased - it's still stored in the
computer's memory!

Now type RUN and press ENTER again.

Your first program just ran!!

r

>RUN
NOW YOU LEARN
TO PROGRAM IN BASIC.

** DONE **
>•

38 Introduction to TIBASIC

Want to "run" the program once more? Type RUN again and press ENTER.

>RUN
NOW YOU LEARN
TO PROGRAM IN BASIC.

** DONE **

>RUN
NOW YOU LEARN
TO PROGRAM IN BASIC.

** DONE **

>•

Each time you type RUN and press ENTER, the computer begins at the first statement
and follows your instructions in order until it reaches the last statement. END means
just what it says: the end, stop!

Did you notice that the display screen briefly turned green (if you're using a color
monitor) while the program was "running?" The screen turns green while a program is
being executed and then changes back to its normal blue color when the program is
"done."

Your Second Program

As you enter your second program, we will spend time talking about some of the items
and features you used to create your first program. One of the new things you may have
noticed is that there was a number in front of each line in the program.

Home Computer BASIC is a line-oriented language. A BASIC program is a sequence of
lines with each line having a unique number called a line number. The line number serves
as a label for one particular line. When you type statements with line numbers, the com
puter does not execute them immediately. Instead, it stores them in its memory and
waits patiently for you, the user, to tell it when to RUN (execute) the program. A valid
line number is any decimal integer from 1 to 32767.

For your second program we will look at one that does a calculation, as well as printing.
The program converts kilograms (K) to pounds (2.2*K) and prints the answer.

10 LET K = 50

20 PRINT 2.2*K -*-
30 END

This is your second program

Simple Programming 39

The preceding program consists of three statements.

10 LET K = 50 ^ •• This is a statement
20 PRINT 2.2*K **— This is a statement
30 END -^ This is a statement

Each statement begins with a line number.

Line number —^» 10 LET K = 50
Line number » 20 PRINT 2.2*K
Line number fr 30 END

Notice that the lines are numbered in steps of ten (10). This is not required, but it
allows you to insert additional lines between existing Unes. In this way, you can avoid
re-entering the whole program when an additional hne must be inserted.

Program lines are executed in sequential order starting with the line having the smallest
line number. The sequential execution continues until an error condition occurs, an
END statement is executed, the sequential flow of the program is changed by one of
several other BASIC statements, or you stop the program. All of these conditions will
be discussed later, as they occur. For now, your programs will operate in sequential
order.

When you entered and ran your first program you went through a series of steps:

• You typed the NEW command to make sure any old program in the computer
was erased.

• You entered the program from the keyboard.

• You examined the program for any obvious entry errors. (If there were
errors, you were free to correct them.)

• You typed RUN to run the program and produce the results.

Let's look at each of these considerations again, as youwork withyoursecond program.
You begin by typing the command NEW. Commands are different from statements.
They are not part of the program, and they do not have line numbers. They instruct
the computer to do specific tasks immediately.

NEW Instructs the computer to erase the program in its memory.
(It also clears the screen, but don't confuse it with CALL CLEAR,
which clears only the screen.

RUN Instructs the computer to perform (or "run") the program
in its memory.

40 Introduction to TIBASIC

Now, enter the program to convert kilograms to pounds.

IMPORTANT NOTICE! If you make a mistake in typing in a line, simply retype it.

THIS IS WHAT YOU DO

(1) Erase the old program.

Type: NEW

Before ENTER

Then press the ENTER key.

After ENTER

THIS IS WHAT YOU SEE

•• >NEWD

•• TI BASIC READY

>•

The cursor is now blinking at the position where your first line will begin.

(2) Enter the new program.

Type: 10 LET K=50

Before ENTER -• TI BASIC READY

>10LETK=50D^-

Then press ENTER.

Cursor

Line 10 is entered and its position on the screen moves up a line. The blinking cursor
shows where the next line is to be entered.

After ENTER

Cursor

TI BASIC READY

"•>10LETK=50

Simple Programming

THIS IS WHAT YOU DO

Type: 20 PRINT 2.2*K

Then press ENTER

After ENTER

THIS IS WHAT YOU SEE

TI BASIC READY

>10 LET K=50
>20 PRINT 2.2*K

>•

Line 20 has been added to the program, and the cursor indicates the computer is
ready for the next line.

Type: 30 END

Then press ENTER
TI BASIC READY

>10 LET K=50

>20 PRINT 2.2*K
>30END

>•

Our complete program has been entered. The cursor indicates that the computer is
ready for another line or some new command.

lA

Did you make any mistakes in typing? You can correct a mistake very easily: simply re
type the line in which the mistake occurred. Remember to begin with the line number!

(3) Examine the program for errors.

With your first program, you just looked at the screen to see if there were mistakes.
With larger programs, it is helpful to be able to list, on the screen, the entire program
or some of its parts. There is a command, called LIST, that helps you do this operation.

LIST Instructs the computer to show (or "list") on the screen the program
that is stored in its memory.

As you saw earlier, we use NEW only when we want to prepare the computer for storing
a new program. Be careful in using NEW; when in doubt, use LIST first, so that you
can examine the current program before erasing it.

LIST is a powerful aid when you are correcting or changing a program. It lets you get
the program right on the screen in front of you, where you can check for or correct
any errors.

42 Introduction to TI BASIC

First, clear the screen, using an IMMEDIATE Mode statement.

Type: CALL CLEAR

Then press ENTER

All clear • -•>•

Then tell the computer to LIST the program that is in its memory

Type: LIST

Then press ENTER y 10 LET K=50
20 PRINT 2.2*K
30 END

>D '

Note: No hne number is used with LIST. It is not part of the program. It is a command.

When you type LIST and press ENTER, the computer lists, on the screen, the program
that is currently stored in its memory.

Before you RUN the program, check for typing errors. If there are any, retype the line
correctly, including the line number, and press ENTER.

Let's mention two features of TI BASIC that may be slightly different from other
versions of the language. First, a "prompting" character (to the left of the printing
field on the screen) marks the start of every program line you type. You'll see its
function more clearly when you begin to enter program lines that are longer than a
single screen line. Second, the END statement in a program is optional in TI BASIC.
Since it is a conventional part of BASIC, however, we used it in this example.

(4) RUN the program.

RUN Instructs the computer to perform (or "run") the program in its
memory. RUN is a command.

Program lines are performed by the computer in numerical order. The computer first
performs the line with the smallest hne number, then proceeds to the next, then the
next, and so on. Therefore, you must be sure to number the lines ofa program in the
order you want the computer to follow.

10 LET K=50

20 PRINT 2.2*K

30 END

performed first
performed second
performed last

Simple Programming A3

The moment of truth has arrived! The most important, and one of the simplest,
commands is given.

Type RUN and press ENTER.

The program

>LIST
10 LET K=50

. 20 PRINT 2.2*K
30 END

>RUN
110 <+

DONE

>•

Note again! RUN has no line number.
It is a command for computer action,
not a program statement

The answer, 110 pounds

Computer says it's done

X
Cursor waiting for
another command

Your answer is on the screen: 50 kilograms is equal to 110 pounds. Suppose, however,
that we want to find the number of pounds that are equivalent to 60 kilograms. Easy!
We can do it by changing only one line —line 10.

Type: 10 LET K=60

Press ENTER. Now type RUN and press ENTER again.

>LIST
10 LET K=50

20 PRINT 2.2*K

30 END

>RUN
110 •+-

DONE

>10 LET K=60
>RUN

132 **

DONE

>•

Your first answer, 2.2 x 50

Your second answer, 2.2 x 60

You have now successfully entered yoursecond program, RUN it, modified it, and RUN
it again. Try someother modifications to line 10before going on to the next section of
the book.

u Introduction to TI BASIC

More about LISTing a Program

Your second program is so short that it can be seen on the screen in its entirety.
Programs that are longer than 24 lines will not fit on the screen but can be LISTed
in sections. If a program does not produce the results expected when it is RUN, use
the LIST command to re-examine the program. You may LIST an individual line, a
group of sequential lines, as well as the whole program.

Getting back to your program example:

To LIST the entire program, type LIST and press ENTER.

>LIST
10 LET K=60)
20 PRINT 2.2*K }<*•
30 END)

To see a given line, type LIST followed by the line number.

>LIST

10 LET K=60

20 PRINT 2.2*K

30 END

> LIST 20
20 PRINT 2.2*K*«-

>D

•The entire program

Only one line

You can also list all the lines from a starting line number to an ending line number.

>LIST
10 LET K=60

20 PRINT 2.2*K
30 END

> LIST 20
20 PRINT 2.2*K

> LIST 20-30
20 PRINT 2.2*K

30 END

>•

A group of lines is listed

Our kilograms to pounds program ends with an END statement. This statement is
optional and can be omitted. To prove it, we will remove line 30 (but only line 30)
from the program.

Simple Programming

Clear the screen and list the program.

>LIST

10 LET K=60

20 PRINT 2.2*K
30 END

>•

Delete line 30. To do this, simply type 30 and press ENTER.

List the program again.

>30

>•

>LIST

10 LET K=60

20 PRINT 2.2*K

>• *•— Line 30 is gone

Remember: To delete a line from a stored program, type its
hne number and press ENTER.

Will the program run as it did before you deleted line 30? Find out. Type RUN and
press ENTER.

The INPUT Statement

Here is our original kilogram program again.

45

10 LET K=50

20 PRINT 2.2*K

30 END

Line 10 assigns the value 50 to the variable K. We are using K to stand for kilograms.
Then, line 20 tells the computer to multiply K by 2.2, thus computing the number of
pounds corresponding to K kilograms. Line 20 also causes the computer to print the
answer, which is the value 110.

46 Introduction to TI BASIC

We could, if we wish, retype line 10 and assigna different value to K, then rerun the
program to get the answer for the new value of K. But there is a better way!

Here is your old program with an INPUT statement replacing hne 10.

10 INPUT K •*—
20 PRINT 2.2*K

30 END

INPUT statement

The INPUT statement causes the computer to type a question mark, turn on the cursor
and wait. It will wait until someone types a value and presses ENTER. The value is
then assigned to the variable in the INPUT statement.

Let's demonstrate.

(1) Type: NEW
(2) Type in the program
(3) Type: RUN

(4) Type: 60 and press ENTER

TI BASIC READY

> 10 INPUTK
>20 PRINT 2.2*K
> 30 END

>RUN

?• **

TI BASIC READY

>10 INPUT K

>20 PRINT 2.2*K
>30 END

>RUN

?60 **
132 -*

DONE

>• -«—

V.

,The computer waits for you
to key in the value for K

You typed 60
It typed 132

Ready for more work

RUN this program several times, experimenting with different values for the INPUT
variable, K.

Remember, to use this program do the following:

-•Type RUN and press ENTER.
The computer will show a question mark and the blinking cursor.

-•-Type a number and press ENTER.
The computer will assign your number as the value of K, compute and print
the value of 2.2*K, and then stop.

Simple Programming tf

When running programs that call for an INPUT, it is often confusing to see the question
mark just appear on the screen. It may be difficult to remember what the computer
is asking for. To help inform the user of the needed information, a different form of
the INPUT statement is used. For example,

10 INPUT "KILOGRAMS=" : K

/ / \ .
string in quotes colon variable

Now try this new line 10 in place of the one in your previous example. Type in the
line, then clear the screen and LIST the modified program.

Type: 10 INPUT "KILOGRAMS=":K
Press ENTER.

Type: CALL CLEAR
Press ENTER.

Type: LIST
Press ENTER.

Now, RUN the program.

Type: RUN
Press ENTER.

Let's try 75 as our value.

Type: 75
Press ENTER.

The answer

Ready for more work

>LIST

10 INPUT "KILOGRAMS='
20 PRINT 2.2*K
30 END

>•

>LIST

10 INPUT "KILOGRAMS='

20 PRINT 2.2*K
30 END

>RUN

KILOGRAMS=D

>LIST

10 INPUT "KILOGRAMS='

20 PRINT 2.2*K
30 END

>RUN

KILOGRAMS= 75

-*- 165

DONE

K

48 Introduction to TI BASIC

Another change. Add a CALL CLEAR at the beginning of the program. To do this,
we can use a line number less than 10. Let's use 5 as the line number.

Add this statement: 5 CALL CLEAR

LIST the program. It should now look like this:

>LIST

5 CALL CLEAR

10 INPUT "KILOGRAMS=":K
20 PRINT 2.2*K
30 END

>•

Here is the new statement

Now, when we RUN the program the computer will clear the screen, then ask:
KILOGRAMS=.

Try it. RUN the program, then use 82 as the value entered.

Type: RUN
Press ENTER.

Type: 82
Press ENTER.

KILOGRAMS= •

KILOGRAMS^ 82

180.4

••DONE**

>•

The CALL CLEAR statement clears the screen at the beginnmg of the program execution.
In this way, only the messages and input data used during the program RUN appear on
the screen. This really CLEARs things up!

Simple Programming 19

Identifying the Answer

Just as it was possible to attach the message "KILOGRAMS=?" to the INPUT state
ment, words and messages can be added to PRINT statements. In your current program
the answer simply appears on the screen as a number. Another form of the PRINT
statement can be used to identify what the answer represents. For example,

20 PRINT 2.2*K ; "POUNDS"

Answer I xMessage
Semicolon to keep
answer and message
on the same line

Replace line 20 with the one shown above and RUN the program. If you do so, your
screen shows the following information when you again use 82 for the number of
kilograms.

KILOGRAMS= 82

180.4 POUNDS -* Answer has message attached

•♦DONE**

>•

If you have made all the changes, the program now looks like this:

5 CALL CLEAR

10 INPUT "KILOGRAMS= ":K

20 PRINT 2.2*K; "POUNDS"
30 END

We suggest that you type LIST and press ENTER, in order to verify that the program
stored in the computer's memory does look like the above.

String Variables

You already know what numeric variables are. A numeric variable can have a number
as a value.

LET K = 50

/. \ .
numeric numeric

variable value

50 Introduction to TIBASIC

A string variable is a variable which can have a string as a value. String variables differ
from numeric variables in these ways:

A string variable name must end with a $ (SHIFT $).

The alphanumeric characters in the "string" must be enclosed
in quotation marks.

"Strings" of numbers cannot have arithmetic operations performed
with or upon them.

For example,

LET N$ = "JACK SPRAT"

I
string string value,

enclosed in
quotation marks

These are also string variables: B$ B2$ BETAS

But these are numeric variables: B B2 BETA

Let's try a couple of examples, using string variables in immediate mode.

Clear the screen (CALL CLEAR) and type this

LET N$="JACK SPRAT'
PRINT N$

LET N$="JACK SPRAT'
>PRINT N$ **

JACK SPRAT -+

>•

Now type:

space

LET W$ =" ATE NO FAT.
PRINT N$;W$

semicolon

You typed these

— The computer typed this

Simple Programming 51

Now let's look at them together:

>LET N$="JACK SPRAT"
>PRINT N$

JACK SPRAT

>LET W$=" ATE NO FAT."
>PRINT N$*W$

JACK SPRAT ATE NO FAT.-. With your last entry
^Pl thecomputer typed this

Now back to your conversion program again. Your program now appears as follows:

5 CALL CLEAR

10 INPUT "KILOGRAMS=":K

20 PRINT 2.2*K;" POUNDS"
30 END

You can make your program a little more personal by adding a "string" variable in an
INPUT statement. A string is just what the name implies —a string of alphanumeric
characters that can be either a word or a set of words that form a message.

An INPUT statement can request an alphanumeric (letters and numbers) string, such
as the user's name, for example, and assign that string to a string variable for further
use in the program. A dollar sign, $, must follow the variable name to distinguish it
from a simple numeric variable.

For example,

8 INPUT "WHAT IS YOUR NAME" : B$

This string tells the user This variable is assigned
what is desired the value that you type

If you insert the line shown above along with the following lines into your program,
your Home Computer starts "talking" to you.

semicolon

15 CALL CLEAR /
17 PRINT "OK, ";B$
18 PRINT "HERE IS YOUR ANSWER! :"

Remember when you see the new Unes they will be inserted into your program in the
proper places as determined by their line number.

52 Introduction to TI BASIC

After entering the lines, LIST the program to verify that this is true.

Type: LIST

Press ENTER.

RUN the program.

Type RUN

Press ENTER.

Type your name.

Press ENTER.

Before ENTER

After ENTER

>LIST

5 CALL CLEAR

8 INPUT "WHAT IS YOUR NAME":B$
10 INPUT "KILOGRAMS=":K
15 CALL CLEAR

17 PRINT "OK, ";B$
18 PRINT "HERE IS YOUR ANSWER!:'
20 PRINT 2.2*K;" POUNDS"
30 END

>D

WHAT IS YOUR NAME •

\
The program first asks
for your name

WHAT IS YOUR NAME GILGARAD

Your name typed here

WHAT IS YOUR NAME GILGARA
KILOGRAMS* •

If you now enter 82 for the kilogram request and hit ENTER the screen now shows:

The program remembered your name "•OK, GILGARA
HERE IS YOUR ANSWER!:

180.4 POUNDS

DONE

>•

Simple Programming 53

Run the program several times and try using several different names. Type in your
address when it asks for your name. Try your telephone number. The computer will
call you anything you type.

Now let's use a string assignment statement: a LET statement. Type the following lines:

6 LET C$="HERE IS YOUR ANSWER!:" This is an insert line

18 PRINTC$ This changes line 18

LIST the program and see if your program now looks like this:

>LIST

5 CALL CLEAR

6 LET C$="HERE IS YOUR ANSWER!:
8 INPUT "WHAT IS YOUR NAME":B$
10 INPUT "KILOGRAMS=":K
15 CALL CLEAR

17 PRINT "OK, ";B$
18 PRINT C$ -+
20 PRINT 2.2*K;" POUNDS"
30 END

>•

•The insert

The change

When this version of the program is RUN, you would see the same display on the screen
at each stage as in the last RUN. The string feature used in line 6 can be helpful if a
message or part of a message is used several different places in the program. You just
print the variable C$ each place you wish to insert the text as part of the output. This
can save you typing and conserve the memory space in your Home Computer.

54 Introduction to TI BASIC

Chapter Summary

In this chapter, you've covered a lot of important ground. You've learned how to:

• Enter a program

- Use the commands NEW, LIST and RUN

• Put messages in your PRINT statements

• Use INPUT statements with numeric variables and string variables

• Build a mathematical conversion program

When you started working with Chapter Three, you were a beginner in learning BASIC
and programming. Now you're well on your way to becoming a computer programmer.
Look over the quick review below, and then try your hand at the exercises for this
chapter. See you later, Gilgara!

Quick Review of Program Structure

(1) Begin each line with an identifying line number (1 —32767).

(2) Number the lines in the order you want the computer to follow in executing
the program.

(3) Press ENTER when you have finished typing a program line.

Simple Programming 55

Chapter Three Exercises

(1) Programs do not execute immediately. What command is used to execute a

program?

(2) What command is used to erase old programs?

(3) What command is used to display the program that is currently stored in memory?

(4) This short program has just been entered.

10 CALL CLEAR

30 B=20

40 PRINT B

20A=10

50 PRINT A

In what order will the lines be executed when the program is run?

12 3 4 5

(5) If the program of exercise 4 is in the computer's memory, show what would be
displayed after you type:

>CALL CLEAR
>LIST

(6) If the program of exercise 5 is run, show what would be on the display.

(7) If the following hne were added to the program example, show the results of the
arithmetic operations.

60 PRINT A*B; B/A; B+A; B-A

A*B= B/A=

B+A= B-A=

56 Introduction to TI BASIC

(8) Change lines 20 and 30 in the program of exercise 4 so that A and B may be input.

20

30

(9) What character does the computer print when it is waiting for an input?.

(10) Below are two runs of a program that ask for a value in feet. The program then
prints the answer in inches. Clear the screen in the first statement. Then write the
program using an INPUT and a PRINT statement.

Program:

100

200

300

FEET= 3.5

INCHES= 42

DONE

>•

FEET= 2.3
INCHES=27.6

** DONE **

>•

(11) Show a run of this program if you input 20 for D.

100 CALL CLEAR

110 C$="CIRCUMFERENCE=" .
120 l$="INCHES"
130 INPUT "DIAMETER OF WHEEL= ":D
140 C=3.14*D

160 PRINT C$;C;I$

Simple Programming 57

Answers to Chapter Three Exercises

(1) RUN

(2) NEW

(3) LIST

(4) 10,20,30,40,50

(5)
>LIST

10 CALL CLEAR
20A=10

30 B=20

40 PRINT B

50 PRINT A

>•

(6)
20

10

DONE

>•

(7) A*B = 200 A/B = 2 B+A = 30 B-A=10

(8) 20 INPUT A
30 INPUT B

(9) ?

(10) 100 CALL CLEAR •+ Optional
200 INPUT "FEET=";F
300 PRINT "INCHES=";F*12 «*— Yours may be different - if it works, it's OK

(11)

DIAMETER OF WHEEL=?20

CIRCUMFERENCE=62.80 INCHES

DONE

Chapter Four
Looping Sound andColor

All of the programs you have used so far have been executed in a straight-line, sequential
order from the smallest line number to the largest line number. After executing the last
statement (largest line number), the computer stopped.

For example:

5 CALL CLEAR
10 INPUT "KILOGRAMS=?":K
20 PRINT 2.2*K;"POUNDS"
30 END

After executing line 30, the computer stopped. There are many situations, however,
where you want to interrupt the orderly flow of operation. You may want to repeat a
part of a program several times, or you might want to skip over a part of a program
based on certain conditions. You can do this by using the GO TO statement.

The GO TO Statement

The GO TO statement is a control statement that causes the program to branch to a
specified line numberinstead of automatically going on to the next higher numbered
line. The form of the GO TO statement is:

Line number of the
GO TO statement

30 GO TO 10

/ *
Statement Line number to go to

We rewrite our program example, usinga GO TO statement in place of the END
statement.

5 CALL CLEAR
10 INPUT "KILOGRAMS=?":K
20 PRINT 2.2*K;"POUNDS"
30 GO TO 10

GO TO statement

Looping Sound and Color 59

Program execution is sequential until the GO TO statement is reached. The GO TO
statement interrupts this sequential execution. The line number of the next statement
to be executed (statement 10 in this example) is shown in the GO TO statement. Line
10 will be the next program statement executed even if there are other statements
following line 30.

Enter the program, then type RUN and press ENTER.

KILOGRAMS=?D •This is what you see

Now type 50 as the number of kilograms and press ENTER.

KILOGRAMS=?50
110 POUNDS

KILOGRAMS=?D

The computer shows
the answer and then
asks again

Each time you type the number of kilogramsand press ENTER, the computer will print
the number of pounds, then ask for kilograms again.

Here is what the screen looked like after we had entered 50, 60 and 70 kilograms.

KILOGRAMS=?50
110 POUNDS

KILOGRAMS=?60
132 POUNDS

KILOGRAMS=?70

154 POUNDS

KILOGRAMS=?D

How do you stop this program? You press the SHIFT and the C keys together -
SHIFT C . This action halts any program execution. Try this command on the
current program example.

60 Introduction to TI BASIC

In executing this program, the computer does line 5, then Hne 10, then line 20, then
Hne 30, then line 10, then line 20, then line 30, then line 10 and so on. Of course, to
do line 10, the computer needs your cooperation. You must enter a value of K and
press ENTER.

The following diagram, called a flow chart, illustrates how the program works.

Program

5 CALL CLEAR

10 INPUT "KILOGRAMS=?":K

20 PRINT 2.2*K;"POUNDS'

30 GO TO 10

Flow Chart

Clears the screen

i
Stops and waits
for value of K —|

»
Computes and prints
the number of pounds

This is

called
a loop

i
Sends the computer
back to line 10

Experiment. Add the following line to the program.

25 PRINT

RUN the program to see what this does. This "empty" PRINT statement causes a blank
line to be printed. The blank line separates the information on the screen for each pass
through the loop.

GO TO With CALL SOUND

You can use variables, rather than numbers, in the CALL SOUND statement. For
example, let's use these variables:

D = duration

F = frequency
L = loudness

Looping Sound and Color

Enter the following program.

10 CALL CLEAR

20 INPUT "DURATION=?":D)
30 INPUT "FREQUENCY=?":F > -*•

40 INPUT "LOUDNESS=?":L)
50 CALL SOUND(D,F,L)
60 PRINT —^
70 GO TO 20 XyThe variables are used in the

Caution! Use only legalvalues for these inputs.
D: 1 to 4275
F: 110 to 44,000 L: 0 to 30

CALL SOUND statement

Now RUN the program. Enter values for duration, frequency and loudness. After
you enter the value for loudness and press ENTER, the computer will play your tone,
then ask for new values. Here is a sample RUN.

DURATION=?1000
FREQUENCY=?262

LOUDNESS=?10

DURATION=?4275

FREQUENCY=?440

LOUDNESS=?23

DURATION=?D

Ji

61

Play as many tones on your computer as you wish. When you want to stop, press
SHIFT C.

Note the spacing in the above RUN. Each set of values (duration, frequency, loudness)
is separated from the previous set by a vertical space. This empty space is courtesy of
line 60.

60 PRINT Tells the computer to print an "empty" line.

Delete line 60 and RUN the program again. Without line 60, no spacing will occur
between sets of values. Which do you prefer?

DURATION=?1000

FREQUENCY=?262

LOUDNESS=?10
DURATION=?4275

FREQUENCY=?440

LOUDNESS=?23

DURATION=?

62 Introduction to TIBASIC

Loops

Study the following program, but don't enter it yet.

10 CALL CLEAR

20 INPUT K

30 PRINT

40 PRINT

50 K=K+1

60 GO TO 30

K

1•Ml—I

A loop!

Here we "send" the program back to line 30 by using a GO TO statement in line 60.
The GO TO statement causes the actions performed by lines 30,40, and 50 to be
repeated over and over again, setting up a loop. (Notice that we don't need to use an
END statement.) It won't stop until you tell it to by pressingSHIFT C. This example
sets up an "endless loop."

Let's enter the program now. First, type NEW and press ENTER to erase the computer's
program memory, and then type these lines:

10 CALL CLEAR

20 INPUT K
30 PRINT K

40 PRINT

50 K=K+1 *•
60 GO TO 30

•Note: the LET is optional

Before yourun the program, let's look at the flow chart, showing how the program works.

10 CALL CLEAR

20 INPUT K

30 PRINT K

40 PRINT

50 K=K+1

60 GO TO 30

Clears the screen

Stops and waits for
initial value of K

Prints the current
value of K

I
Prints nothing just
gives a blank line

I
Reassigns a new value
to K (old value + 1)

I
Transfers the program
back to line 30

-«-

Loop

Looping Sound and Color 63

If you trace the actions of the program step by step and look at the results, this "looping"
can be easily visualized.

Statement Trace K Remarks

10 CALL CLEAR 0 K stands at zero

20 INPUT K 1 You input a 1 for K
30 PRINT K 1 1 is displayed on the screen
40 PRINT 1 Skip a line on the screen
50 K=K+1 2 K gets a new value, 1+1=2
60 GO TO 30 2 Directions to go back to line 30

30 PRINT K 2 2 is displayed on the screen
40 PRINT 2 Skip a line on the screen
50 K=K+1 3 K gets a new value, 2+1=3
60 GO TO 30 3 Go back to line 30 again
30... Will the program end?

Now run the program, putting in 1 for the beginning value of K. Watch how quickly
the computer counts — almost too fast to follow! That's why we added the blank line
(line 40), which spaces out the numbers a bit so that you can see them better.

Let the computer count as long as you want. When you are ready to stop the program,
hold down the SHIFT key and press C. You'll see "BREAK AT LINE (number)" on
the screen, indicating where the program stopped. Run the program several times, using
different numbers for the initial value of K (50, 1000, 5000, etc.).

GO TO can also be typed as GOTO in your program. The computer
isn't fussy about that, so long as the line number contained in the
statement (30 in the example) is actually in your program.

Two important requirements exist when using the GO TO statement.

(1) A valid line number must follow the words GO TO (or the word GOTO).

(2) The specified line number must be in the program. (Don't reference a line that
is not there.)

If you try to send the program to a nonexistent line number, you'll get an error message.

64 Introduction to TIBASIC

Suppose, for example, we type in

60 GO TO 25

and press ENTER. Try it, run the program, and see what happens!

10 CALL CLEAR

20 INPUT K

30 PRINT K

40 PRINT

50 K=K+1

60 GO TO 25

? 1

1

* BAD LINE NUMBER IN 60

>•

Now, correct the line

60 GO TO 30

and run the program again. The computer now merrily counts away until you stop it.

The computer is not limited to counting by ones. You can make it count by 2's, 3's,
4's, or whatever by changing line 50. Let's make the computer count by 2's. Type:

50 K=K+2

and press ENTER. Now run the program, typing in 1 when the computer asks for
the starting value of K. The computer counts 1, 3, 5,7,9,11,13, etc. You probably
recognize these as the positive odd integers.

You do not have to start K at 1 every time. Run the program again. When the computer
asks for the starting value of K, type in 2. Now the computer gives you the positive
even integers: 2,4, 6, etc.

Can we make the computer count backwards? Of course we can. Type:

50K=K -1 and press ENTER

Now, when the computer asks for a starting value, input 25 for K. It will quickly count:
25, 24, 23, 22, etc. After 0, the negative integers will appear: —1, —2, —3, —4, etc.
until you press SHIFT C to stop the run.

Experiment with the program for a while, making it count by 3's, 5's, 10's, etc. Also
try various values for the starting number. Try some negative values. Make it count
backwards as well as forward. Since you now know the computer can count, let's move
on to other interesting examples with the GO TO statement.

Looping Sound and Color 65

/

-\

/

66 Introduction to TIBASIC

Musical Scales

GO TO loops have many applications, of course, beyond simple counting. We could
use a loop, for example, to play a musical scale.

DEMO GO TO PROGRAM NO. 1

10 LET DURATION=100 |
20 LET TONE=110 [-*— Original sound values
30 LET LOUDNESS=2)
40 CALL SOUND(DURATION,TONE/LOUDNESS)-*-'This makes the sound
50 TONE=TONE+15 -* Increase the tone
60 GO TO 40 -* Go back and make a new sound

Before running the program, you should remember that the program will be running in
an endless loop. It will terminate in one of two ways:

(1) You may terminate it at any time by pressing SHI FT C on the keyboard.

(2) If the tone value goes out of range (above 44,000), automatic termination will occur.

Run the program and listen to the tones that are made. If your ear objects to the sounds
created by Program 1, you will appreciate Program 2. Since the notes of the normal
musical scale are not exactly 15 units apart, Program 1 may produce unpleasant sounds.
Let's try other values for TONE that provide a one-octave scale.

DEMO GO TO PROGRAM NO. 2

10 LET T=100 -« "T" for "time"
20 LET V=2 -*—— "V" for "volume"
30 C=262 -* frequency of middle C on the piano.
40 D=294 "* Note that the word LET is optional

This 50 E=330
is a 60 F=349
C scale 70 G=392

80 A=440

90 B=494

100 HIC=523 <* "HIC" for "high C"

Now you're ready for the CALL SOUND statements to tell the computer when to play
each note:

200 CALL SOUND(T,C,V)
300 CALL SOUND{T,D,V)
400 CALL SOUND(T,E,V)
500 CALL SOUND(T,F,V)
600 CALL SOUND(T,G,V)
700 CALL SOUND(T,A,V)
800 CALL SOUND(T,B,V)
900 CALL SOUND(T,HIC,V)

Looping Sound and Color 67

Finally, create a loop with a GO TO statement:

950 GO TO 200

Check the program for errors, and correct any that you find. When everything is correct,
run the program. Again, this is an endless loop. You'll have to press SHI FT C to stop it.

Up, up, up you go until you reach high C. Then the GO TO statement at line 950 sends
you back to middle C to start over.

STOP THE PROGRAM! Now reverse the order of lines 200-900.

200 CALL

300 CALL

400 CALL

500 CALL

600 CALL

700 CALL

800 CALL

900 CALL

SOUND(T,HIC,V)
SOUND(T,B,C)
SOUND(TAV)
SOUND(T,G,V)
SOUND(T,F,V)
SOUND(T,E,V)
SOUND(T,D,V)
SOUND(T,C,V)

After you have entered the program changes, run the program. Down, down, down it
goes from high C to middle C. Once again, line 950 causes the sounds to be repeated
over and over. Press SHIFT C when you tire of the program. This is much easier than
practicing the scales on the piano.

You have played an octave both up and down. Now let's put them together so that
you go Up, Down, Up, Down, etc. Type NEW and enter this program:

DEMO GO TO PROGRAM NO. 3

10LETT=100
20 LET L=2
30 C=262

40 D=294

50 E=330
60 F=349
70 G=392
80A=440

90 B=494
100 HIC=523

200 CALL SOUND(T,C,U
210 CALL SOUND(T,D,U
220 CALL SOUND(T,E,L)
230 CALL SOUND(T,F,L)
240 CALL SOUND(T,G,L)
250 CALL SOUND(TAL)
260 CALL SOUND(T,B,L)
270 CALL SOUND(T,HIC,L)
280 CALL SOUND(T,BfL)
290 CALL SOUND(TAL)
300 CALL SOUND(T,G,L)
310 CALL SOUND(T,F,L)
320 CALL SOUND(T,E,L)
330 CALL SOUND{T,D,L)
340 GO TO 200 -<

T for Time
L for Loudness

Assigned values for
notes of one octave

• Each note is called separately

J
Go back and repeat it all

68 Introduction to TI BASIC

A GO TO Loop with the CALL COLOR Statement

Up to now, you've seen only three colors in BASIC on your Home Computer (maybe
you've only noticed two, but there really are three). First, while you're entering a
program the screen background is light blue, and the characters (letters and numbers)
that you're typing are black. Then, while the program is running, the screen becomes
a light green color. When the program stops, the screen returns to light blue with black
characters.

These are only three of the sixteen colors available with your computer. The way you
control all the colors with a program is through the CALL COLOR statement. Let's
try a program with a CALL COLOR statement and a slightly different GO TO loop.
Clear your old program from the computer's memory (NEW, press ENTER), and type
these lines:

10 CALL CLEAR

20 CALL CO LOR (2,7,12)
30 CALL HCHAR(12,3,42,28)
40 GO TO 40 •+ A GO TO loop that "goes to" itself!

Line 40 shows another use of the GO TO statement. Instead of going back to a previous
line to repeat a portion of the program, it merely repeats itself. It's just like idling a
motor. The computer is doing nothing but going round and round on line 40. The
purpose of this is to prevent the screen from scrolling the display up one line. Ordinarily,
when a program comes to the end, the display is scrolled up to print **DONE** and
up again to display the prompt and cursor. Line 40 prevents this from happening, and
the characters on the display will stay exactly where we put them.

Now run the program, and the screen should look like this:

^l 28 dark red asterisks ona
**************************** ^^ yellow background

^^ The rest of thescreen
^^ is light green

Our program prints twenty-eight asterisks across the screen. The asterisks are dark red,
and in the area where they are displayed, the screen color is a light yellow. The rest
of the screen remains light green.

Remember, line40 putsyourprogram intoa kind of "holding
pattern " that keeps your graphic on the screen.

When you're ready to stop the program, hold down the SHIFT key and press C to
"break" the loop. You can run the program as many times as you like.

Looping Sound and Color 69

A CALL COLOR statement requires three numbers, enclosed in parentheses and
separated by commas:

20 CALL COLOR(2,7,12)

The first number after the open parenthesis symbol is a character set number. As we
mentioned in Chapter One, each character (letters, numbers, and symbols) that prints
on the screen has its own numeric code, ranging from 32 through 95 for a total of 64
characters. These characters areorganized by the computer into eight sets with eight
characters each:

Set No. 1 Set No. 2 Set No. 3 Set No. 4

Code No. Character Code No. Character Code No. Character Code No. Character

32 (space) 40 (48 0 56 8
33 i 41) 49 1 57 9
34 a

42 # 50 2 58 :

35 # 43 + 51 3 59 •

36 $ 44
/ 52 4 60 <

37 % 45 — 53 5 61 =

38 & 46 . 54 6 62 >

39 «

47 / 55 7 63 ?

Set No. 5 Set No. 6 Set No. 7 Set No. 8

Code No. Character Code No. Character Code No. Character Code No. Character

64 @ 72 H 80 P 88 X
65 A 73 I 81 Q 89 Y
66 B 74 J 82 R 90 Z
67 C 75 K 83 S 91 C
68 D 76 L 84 T 92 /
69 E 77 M 85 U 93 1
70 F 78 N 86 V 94 A

71 G 79 0 87 w 95
-

(As a handy reference, these character sets and code numbers are also listed in the Appendix.)

The set number you use ina CALL COLOR statement, then, isdetermined by the
character you want to print. (And what happens if you want to print characters from
different sets in the same colors? We'll discuss that shortly.)

20CALLCOLOR(2,7,12)

/
character set no. 2

70 Introduction to TI BASIC

The second and third numbers determine the colors used in your graphic. Each of the
sixteen colors has its own numeric code.

Color Code No. Color Code No.

Transparent 1 Medium red 9

Black 2 Light red 10

Medium green 3 Dark yellow 11

Light green 4 Light yellow 12

Dark blue 5 Dark green 13

Light blue 6 Magenta 14

Dark red 7 Gray 15

Cyan 8 White 16

The second number sets the foreground color, that is, the color of the character you
designate. The third number sets the background color —the color of the block or
square in which the character is printed.

20 CALL COLOR(2,7,12)

foreground background
color —dark red color - light yellow

The next line in your program is

Number of repetitions

30 CALL HCHAR(12,3,42,28)

/INRownumber | Numeric code for *
Column number

(If you need to review the CALL HCHAR examples in Chapter One, this would be a
good time to do it.)

Now you know why we indicated Set No. 2 in our CALL COLOR statement. The
asterisk (code number 42) is a part of Set No. 2.

Line 40 of the program is a GO TO statement that "goes to" itself. It keeps the computer
"idling" until you press SHIFT C.

When you run the program, the screen looks like this. Note the colors!

****#*******#*******###*##*#

28 dark red asterisks
on a yellow background

The rest of the
screen is light green

Looping Sound and Color 71

But when you press SHIFT C , the program stops, and the screen changes back to its
normal blue color. All the reds, yellows, and greens disappear. Line 40 not only keeps
the screen from scrolling, but it also keeps the desired colors on the screen for you to see.

Now let's change line 20 of the program to see some new colors. Stop the program, if
it's still running, and type this:

20CALLCOLOR(2,14,8)

/ \
Same set number Cyan blue

Magenta

Press ENTER to store your new line, and list the program (LIST; press ENTER) to review
your program.

LIST

10 CALL CLEAR

20 CALL COLOR (2,14,8)
30 CALL HCHAR(12,3,42,28)
40 GO TO 40

When you're ready, run the program.

*************#**♦*»♦###*♦#♦♦-« 28 magenta asterisks
on a cyan background

Light green

You could, of course, continue to experiment by stopping the program, entering a new
line 20, and running the modified progiam over and over. Don't. Instead, save wear
and tear on your fingers by entering the following program which allows you to
experiment more easily. With this program, you enter foreground (F) and background
(B) colors in response to INPUT statements.

NEW

10 CALL CLEAR

20 INPUT "FOREGROUND ":F \ ^_INPUT color codes
30 INPUT "BACKGROUND ":Bj ^I1Nrui color coaes
40 CALL COLOR(2,F,B) -« Set colors based on INPUT color codes
50 CALL HCHAR(12,3,42,28)
60 GO TO 60 -+ You know what this does

When the computerasks you for the "foreground" and "background" colors you want to
use, you can type in any color code from 1 through 16. Remember,-however, that color
number 1 is "transparent." This "color" has important applications that are discussed
later in the book, but are not satisfactory in the current program. Also, color number 2,
black, can cause display distortion on some color monitors. You may want to use only
the colors 3 through 16 in running this program. Here are some combinations you might
find interesting:

72 Introduction to TIBASIC

Foreground Color Background Color

3 16

3 11

5 6

5 14

7 15

7 12

13 12

14 10

O.K., have you checked your program for typographical errors? Have you chosen the
foreground and background colors you want to use first? Then run the program.

Experiment with other color combinations so that you will know which look good and
especially those that do not go well together. You might want to write down you findings
for future reference.

After you've experimented with different color combinations, you might enjoy trying
some other characters. You can do this by retyping line 50, substituting a different
character code number for the "42" asterisk code number. Just remember, if you select
a character from any set other than No. 2, you'll also have to change line 40 to reflect the
new set number. For example:

Type character Type number
code number i / of repetition

50 CALL HCHAR(5,7,62,8)

Type row XType starting
number column number

Background
color

40 CALL COLOR(4,F,B)

i \Character Foreground
Set No. color

/!

The change to line 50 causes a right pointing caret (>) to be displayed. The caret,
whose character code is 62, is from character set no. 4. To alter the color of this
character, line 40 must also be changed. Run the program with these changes while
trying various color combinations. Then make some character changes on your own.

What if you want to print characters from different sets, all in the same color? One
way to do this is to include in your program eight CALL COLOR statements, one for
each of the eight sets of characters. You'll have to do quite a bit of typing, but you'll
be free to use any of the characters you choose. You do not have to use every character
set; but if you want to, you can. The eight CALL COLOR statements allow you to use
any character from code number 32 through 95.

Looping Sound and Color

Try this program:

NEW
Light blue

100CALL CLEAR y*
110 CALL COLOR(1,6,16)-*—White
120 CALL COLOR(2,6,16)
130 CALL COLOR(3,6,16)
140 CALL COLOR(4,6,16)
150 CALL CO LOR (5,6,16)
160 CALL COLOR(6,6,16)
170 CALL COLOR(7,6,16)
180 CALL COLOR(8,6,16)
190 PRIMT", You decide what to do here!
200 GO TO 200

73

Use any message you want in line 190; just remember to enclose it in quotation marks.
With these CALL COLOR statements you have told the computer to print all of the
sixty four characters in light blue (6) on a white (16) background.

There are other program examples with CALL COLOR later in the book. For now,
experiment on your own with various colors and character sets. Put a little COLOR
in your life!

Error Messages

We haven't talked much in this chapter about error messages because, for the most part,
the ones you'd run into in these program examples are the same as — or even similar to —
those you learned about in Chapter One. For example, a spelling or typing error in
NEW, RUN, or LIST will cause the computer to return an "INCORRECT STATEMENT"
message as soon as you press ENTER.

1U Introduction to TI BASIC

Errors in program statements may be detected by the computer either when the line is
entered or when the program is run. Here are some samples of error conditions and
messages you might see:

Condition

Omitting a quotation mark:
10 INPUT "WHAT COLOR:F

Misspelling a statement:
10 INPU "WHAT COLOR":F

Omitting necessary punctuation or
typing an incorrect punctuation mark:

10 INPUT "WHAT COLOR" F
10 INPUT "WHAT COLOR";F

Leaving the variable out of an
INPUT statement:

10 INPUT "WHAT COLOR":

Leaving out the space between
GO TO and the line number:

10GOTO30

Using a nonexistent line number
in a GO TO statement:

10 LET A=5

20 PRINT A
30 GO TO 15 -«

Message

♦INCORRECT STATEMENT

•INCORRECT STATEMENT IN LINE 10

•INCORRECT STATEMENT IN LINE 10

"BAD LINE NUMBER IN LINE 30

•There is no line 15!

Notice that the error messages given during a program run indicate the number of the
troublesome line. If you'd liketo view the line in question (let's sayit's line 10),just
type

LIST 10

and press ENTER. The computer will obediently print line 10 on the screen for you
to review.

You can also list the whole program on the screen if you prefer. Type

LIST

and press ENTER.

Remember, too, that failing to press ENTER at the end of each program line may cause
the computer to give you an error message or an incorrect result, depending on the kind
of operation you're performing.

Looping Sound and Color 75

Most of the possible errors in the use of the SOUND and COLOR routines have to do
with using out-of-range values as parameters (e.g., a tone parameter that is too large,
an incorrect color specification, a character number that is not allowed).

Making mistakes is a normal part of learning —so don't be disturbed when the computer
gives you an error message. Just list the Uneor the program, identify the error, retype
the Une correctly, and go right on your way.

(Note: If you'd Uke to see all the error messages your computer can give you, or if
you don't understand a message you're given, you'll find a complete list of error messages
- and when they occur - in the "BASIC Reference Section" of your User's Reference
Guide.)

Chapter Summary

In this chapter you've covered a lot of veryimportant ground. You've learned how to:

• Create a GO TO loop within a program.

• Stop an endless loop with SHIFT C

• Trace the steps of a program as the computer would perform them
• Use a GO TO loop in a CALL SOUND program

• Play a one-octave scale using CALL SOUND

• Use the CALL COLOR statement witha GO TOloop to create color graphics
• Select colors for both foreground and background display
• Experiment with display colors of your choice

You're weU on your way to becoming an experienced computer programmer.

76 Introduction to TIBASIC

Chapter Four Exercises

(1) Study this program.

10 CALL CLEAR

20 INPUT K

30 PRINT 2.2*K

40 GO TO 20
50 END

(a) Write the order in which the computer will execute lines for the first eight

steps. (1) (2) (3) (4) (5) (6)

(7) (8)

(b) Will line 50 ever be executed?

(2) Write the results displayed on the screen for the first four times the computer passed
through the GO TO loop of this program.

100 CALL CLEAR (a) 1st time ._

]»PmNTK (b) 2ndtime
130 K=K*2 (c) 3rd time
140 GO TO 120_.

(d) 4th time _

(3) Write the first four results if Une 140 of the program in exercise 2 was changed to:

140 GO TO 110

(a) 1st time _

(b) 2nd time.

(c) 3rd time.

(d) 4th time _

(4) What would happen if Une 140 of the same program was changed to:

140 GO TO 125

Looping Sound and Color 77

(5) Rewrite the program of exercise 2 so that the first K will be 81 and each loop will
divide the previous number by 3.

100

110

120

130

140

Notice the strange stuff appearing on the screen when you run this program.

(6) How do you stop a program that is in an endless GO TO loop?

(7) Answer the questions below for this program.

100 CALL SOUND(200,262,2)
110 CALL SOUND(100,262,2)
120 CALL SOUND(200,294,2)
130 CALL SOUND(200,294,3)
140 GO TO 100

(a) Describe the difference between the sounds played by lines 100 and 110.

(b) Describe the difference between the sounds played by lines 100 and 120.

(c) Describe the difference between the sounds played by lines 120 and 130.

(8) Write a program that will let you input the frequency of the note so that you can
play your own music. Use 500 for the time duration and 2 for volume. Be sure
to use a GO TO statement so that your piece of music can be as long as you want.

(9) (a) What is the background color of the screen when you are entering a program?

(b) What color is the background of the screen when a program is running?

78 Introduction to TIBASIC

(10) Tell what each number in this CALL COLOR statement represents.

CALLCOLOR(2,15,11)

2

15

11

(11) The up-arrow (|) is in character set no. 8. Its code number is 94. The color code for
black is 2 and for white is 16. Complete this program to put 10 horizontal, black
up-arrows on a white background starting in row 3, column 5. Clear the screen
first and use a GO TO loop to hold the characters on the screen.

100

110

120

130

(12) Rewrite the program above so that you can input the foreground and background
colors. Use F for the foreground variable and B for background.

80

90

100

110

120

130

Answers to Chapter Four Exercises

(1) (a) 10,20,30,40,20,30,40,20
(b) No, line 40 always sends the computer back to Une 20

(2) (a) 1st time 9
(b) 2nd time 18
(c) 3rd time 36
(d) 4th time 72

(3) (a), (b), (c), (d) all 9 (Une 110 would always reassign 9 to K before it was printed.)

Looping Sound and Color 79

(4) An error message would be printed, and the program would stop.

(5) 100 CALL CLEAR
100 K=81
120 PRINT K

130 K=K/3
140 GO TO 120

(6) Press SHIFT C

(7) (a) The note of Une 100 lasts twice as long as that of line 110.
(b) Different frequencies, but same length. (Line 100 is middle C, line 120

is D above middle C.)
(c) Volume changed (line 120 is louder).

(8) Our program (yours may be different - try it to see if it works):

100T=500 or 100 INPUT N

110 V=2 110 CALL SOUND(500,N,2)
120 INPUT N 120 GO TO 100
130 CALL SOUND(T,N,V)
140 GO TO 120

(9) (a) light blue
(b) Ught green

(10) 2 is the character set number
15 is the foreground color (gray)
11 is the background color (dark yellow)

(11) 100 CALL CLEAR
110 CALL COLOR(8,2,16)
120 CALL HCHAR(3,5,94,10)
130 GO TO 130

(12) 80 INPUT "FOREGROUND ":F
90 INPUT "BACKGROUND ":B

100 CALL CLEAR

110 CALL COLOR(8,F,B)
120 CALL HCHAR(3,5,94,10)
130 GO TO 130

Chapter Five
More Programming Power

By now you've done quite a bit or programming in TI BASIC. You know what a
program is, how it's built, and what happens when you run it through a computer.
Congratulations! You are now ready to add several new BASIC statements to your
toolbox of programming skills.

First, there is the useful and versatile FOR-NEXT statement. This statement is used
to create loops in programs —not "endless" loops but loops that "know" when to
stop. With FOR-NEXT loops, you can direct your program to "wait for a period of
time" —to delay operations. Delay loops can "slow down" parts of your program
thus slowing down the action on the screen.

However, the FOR-NEXT statement does more than just put delays in programs. You
will discover that the clever use of FOR-NEXT loops can let you do amazing things
with your Home Computer —from arithmetic to graphic designs. The FOR-NEXT
statement is one of the more powerful BASIC language features of your computer.

The second set of BASIC statements you will see in this chapter are GOSUB and
RETURN. If you are a beginning typist, you will like what these two statements can
do for you. GOSUB and RETURN can save you a lot of typing. They allow you to
reuse a section of your program without having to type it in again.

All of these new language features will help increase your programming skills. You
will build on what you've learned in previous chapters and prepare yourself for the
many exciting things yet to come. So let's begin with FOR-NEXT loops!

The FOR-NEXT Statement

Chapter Four presented several examples of the GO TO loop. Each example repeated
a statement or a set of statements indefinitely - until you pressed SHIFT C, and
stopped the program. The FOR-NEXT statement also creates a loop, but it's different
from GO TO in two ways:

(1) The FOR-NEXT statement is actually a pair of lines in the program, the FOR
line and the NEXT line, each with its own line number. The GO TO statement
is always on one line.

More Programming Power 81

(2) You control the number of times the FOR-NEXTloop operates. After the loop
runs the number of times you specify, the program moves on to the Une following
the NEXT line. The GO TO statement continues looping until you press SHIFT C.

The beginning Une (or FOR line) has the form:

space required

/ \\\IFORTA=1TO':SOFOR'A^TO'S^

•J V ^variable starting upper
count limit

The ending line (or NEXT line) might appear as follows:

space

\ \
80 NEXT A

the same variable used
in the FOR line

How would you build a program with a FOR-NEXT loop? It is really quite simple.
Erase any current programs by typing NEW and pressing ENTER. Now enter the
following lines and RUN the program.

10 CALL CLEAR
C20 FOR A=1 TO 3 —1

30 PRINT "A=";A -« FOR-NEXT loop
40 NEXT A -« '

50 PRINT "OUT OF LOOP"
60 PRINT "A=";A
70 END

On the screen you see:

A= 1 Once around the loop
A= 2 Twice around the loop
A= 3 Thrice around the loop
OUT OF LOOP Now we are out because
A= 4 A is over the limit

DONE

>D What's next?

82 Introduction to TIBASIC

How did it do that? Here is a line-by-line description showing the order in which the
lines were executed. See if you can follow the computer's action in this trace of the
program.

Line Statement

Value of A After

Line Statement Statement Execution Remarks

10

20

CALL CLEAR

FOR A=1 TO 3

0

1

Screen is cleared
Loop begins. A is set to 1 and the
upper limit is set to 3

30

40

PRINT "A=";A
NEXT A

1

2

A=l is printed.
A is increased by 1 and checked,
against the upper limit. Still within
limit;branch to 30

30

40

PRINT "A=";A
NEXT A

2

3

A=2 is printed.
A is increased again; checked against
upper limit. Still within limit; branch
to 30.

30

40

PRINT"A=";A
NEXT A

3

4

A=3 is printed.
A is increased; now beyond upper
limit.

50

60

PRINT "OUT OF LOOP"

PRINT "A=";A
4

4

Display out of loop.
A=4 is printed.

70 END Program stops!

You can change the program by changing the values in the FOR statement. Try the
following changes (one at a time, of course).

(1) 20FORA=4TO6

A=4

A=5

A=6

OUT OF LOOP

A=7

DONE

^ >D
(2) 20 FOR A=3 TO 9

(3) 20 FOR A=11 TO 20

Are you getting a feel for how the FOR-NEXT loop works? If yes, GOOD! You are
ready to move on. If not, try some more changes to line 20. Then read on as we show
some more examples. Pick a large value for the upper limit that causes the printed
values to scroll off the screen. What happens if you give A an initial value of 1/10 (or .1)
and an upper limit of Vi (or .5)? Try it and see what appears on the screen.

More Programming Power 83

The FOR-NEXT Delay Loop

In Chapter Four, the GO TO statement was used in some of the CALL COLOR programs
in this way:

40 GO TO 40

This line created a delay or "idling" loop in the program. The color design on the screen
was held in place by this kind of loop until you pressed SHI FT C to stop the program.
Without the "idle" loop, the color design would just blink on the screen and then dis
appear. You would see a momentary "flash" and the screen would return to the stan
dard Immediate Mode color patterns. The delay loop gave you a chance to see the
program's color design.

The FOR-NEXT statement can be used to create delay loops in your programs. The
major difference is the FOR-NEXT loops allow you to build a controlled time delay -
one that "idles" for a time and then continues with the program execution. This feature
gives you great flexibility in designing and printing information on the screen.

Lines 50—60 in the next example use the FOR-NEXT statement as a time delay. The
computer makes 200 trips through this loop before going to line 70. Although no other
statement is executed within the loop, the FOR-NEXT allows time for you to view the
color bar that is displayed.

COLOR BAR PROGRAM 1

10 CALL CLEAR Clear screen

20 INPUT A Input a color number (1-16)
30 CALL COLOR(2,A,A) Set color
40 CALL HCHARO2,3,42,28) Displaybar

50 FOR B=1 TO 200 -+ Delay loop
60 NEXT B

70 GO TO 10 Go back for new input

The program requires that you enter a number between 1 and 16. Each of these numbers
selects a different color for the display. (You will find a list of the color codes available
on your Home Computer in the Appendix.) After the time delay, the GO TO statement
sends the program back for a new input.

In line 40 of the program, the CALL HCHAR places 28 characters on row 12 of the
screen, starting at column 3.

40 CALL HCHAR(12,3,42,28)

row^ column character x repeat count

Notice that although character 42 (the * symbol) is used, only a bar of color appears
on the screen. Since the foreground and background colors are the same, the character
"disappears." The operation is like writing on blue paper with blue ink, or on white
paper with white ink. You may try other character numbers from character set 2 in
place of the 42 to verify that all do vanish, leaving only a bar of color.

84 Introduction to TIBASIC

Now run the program. Does the color bar stay on the screen long enough for you to
observe it carefully? If not, change Une 50 to increase the time delay (1 TO 2000
for example).

COLOR bar displayed during time delay

When you stop the program, what happens? Yes, the color bar disappears and you are
left with a row of asterisks!

'Nested" FOR-NEXT Loops

You've just seen that we can use both a FOR-NEXT loop and a GO TO loop in the same
program. It's also possible for you to use more than one FOR-NEXT loop —one inside
another —in a program. We call these "nested" loops.

As an example, let's experiment with a program very similar to the one you've just
completed, but this time we'll get a little fancier. We'll make the bar "walk" down the
screen, so that it appears in a different position each time the color changes.

Type these lines:

This
loop
forms

NEW

-•10 FOR A=1T0 16

20 CALL CLEAR

30 CALL COLOR(2,A,A)

40 CALL HCHAR(A+3,3,42,28)

nest
L-

This loop is [-•50 FOR B=1 TO 200
nested -•60 NEXT B

••70 NEXT A

80 END

•Sets time delay

Executes "counting" loop that
controls how many times the
program is run

Another way to look at the nest.

10 FOR A=1 TO 16

20 CALL CLEAR

30 CALL COLOR (2A A)
40 CALL HCHAR (A+3,3,42,28)

50 FOR B=1 TO 200
60 NEXT B

•70 NEXT A

80 END

This FOR-NEXT loop is nested inside the FOR-NEXT
loop defined by lines 10 and 70

More Programming Power 85

This program getsa lot of mileage out of the variable A. We're using it to control the
number of times the program is repeated (a loop "counter"), to define the color codes
for foreground and background, and to determine the row position of the color bar.

Loop Number Color Code Row

1 1 1 4

2 2 2 5
3 3 3 6
4 4 4 7

15 15 15 18

16 16 16 19

(Before you run the program, remember that color 1 is transparent and color 4 is the
Run Mode screen color. You won't be able to see these bars.)

Now run the program.

The display:

The color bar steps down one row each
time through the loop. Only one bar
appears at a time.

Did you see the bar move down the screen? Experiment with the timedelay loop -
try changing line 40 to:

50 FOR B=1 TO 100

and then

50 FOR B=1 TO 1000

Another interesting change is to make the bar vertical instead of horizontal. You can
do this by changing Une 40. Type and enter this new line:

Newrow position New number of repetitions
\ /

40 CALL VCHARd, A+5,42, 24)

New column position

86 Introduction to TIBASIC

When you run the program this time, the bar will be vertical and will move across
the screen from left to right (columns 6 through 21).

The display:

Subroutines

In the color bar program, we used a time delay loop nested in another loop (lines 50
and 60). Quite often, in longer programs, a time delay is needed several times. Rather
than write the time delay every time it's needed, you could place it outside your main
program in a subroutine. When you want the time delay, you merely write the
statement:

GOSUB XX (where XX is the first line number of the subroutine)

After the time delay has been completed the statement

RETURN

(which is the last line of the subroutine) sends the program back to the main program.

We'll use the color bar program as an example.

MAIN PROGRAM

10 FOR A=1 TO 16
20 CALL CLEAR
30 CALL COLOR(2,A,A)
40 CALL HCHAR (A+3,3,42,28)
50 GOSUB 100

• 60 NEXT A

70 END

SUBROUTINE

100 FOR B=1 TO 200 -+-
110 NEXT B

120 RETURN

The subroutine is "called"

Line 120 returns to
the main program at
the line following
the place it left

More Programming Power 87

The same subroutine may be used many times in the same program. When a GOSUB
is executed, the computer "remembers" the Une number where it left the main program.
It always comes back to the next line of the main program.

Let's enlarge the color bar program so that it first displays walking horizontal bars, then
follows with vertical bars.

COLOR BAR TWO

10 FOR A=1 TO 16

20 CALL CLEAR

30 CALL COLOR(2AA)
40 CALL HCHAR (A+3,3,42,28)
50 GOSUB 200

.60 NEXT A

'70 FOR A=1 TO 16
80 CALL CLEAR

90CALLCOLOR(2,A,A)
100 CALL VCHAR(A,A+5,42,24)
110 GOSUB 200

.120 NEXT A

130 END

200 FOR B=1 TO 200

210 NEXT B

220 RETURN -*

In this part of the program the subroutine
returns to line 60 each time through the loop

In this part of the program the subroutine
returns to line 120 each time through
this loop

Go back to where you came from plus one line

The flow of program execution may be seen in the next diagram. At line 50 the program
goes to subroutine 200 each time the program makes a pass through loop 1, returning
to Une 50 each time. At line 110, the program goes to subroutine 200 each time the
program makes a pass through loop 2, returning to Une 120 each time.

Loop
2

A<= 16'

Lines 10-50

Line 60

Lines 70-110

Line 120

I A= 17

Line 130

Gq

Subroutine
Lines 200-220

& j i
A=17 /& I

' ° /<$- Follow the
T^- dotted line

*£• ^^this time

88 Introduction to TIBASIC

Subroutines may be called over and over again in the same program, and each time it
will return to the correct spot in the main program. The one condition that is necessary
for this to happen is that the word (or statement) RETURN mustbe in the subroutine,
usually the last Une of it.

Now let's examine another program with nested FOR-NEXT loops. The following
program displays all 64of the alphanumeric characters, codes 32 through 95. (See
the Appendix for a list of the character codes.) Enter these lines:

NEW

10 CALL CLEAR
20 LET CHAR=32 -* Startingvalue for variable CHAR (character code)
30 FOR ROW=7 TO 14-* Beginning andending values for row number
40 FOR COLUMN=13 TO 20-* Beginning andending values for columnnumber
50 CALL HCHAR(ROW,COLUMN,CHAR)
60 CHAR=CHAR+1 -* Increases numericcode for CHAR by 1
70 NEXT COLUMN
80 GOSUB 200
90 NEXT ROW

100 END

The program wiU look like this on the screen:

TI BASIC READY
>10 CALL CLEAR
>20 LET CHAR=32
>30 FOR ROW=7 TO 14
>40 FOR COLUMN=13 TO 20
>50 CALL HCHAR(ROW, COLUMN, CHAR)
>60 CHAR=CHAR+1

>70 NEXT COLUMN
>80 GOSUB 200
>90 NEXT ROW

>100 END

>•

There are several things we'd like to point out about this program. First, FOR-N~EXT
loops do not have to start counting at 1. They can begin with whatever numeric value
you need to use. Second, the nested loop (FOR COLUMN-NEXT COLUMN) is not
just a time delay loop. It actually controls a part of the program repetition. Third, a
time delay is called after each row of characters is printed (line 80).

Finally, line 50 is called a "wrap-around" line. Since it has more than 28 characters,
part of it prints on another line on your screen. This is an important point: Program
lines can be more than one screen-line long. In fact, a program line, in general, can
be up to four screen lines (112 characters) in length. (The exception is the DATA
statement. See the "BASIC Reference" section of the User's Reference Guide for an
explanation.) Notice that awrap-around line is not preceded by the small "prompting"
symbol.

More Programming Power 89

Thesubroutine, which must also be entered, is familiar to you by now. In this program,
it imparts a pleasing rhythm to the output of the displayed characters.

200 FOR B=1 TO 100

210 NEXT B

220 RETURN

Runthe program, and the 64 characters will be printed in nice,neat rows on the screen:

•DONE*1

>•

()* + ,-•/
01234567
89: ;<=>?
@ABCDEFG
HIJKLMNO
PQRSTUVW
XYZ[\]A_

Hold on just a minute! There are only sixty-three characters on the screen! What
happened to the otherone? Well, there are actually sixty-four. Look at the top line,
andnnotice that it appears to be indented one space. But remember, the first CHAR
value we assigned was 32. 32 is a space. Even though a space doesn't print anything
on the screen, it does occupy room on a line, and it is a character, as far as the computer
is concerned.

Animation

Animation is the illusion of movement. In order to achieve this illusion in your graphics
programs, it's necessary to change your characteror sets of characters periodically. The
foUowing programs demonstrate some of the techniques used to create flashing and
moving graphics on the screen.

• •

90 Introduction to TI BASIC

Flashing Letters

One way to create a flashing graphic isto print a character (orset of characters), delay
the program, clear the screen, delay the program again, and then repeat the process.
The clearing of the screen and the delays have the effect of turning the character "on
and off," making it appear to flash.

Let's try a program that hashes the letter A in the center of the screen.

NEW

10 CALL VCHAR(12,16,65)
20 GOSUB 100

30 CALL CLEAR **
40 GOSUB 200

50 GO TO 10
100 FOR DELAY=1 TO 300
110 NEXT DELAY
120 RETURN

200 FOR DELAY=1 TO 200
210 NEXT DELAY

220 RETURN

Character "on"

Character "off

Separate time delays —
different delay count

Now clear the screen and run the program. (Press SHIFT C to stop the program.)

Letter A flashes on and
off on the screen

Another way to simulate flashing is to replace one character with another in the same
spot on the screen. Let's revise our program so that it alternately flashes A and I. We
can do this easily by entering a new Une 30:

same position

30 CALL VCHAR(12,16,73)

t
code for I

Since we're replacing A with I, we don't have to clear the screen between printing the
characters. However, we may want to add a CALL CLEAR at the beginning of the
program. So enter this Une:

5 CALL CLEAR

10 CALL VCHAR(12,16,65)
20 GOSUB 100

30 CALL VCHAR(12,16,73)
40 GOSUB 200

50 GOTO 10

More Programming Power 91

Run the revised program. Do A and I appear to flash alternately on the screen? (You
may want to increase the time delayin subroutine 200 so that A and I will each stay on
the screen the same length of time. A better way to obtain equal time delays would
be to use the samedelaysubroutineand go to that subroutine twice. Just change line
40toGOSUB100.

40 GOSUB100

Then you don't need subroutine 200 at all. From flashing characters to flashing color
squares is an easystep. Next we'll examine a program that places a flashing color square
on the screen.

Flashing Color Squares

With this program we want to create a color square that flashes on the screen. Well
write the program so that we can input the color we want, and we'll use character 42
(the asterisk, in character set 2) to make our square.

NEW

10 CALL CLEAR

20 INPUT "COLOR CODE?":X Accept color code (1-16)
30 CALL CLEAR -+ Clear screen
40 CALLCOLOR(2,X,X) •< Define color for character set 2, which
50 CALL VCHAR(12,16,42) contains the asterisk, and make fore-
60 N=500 \ ground and background the same color
70 GOSUB 200 / "*^.^
80 CALL CLEAR . ^*s"*^^ New way - same time delay
90N=300 *r— N=TIME
100 GOSUB 200 I
110 GO TO 40

200 FOR B=1 TO N « N has been assigned in main program
210 NEXT B

220 RETURN

Now run the program. First, it asks

COLOR CODE?

and waits for you to input a valid color code. The codes are 1 through 16; remember,
however, that code 1 is transparent and code 4 is the normal screen color in the RUN
Mode. Squares of these colors will not show up on the screen.

When you type in a color code and press ENTER, you'll see the square flashing near the
center of the screen. (Press SHI FT C to stop the program.) Try the program with several
several color codes.

Next, let's change the program to create two color squares that alternately flash on the
screen. To do so, we'll need to input two color codes. So enter these lines first:

20 INPUT "COLOR 1?":X-« Accept color for first square

25 INPUT "COLOR 2?": Y "* Accept color for second square

92 Introduction to TI BASIC

Now we'll replace our original Une 80 with two newlines, to set the color and display
the second square:

80 CALL COLOR(2,Y,Y) Set color for second square

85 CALL VCHAR(12,16,42)

Let's review these changes by listingthe program. Clearthe screen; then type LIST
and press ENTER:

LIST

10 CALL CLEAR

20 INPUT "COLOR 1?":X
25 INPUT "COLOR 2?":Y
30 CALL CLEAR

40 CALL COLOR(2,X,X)
50 CALL VCHAR(12,16,42)
60 N=3Q0

70 GOSUB 200

80 CALL COLOR{2,Y,Y)
85 CALL VCHAR{ 12,16,42)
90 N=200

100 GOSUB 200
110 GOTO 40 -*

200 FOR B=1 TO N
210 NEXT B

220 RETURN

First color square
is on the screen

Second color square
is on the screen

Repeat

Select your two colors and run the program, typing in the color codes as the program
asks for them. The two color squares will alternately flash on the screen.

Experiment with several color combinations to find those that give a good contrast.
Here are a few examples to try:

COLOR 1 COLOR 2

6 5

11 14

14 16

9 11

Moving Color Squares

With just a few simple changes in the previous program, we can make the color squares
move across the screen as they flash. Add these lines:

26 FOR K=3 TO 28
50 CALL VCHAR(12,K,42)
85 CALL VCHAR(12,K,42)
105 NEXT K

110 GO TO 10

More Programming Power 93

Starting at column 3, the squares flash and travel across the screen, ending at column 28.
Then the screen clears,and the program asksyou for the new color inputs. Run the
program and see the effects.

Here is the listing of our final revision of the flashing squares program.

LIST

10 CALL CLEAR

20 INPUT "COLOR 1?":X

25 INPUT "COLOR 2?":Y

26 FOR K=3 TO 28
30 CALL CLEAR

40 CALL COLOR{2,X,X)
50 CALL VCHAR(12,K,42)
60 N=300

70 GOSUB 200

80 CALL COLOR (2,Y,Y)
85 CALL VCHAR(12,K,42)
90 N=200

100 GOSUB 200

105 NEXT K

110 GO TO 10 .f
200 FOR B=1 TO N

210 NEXT B

220 RETURN

If you want to speed up the flashing, shorten the time delay setting in lines 60 and 90.
Fora challenge, you might like to make the program flash three color squares! How
would you do it?

Bythis time you've seen several examples of the kind of graphics you can createwith
the standard characters of your computer. Later, you'll see how to develop yourown
characters.

Error Conditions with FOR-NEXT

We mentioned earlier that a nested loop must be completely contained withinanother
loop. If your program included lines like these:

10 FOR A=1 TO 6

30 FOR X=5 TO 10

80 NEXT A

90 NEXT X •+ Should be "nested" within the "A" loop

the computerwould stop the program and give you this error message:

* CANT DO THAT IN 90

The computer can't go back inside the completed "A" loop to pick up the beginning
of the "X" loop.

94 Introduction to TIBASIC

Another possible error condition with FOR-NEXT statements is accidentally omitting
either the FOR line or the NEXT Une. For example, if you attempted to run this
program:

10FORA=1TO5
20 PRINT A

30 END

the computer would respond with

* FOR-NEXT ERROR

If you encounter an error message,just list the program (type LIST and press ENTER),
identify the error, and correct the problem line or lines.

Chapter Summary

FOR-NEXT

GOSUB

RETURN

You've used this statement to build controlled loops that repeat
a part of the program a specified number of times or create a time
delay in the program.

You've placed parts of programs that will be repeated in a sub
routine to be "called" when needed by the GOSUB statement.

You've learned to use FOR-NEXT with COLOR, VCHAR and
HCHAR to create designs and even move them around on the
screen.

Try the exercises that follow to refresh your memory and review all that you have
learned in this chapter.

More Programming Power 95

Chapter Five Exercises

(1) In the following FOR-NEXT loop, give the value of A that would be printed by
line 30.

10FORA=1 TO 21

20 NEXT A

30 PRINT A

(2) This program displays a color bar. Tell why the time delay is desirable.

10 CALL CLEAR

20 FOR A=1 TO 16

30CALLCOLOR(1AA)
40 CALL HCHAR(9,3,36,24)
50 FOR B=1 TO 400

60 NEXT B

70 NEXT A

The time delay

(3) Complete this sentence.

In exericse 2, the FOR-NEXT loop (lines 50-60) is said to be
inside the other FOR-NEXT loop (lines 20-70);

(4) Re-write the program in Exercise 2 so that the time delay is placed in a subroutine
starting at Une 100.

10

20

30

40

50

60

70

110

120

130

(5) Can the same subroutine be called from morethan one place in the main program?

96 Introduction to TI BASIC

(6) This programis a variation of COLOR BAR TWO.

10 FOR A=1 TO 16
20 GOSUB 200
30 CALL HCHAR(A+3,3,42,28)
40 GOSUB 300

50 NEXT A

60 FOR A=1 TO 16
70 GOSUB 200
80 CALL VCHAR(1,A+5,42,24)
90 GOSUB 300
100 NEXT A

110 END

Write the subroutines which will make the output display appear the same as in
the original program.

200

210

220

300

310

320

(7) The character codes for the letters of the alphabet run from 65 through 90.
Complete this program which flashes each alphabetic character (in order) at
a position in the 12th row and 24th column.

10 CALL CLEAR

20 FOR X=

30 CALL VCHAR(..
T

40 FOR B=1 TO 300

50 NEXT B

60

(8) Complete this sentence.

To make a solid square of color with the CALL COLOR statement, you make the
color code the same as the

color code.

(9) Complete this sentence.

The color code values range from to •

More Programming Power

(10) Complete this program which will display color squares in a diagonal line from
position : row 3, column 3 to position: row 15, column 15.

10 CALL CLEAR

20 FOR X=

30CALLCOLOR(2,7,7)

40 CALL VCHAR(,_

50 NEXT

60 FOR B=1 TO 500

70 NEXT B

80 END

_i42)

Answers to Chapter Five Exercises

(1) 22 would be the value for A after exiting the loop.

(2) The time delay keepsthe color bar on the screen longenough to see it.

(3) nested

(4) 10 CALL CLEAR
20 FOR A=1 TO 16
30 CALL COLOR(1AA)
40 CALL HCHAR (9,3,36,24)
50 GOSUB 100

60 NEXT A
70 END

100 FOR B=1 TO 400
110 NEXTB
120 RETURN

(5) yes

(6) 200 CALL CLEAR
210 CALL COLOR (2,A,A)
220 RETURN

300 FOR B=1 TO 200
310 NEXT B
320 RETURN

(7) 10 CALL CLEAR
20 FOR X=65 TO 90
30 CALL VCHAR(12,24,X)
40 FOR B=1 TO 300
50 NEXT B

60 NEXT X

(8) make the foreground color code the same as the background color code.

(9) from 1 to 16

(10) 10 CALL CLEAR
20 FOR X=3 TO 15
30 CALL COLOR(2,7,7)
40 CALL VCHAR(X,X,42)
50 NEXT X

60 FOR B=1 TO 500
70 NEXT B

80 END

97

Chapter Six
Beginning Simulation

As you progress through the book, your programs will grow longer and longer. After the
program has been laid aside for awhile, it becomes more difficult to follow the flow of exe
cutions. You may find you need some way to organize and document the sections of longer
programs.

The REMARK statement allows you place notes in the program that tell what each section
of a program does. REMARK statements are not executed but are inserted to make pro
grams clear and understandable.

For example, here is a program repeated from Chapter Five with REMARK (abbreviated,
REM) statements inserted.

f
10 REM ** INPUT COLORS TO BE USED **
20 CALL CLEAR

30 INPUT "COLOR 1?": X

40 CALL CLEAR

50 INPUT "COLOR 21": Y

60 CALL CLEAR

70 REM ** PUT FIRST COLOR ON **

80 CALLCOLOR(2,X,X)
90 CALLVCHAR(12.16,42)
100 N=300

110 GOSUB 200

120 REM** PUT SECOND COLOR ON**
130 CALL COLOR(2,Y,Y)
140 CALLVCHAR(12,16,42)
150 N=200
160 GOSUB 200

170 REM ** REPEAT IT ALL **
180 GO TO 70

200 REM** TIME DELAY SUBROUTINE**
210 FOR B = 1 TO N
220 NEXTB
230 RETURN

Abbreviation for REMARK

The REM lines are not executed

Beginning Simulations 99

Even though your program gets longer, you will find that REMARK statements are worth
while. We will use them frequently from now on.

The INTeger Function

The INT function gets its name from the word integer. Integers include zero and all those
positive and negative numbers that have no digits after the decimal point.

The best way to learn how the INT function works is by trying it. First, let's work a division
problem that doesn't result in a whole number answer.

Type:

PRINT 16/3

and press ENTER. The answer is 5.333333333

Now try this example:

>PRINT INT(16/3)
5

INT kept the whole number part of the answer and threw away the digits after the decimal
point.

Try another example:

PRINT INT(7/6) -* 7/6=1.666666666
1 INT(7/6) = 1

The answer is 1; all of the fractional part has been discarded.

How about a real-life problem? Let's say a sales clerk is giving $1.37 in change to a customer.
The customer wants as many quarters as possible. How many quarters can be given?

PRINT INT(1.37/.25)
5

The answer is 5. Five quarters can be given.

100 Introduction to TI BASIC

You can also put more than one instance of INT in a PRINT statement.

Type: PRINT INT(7/3); INT(10/3)
Press ENTER

Again the whole number
parts of 7/3 and 10/3

What happens if the number is less than one?

Type: PRINT INT(1/3)
Press ENTER

1/3 = 0.333333...
whole number part
is zero

>PRINT INT(7/3); INT(10/3)
-•2 3

>•

>PRINT INTO/3)

-• 0

>•

What would happen if you put the following values in the INT function: 8.99, 8.56,
8.01?

Try them and see.

Type: PRINT INT(8.99) ;lNT(8.56);lNT(8.01)
Press ENTER

All the same

>PRINTINT(8.99);INT(8.56);INT(8.01)
8 8 8

>•

INT produces the same result in the last examples no matter what digits are after the deci
mal point. It does not round the number off to the nearest integer.

The general form of the INT function is:

INT(X)

/ \
The function name, The quantity or expression

from which INT extracts
the whole number

Beginning Simulations

To see better how INT works, try the following program.

10 REM** INT EXPERIMENT*

20 CALL CLEAR

30 FOR A = 1 TO 10

40 PRINT A/3,1NT(A/3)
50 NEXT A

Type: NEW

Enter the program
RUN

N

.3333333333 0

.6666666666 0

1 1

1.333333333 1

1.666666666 1

2
y Only integer

2.333333333 2

2.666666666 2

3 3

3.333333333 3
J

DONE
>D

^

101

From the results of this program, you could say that the INTeger function merely throws
away all that part of a number following the decimal point. But don't be too hasty. So
far, you have looked only at positive numbers. What happens with negative numbers?

We'll use a program to explore INT and negative numbers. ENTER these lines:

NEW

10 REM**NEGATIVE INTEGERS**

20 CALL CLEAR

30 FOR A=1 TO 7

40 PRINT-A/3,INT(-A/3)
50 NEXT A

60 END

Now run the program. The screen will show these results.

-.3333333333 -1

-.6666666666 -1

-1 -1

-1.333333333 -2

-1.666666666 -2

-2 -2

-2.333333333 -3

102 Introduction to TIBASIC

So INT(X) - where X represents a number or a mathematical expression - computes the
nearest integer that is less than or equal to X. Perhaps looking at a number line will help
to explain what happens.

NUMBER LINE

Values ofX

X:

INT(X):

-4 -3 -2-10 1
4 • • • m • •

-1

5

As can be seen from the number line, when X has the value -1/3, the largest integer that is
still smaller than X is -1. The INT function is often referred to as "the Greatest Integer"
function for this reason. Thus INT(-l/3) gives the result -1, as shown on the screen.

One last feature associated with INT is very useful to know. It can appear on the right side
of an equal sign in a LET statement. For example, try the next series of lines.

>LETA=INT(4/3)+2
> PRINT A

3

>•

In the LET statement, INT(4/3) produces the integer result of 1. This result is added to the
constant 2, yielding 3 as a final result. A is then assigned the value of 3 and printed.

Several applications of the INT function are shown later in this chapter. For now, try some
other experiments with INT so that you become even more familiar with how it works. Can
you round off money to the nearest penny? What is 4/3 of a dollar expressed in
dollars and cents?

>LET A=INT(100*4/3+.5)
>PRINT A/100

1.33

>•

What's this for?

Beginning Simulations 103

How did that work?

1St 100 * 4/3+.5= 133.3333333+.5= 133.8333333
2nd INT(100 * 4/3+.5) = 133

3rd 133/100= 1.33 -* One dollar and thirty three cents (to thenearest penny)

Have you discovered why the .5 is added to the computation? Try lookingat 5/3 dollars in
terms of dollars and cents. What happens if you don't add .5? The result is not to the near
est cent!

But

100 * 5/3 = 166.6666666
INTO00 * 5/3) = 166
166/100 = 1.66 -* Not 1.67!

100 * 5/3+.5 = 166.6666666+.5 = 167.1666666
INT(100 * 5/3+.5) = 167
167/100 = 1.67 + Correct to the nearest cent

The RND Function

Many computer programs are "simulations" that imitate some real event. For example
a computer program that imitates the foiling of a pair of dice isa simple simulation.
We'll develop, enter, and run a dice-rolling program. Other program that are included
will explore the games, graphics, and musical capabilities ofyour computer.

The heart ofmost ofthese games and simulations is the RND function, so let's begin
there.

This is a die These are two dice

V1* ?xm mthC name RND are taken from the word RaNDom. To discover exactly
how RND works myour Home Computer, first try this function in the IMMEDIATE
n?^'JZ Stait' erase whatever old Program may be in your Home Computer and
CLEAR the screen. Do you recall how this is done?

Type: NEW
CALL CLEAR

>D

1(K Introduction to TI BASIC

Now enter the following command.

Type: PRINT RND

>PRINT RND
.5291877823 -«-

>•

Try the same statement again!

Type: PRINT RND

>PRINT RND
.5291877823

>PRINT RND
.3913360723

>•

•RND produced this number

The numbers are not the same

Here is an interesting situation! Every time we use RND, we get a different number. The
two numbers we show above are different, and the results you obtained when you tried
it were different too. That's exactly what RND does - it generates "random numbers,"
numbers that do not follow any order or sequence.

Type: PRINT RND,RND

>PRINT RND,RND
.5343438556 .3894551053

>•

Two on a line

Here is a program that will produce ten random numbers using RND.

20 FOR COUNT =1 TO 10
30 PRINT RND

40 NEXT COUNT

Beginning Simulations 105

If you enter the program into your Home Computerand RUN the program, a list of ten
random numbers is produced on your screen.

Type: RUN

>RUN

.5291877823

.3913360723

.7000201301

.0010849577

*DONE**

>D

10 random numbers

You may have noticed that all the numbers that RND generates are less than one (1.0) in
value. Also, there are no negative numbers. RND is preset to produce only numbers that
are greater than or equal to zero (0). Everytime your Home Computer sees RND in a pro
gram it generates a random number between zero and one. In the program given above,
RND was used 10 times and produced 10 random numbers.

Make a note of the first few random numbers in the list on your screen. Now RUN the
program again.

Type: RUN

>RUN

.5291877823

.3913360723

.7000201301

.0010849577

'DONE1

>•

They are the same as last time

The list of numbers is the same! This feature of the RND function is important to remember
and can be used to advantage in some applications. Within a program RND will produce the
same sequence of random numbers each time the program in RUN.

UNLESS

106 Introduction to TI BASIC

Unless the BASIC language command RANDOMIZE is used in your program. Add the
RANDOMIZE statement, shown below, to the program that is still in your Home Computer.

10 RANDOMIZE

Your altered program now looks like this:

5 REM*10 RANDOM NUMBERS*

10 RANDOMIZE

20 FOR COUNT = 1 TO 10

30 PRINT RND

40 NEXT COUNT

Now RUN this altered program.

Type: RUN

>RUN

.1176354017-*-

.5120893264

.3207659957

.975423765

'DONE**

>•

.New list of 10 random numbers

Your numbers may not be the same as these

The ten numbers in this list are not the same as those in the previous Ust. RAN
RANDOMIZE has caused the function RND to produce a new list. To check that
this occurs each time, mark down the first few numbers in the current list and RUN
the program again.

Type: RUN

>RUN

.0765398493-+-

.5523019627

.7127096875

.3884785113

DONE

>D

•A totally new list of 10 numbers

Beginning Simulations 107

How do the two lists compare? They should be quite different due to the RANDOMIZE
statement.

You might want to experiment with this program for a while. Delete line 10 and RUN
the program a few times. Put line 10 back in and RUN it several times. Understanding
RND and RANDOMIZE makes it easy to begin to build programs for games and simula
tions.

Thisi

5 REM*10 RANDOM NUMBERS*

20 FOR COUNT =1 TO 10

30 PRINT RND

40 NEXT COUNT

Then thisi

5 REM*10 RANDOM NUMBERS4

10 RANDOMIZE

20 FOR COUNT =1 TO 10

30 PRINT RND

40 NEXT COUNT

The preceding discussion explained what the RND function does - produces "random
numbers" from zero but always less than one.

Now let us examine how random numbers outside the range of zero to one can be
generated.

The RND function can be used as part of any legitimate computation. For example,
10*RND or 10*RND+7 are both legitimate uses of RND within BASIC. To show what
is produced when RND is used in this way, try the following on your Home Computer.

Type: CALL CLEAR
PRINT 10*RND

>PRINT10*RND
5.765389224

>•

You may show
a different number

Try this statement several times. Is it clear to you that RND, when used in this manner,
produces "random numbers" from zero (0) to 9.9999 ... inclusive?

0, .0000000001, .0000000002, , 9.999999999, 10

0 to 9.999999999 inclusive

108 Introduction to TIBASIC

As an aid in seeing that this last comment is true, change line 30 of the program in your
Home Computer. Replace the current line 30 with the following entry:

30 PRINT 10*RND

Your program now looks as follows:

5 REM * 10 RANDOM NUMBERS *
10 RANDOMIZE

20 FOR COUNT =1 TO 10

30 PRINT 10*RND

40 NEXT COUNT

Now RUN your altered program.

Type: RUN

>RUN
3.796523017

1.117089595

.6517942135

2.817156306 ^

•* DONE **

>D

10 random numbers,
0<N<10

So, to produce a set of "random numbers" from zero to 9.99999 . . . (inclusive) multiply
RND by ten. If you want numbers that are greater than zero but less than 100, then you
would multiply RND by one hundred (100*RND).

It becomes difficult to avoid technical "jargon" at this point. The word, between, used
literally means all those numbers between the end points but not including them.
"Between 0 and 10" excludes 0 and 10 (As in Joe is between Suzie and Mike). But "from
0 to 10, inclusive" includes the end points 0 and 10. The mathematical symbolism used
above (0<N< 10) is much more precise. It includes the end point 0, but not the end point
10.

As can be seen on the screen, the numbers produced in this fashion have digits after the
the decimal point. Formany appUcations it is useful to be able to access and use only the
integer portion of the number (the digits to the left of the decimal point). This canbe
accomplished by combining two BASIC functions, INT and RND. The INT function was
introduced in the preceding section. Since RND can be part of any valid computation,
it can be used inside the INT function. Try the following statement on your Home
Computer.

Beginning Simulations

Type: CALL CLEAR
PRINT INT(10*RND)

>PRINTINT(10*RND)
6 -«

>•

You may show a
different number.
After all, it is random!

109

Type in the same statement several times and observe the sequenceof numbers produced.

All numbers will have integer values from zero to nine. INT throws away the digits to the
right of the decimal point and keeps those to the left. The following table describes how
INT, RND, and 10*RND work together.

PRODUCES

NUMBERS

IN RANGE

RND

0 to .99999.

10*RND

0 to 9.99999 ..

INT(10*RND)

0to9

Integers only

Change line 30 in the program in your Home Computer to read as follows:

30 PRINT INT(10*RND)

Your altered program now appears this way.

5 REM* 10 RANDOM INTEGERS*

10 RANDOMIZE

20 FOR COUNT =1 TO 10

30 PRINT INT(10*RND)
40 NEXT COUNT

RUN the program.

>RUN
5 -

7

8
Ten random integers.
All of them are in the
range, 0 through 9

** DONE **

>•

110 Introduction to TIBASIC

In some games and simulations, you will need random numbers that begin at some value
other than zero. For example, to simulate the throw of one die you need a random genera
tor that produces values from one to six. You have seen that INT(10*RND) gives values
from zero to nine. What would INT(6*RND) produce? Change line 30 in the program to
PRINT INT(6*RND) and RUN the new program.

Type: 30 PRINT INT(6*RND)
RUN

>RUN

4 ^

0

1

1

3 '

** nniur **DONE

>D

All values between 0 and 5

Notice that some integers may appear more than once.

Your screen shows a list of ten "random numbers" from 0 to 5. What would happen if we
added the value 1 to each item in this list? The resultant numbers would range from 1 to 6.
That's just what we need to simulate the throw of a single die. Again, alter the program as
shown below and run it.

Type: 30 PRINT INT(6*RND)+1
CALL CLEAR

RUN

>RUN
3

4

2

Simulation of 10 rolls of a die

** DONE **

>•

Beginning Simulations 111

Congratulations! The program now in your Home Computer is a simulation (imitation) of
throwing a single die ten times.

Here's what it looks like.

5 REM * 10 RANDOM INTEGERS *
10 RANDOMIZE

20 FOR COUNT = 1 TO 10
30 PRINT INT(6*RND)+1
40 NEXT COUNT

A Two-Dice Simulation

At this point you can easily design a program to simulate the throws of two six-sided dice.
Before you start, erase the old program by typing NEW.

Enter the following program:

10 REM* ROLL 2 DICE*
20 CALL CLEAR

30 RANDOMIZE

40 INPUT "NUMBER OF ROLLS: " :ROLLS -« Accept number of throws to simulate
50 REM * ROLL 'EM *

60 FOR COUNT = 1 TO ROLLS

In ^Vo=\^\T*a^l]\ Simulate athrow80 DIE2= INT(6*RND)+1*
90 PRINT DIE1;DIE2;DIE1+DIE2 -+ Display each throw and sum of "spots"
100 NEXT COUNT

110 PRINT

120 REM * ANOTHER ROUND *
130 GO TO 40

This program simulates the rolling of two dice and prints out the result of each roll and the
sum of the spots on the dice faces. You are asked how many rolls you wish to make at the
start of the program. RUN the program and watch what occurs.

Type: RUN

NUMBER OF ROLLS: • -* Cursor is here

112 Introduction to TIBASIC

The program prints a request for the number of rolls to make. Enter a number and press
the ENTER key.

Type: 5 (for example)

>RUN

NUMBER OF ROLLS: 5
2 5 7

6 6 12

3 1 4 «

2 3 5

1 4 5

Your screen shows 5 throws

NUMBER OF ROLLS: •

The program keeps looping back to the INPUT request line. Typing a SHI FT C stops the
program. Enter different values for the number of rolls. What happens if you try 30 rolls?
Make some changes to the program. For example, how would you alter the program to
simulate the throwing of two eight-sided dice?

RND can be used in other interesting ways. For example, with RND you can explore both
the graphical and musical capabilities of your Home Computer.

Earlier, you saw the results of using the graphics routines VCHAR and HCHAR. With
these routines, a single character could be placed anywhere on the screen. Let us now look
at a program that randomly places characters on the screen.

Erase your old program and type this one.

Type: 5 REM**RANDOM CHARACTERS**
10 RANDOMIZE

20 INPUT "CHARACTER NUMBER" :CHARNUM
30 CALL CLEAR

40 REM**PRINT IT RANDOMLY**
50 COLUMN = INT(32*RND)+1 -«
60 ROW = INT(24*RND)+1 -<
70 CALL VCHAR(ROW,COLUMN,CHARNUMh«-
80 GO TO 50

•Accept character number

Pick a random column
Pick a random row
Display character

The VCHAR routine needs two values to tell it where to place the character on the screen.
The two values correspond to a position in a row and column of the screen face. Across
the screen, there are 1 to 32 column positions: down the screen, there are 1 to 24 rows.
Lines 50 and 60 of the program provide random values along each of these dimensions of
the screen. The input to the program is a character number. The valid character numbers
are 32 to 95 (see Appendix A).

RUN the program and try an arbitrary valid character number.

Type: RUN
CHARACTER NUMBER? 45

Beginning Simulations 113

Minus signs, (character
•number 45) start filling
the screen

To stop the program, type in a SHIFT C. Try several different characters to see if any
produce unusual designs.

The concepts in the program just presented could be used as part of a larger program that
requires the random placement of characters on the screen before the start of a game.
Notice that each time you run the program, the initial character almost never appears in
the same screen positions. If the RANDOMIZE statement is taken from the program, the
initial character as well as the overall design is always the same. You might remove line 10
from the program and verify this result for yourself.

When you've finished experimenting with different characters, let's change the program
to generate characters at random, as well as place them randomly on the screen. Now,
first we'll have to decide how to set the limits we want for the character range. We know
that there are 64 characters, with character codes ranging from 32 through 95, and we
know that we do not want to use character code 32 (a blank space). How about:

INT(63*RND)+33

1 t
64-1 32+1

to generate our character number? INT(63*RND) will produce random integers from 0
through 62. Now check the limits established when we add 33:

0+33=33 — lowest possible character code
62+33=95 — highest possible character code

Clear the machine and enter this new program:

5 CALL CLEAR

10 RANDOMIZE

20 REM * RANDOM CODE *

30 CODE=INT(63*RND)+33
40 REM * RANDOM PLACEMENT *
50 ROW=INT(24*RND)+1
60 COLUMN=INT(32*RND)+1
70 CALL VCHAR(ROW,COLUMN,CODE)
80 REM * BACK FOR MORE *
90 GO TO 30

m Introduction to TI BASIC

Now run the new program. This time, you'll see different characters appearing in random
positions on the screen. (Press SHIFT Cwhen you're ready to stop the program.)

Random character placement can be used very effectively ingraphics programs. We'll
explore a couple ofexamples later in this book, but for now let's look at some possible
RND error conditions.

SUPERDICE

Error Conditions with RND

The error messages produced by an improper usage of RND are essentially the same as
the error messages we've mentioned before. Here are some examples:

Typing Errors Error Message

PRINT RDN

10 PRINT RDN

10 PRINT INT(10*RND

DNX

Should be RND
No error message is given. The computer assumes that RDN
is a variable name and prints the value assigned to that
variable. If no valuehas been assigned, it prints zero (0) on
the screen
♦INCORRECTSTATEMENT IN 10

\ Missing close parenthesis

About the only new error condition we need to mention occurs if you try to use the let
ters RND as a numeric variable name in a LET or assignment statement. For example, if
you type:

LET RND=5

the computer will respond with

* INCORRECT STATEMENT

This occurs because RND can be used only as a function in TI BASIC. It must be on the
right side of the equal sign as in this example.

LET A=RND

Beginning Simulations 115

Chapter Summary

In this chapter you have discovered some statements that help you create random events
for graphics and simulations. You have also found a tool that aids you in making your
programs clear and organized.

REM The REMark statement allows you to annotate your programs
with explanatory notes and comments.

INT You have learned to use the INTeger function to convert decimal
numbers to integers.

RND You have learned to create numbers in a random fashion with the
RND statement.

RANDOMIZE You have learned how to always get a new series of random num
bers by using the RANDOMIZE statement at the beginning of a
program.

All of these statements have been used to increase the power of your programming
ability. Check what you have learned by doing the following exercises.

116 Introduction to TI BASIC

Chapter Six Exercises

(1) Are REMark statements executed by the computer? _

(2) Why are REMark statements used in a program?

(3) What number would be printed following this statement in the Immediate Mode?

PRINT INT09/3)

(4) Which of the following statements would produce the largest result?

(a) PRINT INT(25/5)
(b) PRINT INT(27/5)
(c) PRINT INT(26/5)
(d) PRINT INT(28/5)

(5) What is the value of INT(-6.32)?

(6) What would be printed when the following program is executed?

100 CALL CLEAR
110 A = 2*3.3333333

120 B = INT(100*A)/100
130 PRINT B

(7) Write a short program to print 10 random numbers in the range of 3 to 9. (Not
including 9)

(8) Rewrite your program of exercise 7 to make the numbers integers from 0 through
9 inclusive (0,1,2,3,4,5,6,7,8, or 9).

Beginning Simulations 117

(9) Awheel with a spinning pointer has 8 numbers on its face as pictured below. Write
a program to simulate the results of spinning the pointer (10 spins).

/T~7/\
[7\ P^*\

\3J

(10) Write a program that will place random letters ofthe alphabet, Athrough G, in
random locations on the screen.

118 Introduction to TI BASIC

Answers to Chapter Six Exercises

(1) No

(2) To make a program clear and understandable.

(3) 6

(4) a, b, c, and d all give 5 for a result.

(5) -7

(6) 6.66

(7) Oneway: 10 CALL CLEAR
20 FOR N = 1 TO 10
30PRINT6*RND + 3

40 NEXT N

(8) Oneway: 10 CALL CLEAR
20 FOR N = 1 TO 10
30 PRINT INT(10*RND)
40 NEXT N

(9) Oneway: 10 CALL CLEAR
20 FOR N = 1 TO 10

30 PRINT INT(8*RND)+1
40 NEXT N

(10) One way: 10 CALL CLEAR
20 RANDOMIZE
30 A = INT(7*RND)+65 -* Givescharacter code 65-71 (A through G)
40 ROW = INT(24*RND)+1
50 COL = INT(32*RND)+1
60 CALL VCHAR(ROW,COL,A)
70 GO TO 30

Chapter Seven
More Program Control Statements

Up to this point most of the programs have been constructed so that they either run
straight through or loop using a FOR-NEXT loop or perhaps a GO TO statement. We
have also used subroutines for time delays. In this chapter we'll introduce several
versatile statements that allow changing the order of normal sequential execution.

The IF-THEN Statement

The IF-THEN statement provides you with the capability of making branches or "forks"
in your program. A branch or fork is a point in a program where either one of two
paths can be taken, just like a fork in a road.

The general form of an IF-THEN statement looks like this:

IF condition THEN line number

The "condition" is the true/false relationship between two BASIC expressions. The
"line number" is the program line that you want to "branch" to if the "condition"
is true. If the "condition" is not true, then the program line following the IF-THEN
statement is executed. For example:

80IFK<10THEN50

The statement says: If the value of K is less than 10, then go to line 50 of the program.
If K is greater than (>) or equal to (=) 10, then do not branch to Une 50. Instead,
execute the line following line 80.

120 Introduction to TI BASIC

Let's try a demonstration program. Enter these Unes:

NEW

10 REM**IF-THEN DEMONSTRATION PROGRAM**

20 CALL CLEAR

30 REM**K IS A COUNTER**

40 LET K=1

50 PRINT "K=";K ^

/

60 LET K=K+1

70 REMOTEST FOR K LESS THAN 10**
80 IF K<10 THEN 50

90 REM**PROGRAM GOES HERE WHEN K=10**
100 PRINT "OUT OF LOOP"
110 END

If new value of K
is not less than 10,
go on to next line

Now run the program.

K=1

K=2

K=3

K=4

K=5

K=6

K=7

K=8

K= 9

OUT OF LOOP

DONE

•

If new value of K is less than 10,
go back to line 50 and repeat

Each time the program reaches line 80, it must make a true or false decision. When K
is nine or less, the IF condition (K< 10) is true and the program branches to Une 50.
When K equals 10, however, K< 10 is false. The program then executes Une 100 and
stops.

Directionally, you can consider the statement in this way:

If true, follow this path

80 IF K< 10.THEN 50

/ \
Condition Line number

If false, follow this path
to the next statement

♦

More Program Control Statements

A trace of the program.

Statement K Remarks

20 CALL CLEAR

40 LET K=1

50 PRINT "K=";K
60 LET K=K+1

80IFK<10THEN50

0

1

1

2

2

CLEAR the screen
Assign initial value
Display K
Add 1 to K
K=2; less than 10

50 PRINT "K=";K
60 LET K=K+1

80IFK<10THEN50

2

3

3

Display K
Add 1 to K
K=3; less than 10

50 PRINT "K=";K 3 Display K

Repeats until K=9

50 PRINT "K=";K
60 LET K=K+1

80IFK<10THEN50
100 PRINT"OUT OF LOOP"
110 END

9

10

10
10

10

Display K
Add 1 to K

K=10; is not less than 10
PRINT message
STOP program

We mentioned earlier that the condition is true/false relationship between two
expressions. In the example just seen, the relationship was <, or "less than."
There are six relationships that can be used in the IF-THEN statement:

Relationship Math Symbol BASIC Symbol

Equal to = =

Less than < <
Greater than > >

Less than or equal to ^ < =

Greater than or equal to ^ > =

Not equal to * <>

121

Suppose we changed line 80 of the program to this:

80 IF K<= 10 THEN 50

How would the program's performance be affected? Try it! Enter the new line, then
run the program again.

122 Introduction to TI BASIC

RUN

K= 1

K= 2

K= 3

K= 4

K= 5

K= 6

K= 7

K= 8

K= 9

K= 10

OUT OF LOOP

** DONE**

>•

Now the program prints the value of K all the way through 10, becausethe new line
says, "If K is less than or equal to 10, branch to line 50."

The IF-THEN statement can be a powerful tool in program development. Experiment
now with some programsoofyour own, using IF-THEN and the mathematical
relationships listed on the preceding page.

The IF-THEN statement combined with the RND function provides the opportunity
to develop severalentertaining simulations on your Home Computer. The programs
that follow are based on a number guessing game that many of you may have played.
The programs use both the RND function and the IF-THEN statements.

OK, I have a
number. Start
guessing. What
is the n

Too small, try
a larger number.
What is the

k number?

§> Too small,
try a larger
number. What
is the number?

You guessed
it!! in only
four guesses!!!

Too large, try
a smaller

number. What

is the number?

Are you lucky?
Or just smart!

More Program Control Statements 123

A Number Guessing Program

In this game the computer generates a secret number from 1 to 100, using the RND
function, and asks you to guess the number. The program tells you if your guess is
larger, smaller, or equal to the secret number. When you guess the number, the program
chooses another number and begins the game again. Small children like to play this
game with the computer. Big kids like it too!

10 REM**NUMBER GUESSING GAME**
20 CALL CLEAR

30 REM**COMPUTER SELECTS A RANDOM NUMBER**

40 SECRET = INT(100*RND)+1 -« Number selected (1 to 100)
50 PRINT "OK, I HAVE A SECRET NUMBER."
60 PRINT

70 INPUT "WHAT IS YOUR GUESS:" : GUESS
80 REM**TEST FOR CORRECT GUESS**

90 IF GUESS = SECRET THEN 180
100 REM**TEST FOR GUESS LARGER THAN NUMBER**
110 IF GUESS SECRET THEN 150
120 PRINT 'TOO SMALL!!" -« If too small
130 PRINT 'TRY A LARGER NUMBER."
140 GOTO 60

150 PRINT 'TOO BIG!!" -« If too big
160 PRINT 'TRY A SMALLER NUMBER."
170 GOTO 60

180 REM**GUESS WAS CORRECT**

190 REM**DISPLAY VICTORY MESSAGE AND PAUSE**

200 PRINT

210 PRINT "YOU GUESSED IT!!" -* If just right
220 PRINT "LET'S PLAY AGAIN"

230 PRINT

240 FOR DELAY = 1 TO 1000 -* Time delay to read victory message
250 NEXT DELAY

260 GOTO 20

Two IF-THEN statements are used in the program at lines 90 and 110. In line 90, if
the guess is not equal to the secret number, the condition in the IF-THEN statement is
false, and the program proceeds to line 100. If the guess is equal to the secret number,
the program branches to line 180 and prints the victory message. At line 110, the
condition of the guess being larger than the secret number is tested. If the condition
is false (the guess is smaller than the number), the program proceeds to line 120. If
the condition is true (the guess is larger than the number), a branch to line 150 is made.

Enter the program and run it. See if you can guess the number that the program
generates. There is a way of making guesses so that you always guess the secret number
in at most seven trials. Can you discover how to do this?

m Introduction to TIBASIC

The following is an example of what might appear on your screen during a RUN of
the program.

OK, I HAVE A SECRET NUMBER.

WHAT IS YOUR GUESS:35-«

TOO SMALL!!
TRY A LARGER NUMBER.

WHAT IS YOUR GUESS:75
TOO BIG!! -*

TRY A SMALLER NUMBER.

WHAT IS YOUR GUESS:50
TOO BIG!! -«

TRY A SMALLER NUMBER.

WHAT IS YOUR GUESS:40
TOO SMALL!! **
TRY A LARGER NUMBER.

WHAT IS YOUR GUESS:41
TOO SMALL!! •+
TRY A LARGER NUMBER.

WHAT IS YOUR GUESS:42
TOO SMALL!! -*
TRY A LARGER NUMBER.

WHAT IS YOUR GUESS:43

TOO SMALL!! -*

TRY A LARGER NUMBER.

WHAT IS YOUR GUESS:44
TOO SMALL!! -*

TRY A LARGER NUMBER.

WHAT IS YOUR GUESS:45

YOU GUESSED IT!!

LET'S PLAY AGAIN

OK, I HAVE A SECRET NUMBER.

-First guess

•Guess is too big

•Still too big

•Now it's too small

•It must be getting close!

-Try again

•Again

-Again

•FINALLY DID IT!!!

The computer will start a new game each time you guess the correct number. When
you want to stop playing,just pressSHIFT C. Notice also that the program does not
contain a RANDOMIZE statement. Therefore, the program will generate the same
series of random numbers each time you run it. If you want to make the program
create a new set of random numbers each time, just add this line.

15 RANDOMIZE

A novel version of the number guessing program can be created on your Home Computer
using the SOUND capabilities of the machine. The next program plays a tone between
131 cycles per second and 247 cycles per second. Your role is to guess the frequency
of the tone. (See Appendix) The program lets you know if your guess is lower, higher,
or equal to the frequency of the random tone that is generated. When you guess the
frequency of the note, the program plays the note three times and begins the game again.

More Program Con trol Statemen ts 125

Here is our Tone Guessing Program.

10 REM**TONE GUESSING PROGRAM**
20 CALL CLEAR

30 REM**COMPUTER SELECTS A TONE VALUE**
40TONE = INT(117*RND)+131 •+ Selects tone
50 PRINT "OK, I HAVE A TONE"
60 PRINT

70 PRINT 'THE TONE IS -"
80 REM**THE TONE IS PLAYED**
90 CALL SOUND(100,TONE,2) *+ Play the tone
100 INPUT "WHAT IS YOUR GUESS:" : GUESS
110 REM**TEST FOR CORRECT GUESS**
120 IF GUESS = TONE THEN 250

130 REM**TEST FOR GUESS BEING TO HIGH**
140 IF GUESS>TONE THEN 200

150 REM**GUESS WAS LOW**
160 CALL SOUND(100,GUESS,2) •< Play the guess
170PRINT"TOOLOW!!"

180 PRINT 'TRY A HIGHER TONE"

190 GO TO 60

200 REM**GUESS WAS HIGH**

210 CALL SOUND(100,GUESS,2) ** Play the guess
220 PRINT'TOO HIGH!!"

230 PRINT 'TRY A LOWER TONE"

240 GO TO 60

250 REM**A CORRECT GUESS WAS MADE**
260 REM**PRINT VICTORY MESSAGE AND**

270 REM**PLAY THE SECRET NOTE THREE TIMES**

280 PRINT

290 PRINT "YOU GUESSED IT!!"

300 FOR PLAY = 1 TO 3

310 CALL SOUND(100,TONE,2) -* Play the tone three times
320 NEXT PLAY

330 REM**PAUSE SO MESSAGE CAN BE READ**
340 FOR DELAY = 1 TO 500 ** Delay loop
350 NEXT DELAY

360 GO TO 20

Enter the program and RUN it. The information that appears on the screen is similar
to the number guessing program. The only difference is that in this program your
guess is "played" back to you by the computer. For an interesting variation of this
game, remove lines 170—180 and 220—230. These lines contain the visual messages
telling you if you are high or low. Without the messages, you have to play the game
entirely by "ear."

If you'd like to change the tone limits, you can easily do so by changing line 40. For
example, suppose you'd rather hear a series of higher tones —perhaps in the range from
262 cycles per second through 392 cycles per second. How would you rewrite line
40 to generate these tones? Also, you may want to add the RANDOMIZE statement
to create a new series of random tones each time that you run the program. If so, just
enter this new line:

15 RANDOMIZE

126 Introduction to TI BASIC

In the last program, if you enter a frequency of less than 110 cycles per second or
greater than 5,500 cycles per second, the program stops. An invalid input causes an
error condition to occur in the SOUND routine. The IF-THEN statement can be used
to detect invalid inputs and is shown intthe next program.

This program creates ten randomly placed horizontal bars —of a color you input, and
of random lengths. Then the program pauses for you to input a new color code.

You'll notice that we've used IF-THEN statements to test the input color code to be
sure it's valid. If it isn't, the program gives you a specially written error message.

10 REM**RANDOM COLOR BARS**
20 CALL CLEAR

30 RANDOMIZE

40 REM**INPUT AND VALIDATE COLOR CODE**
50 INPUT "COLOR PLEASE?":C
60 CALL CLEAR

70 IF C<1 THEN 200 *—•—-^. Test for valid color code
80 IF C>16 THEN 200 -* "
90 REM**PICK A RANDOM POSITION AND LENGTH**
100 REM**AND DISPLAY 10 BARS**
110 FOR LOOP = 1 TO 10
120 ROW = INT(24*RND)+1 -* Generate a rowfrom 1 to 24
130 SIZE = INT(28*RND)+1 -* Pick size of bar
140 CALL COLOR(2.C.C)
150 CALL HCHAR(ROW,3,42,SIZE) -«— Display colored bar
160 FOR DELAY = 1 TO 100

170 NEXT DELAY
180 NEXT LOOP Ten bars are on screen —
190 GO TO 230 •* skip down to delay
200 PRINT "INCORRECT COLOR CODE!"
210 PRINT "MUST BE FROM 1 TO 16." Special error messages
220 PRINT 'TRY AGAIN!"

230 FOR DELAY = 1 TO 500
240 NEXT DELAY -* Give time to view screen
250 GO TO 20 •* Returnto beginning

When you run the program, you'll see all of the bars begin at column 3, near the left-
hand edge of the display. Their lengths, however, are random, as are their vertical
positions on the screen. After ten bars of the input color are placed, the program clears
the screen and asks you for a new color code.

Remember to avoid putting in color codes 1 (transparent) and 4 (the screen color in
the Run Mode). Althought these are valid codes, you won't be able to see the bars.

The next program is a game where two colors vie against each other for a place on the
screen. A winning color is randomly chosen. The program is the longest you've seen
yet, so we'll provide some explanations as we go along.

More Program Control Statements

Here's the program:

NEW

10**REM COLOR CONTEST**
20 CALL CLEAR

30 REM**ACCEPT AND VALIDATE COLOR CODES**
40 INPUT "FIRST COLOR?":C1)
50 IF CK1 THEN 270 \
60IFC1>16THEN270)
70 INPUT "SECOND COLOR?":C2)
80 IF C2<1 THEN 270 \
90 IF C2>16 THEN 270)
100 CALL CLEAR

110 REM**RANDOM PICK OF COLOR**

120 REM**1 = COLOR1 2 = COLOR2**

130 COLORTEST = INT(2*RND)+1 This will be 1 or 2
140 REM**DISPLAY 50 RANDOMLY PLACED COLORED SQUARES*1

127

Accept first color code and check for validity

Accept second color code and check for validity

Set loop to display 50 colored squares

Select a random screen position for a square

If Colorl "wins," branch to line 210
If Color2 "wins," assign C2 to A and branch
to line 220
If Color 1 "wins," assign value of CI to A

150 FOR LOOP = 1 TO 50 -+
160ROW=INT(24*RND)+1 -*
170 COLUMN = INT(32*RND)+1
180 IF COLORTEST = 1 THEN 210-«-
190 LET A = C2 -*
200 GO TO 220

210LETA=C1 -«

220 CALL COLOR {2A A)
230 CALL HCHAR(ROW,COLUMN,42)
240 NEXT LOOP <*

250 GO TO 300
260 REM**ERROR MESSAGES**

270 PRINT "INCORRECT COLOR CODE!'

280 PRINT "MUST BE 1 TO 16/

290 PRINT 'TRY AGAIN."
300 REM**WAIT FOR AWHILE**

310 FOR DELAY = 1 TO 500

320 NEXT DELAY

330 GO TO 20

711 ^uiui i wins, assign vaiue oi ^i i

Print color square in random position

Go through loop until 50 squares are on the screen

,Print error message if first
color code is invalid

Delay to observe pattern or message;
then start new game

Two people can play against each other, or you can play against yourself by putting
in both color codes, just to see which "wins" the game. (Again, avoid entering color
codes 1 and 4.)

Random Notes

We used CALL SOUND earlier in a program that played notes from a musical scale. If
we modify that program, adding the IF-THEN statement and the RND function, we
can make the computer play some interesting (but not necessarily enjoyable) "music."

128 Introduction to TI BASIC

Here's how:

NEW
10 REM**COMPUTER MUSIC MAKER**
20 REM**SET UP THE C-SCALE OF NOTES**
30 LET C =262 ^
40 LET D = 294
50 LET E = 330

60 LET F = 349
70 LET G = 392
80 LET A = 440

90 LET B = 494

100 LET C2 = 523
110 REM**PICK A RANDOM NOTE AND DURATION**
120 RANDOMIZE Different random "tune" for each RUN
130 NOTE = INT(8*RND)+1 Set random note and duration
140 TIME = INT(100*RND)+100
150 VOLUME = 2 Fix volume at 1
160 REM**IDENTIFY THE NOTE TO BE PLAYED**
170 IF NOTE = 1 THEN 290
180 IF NOTE = 2 THEN 310
190 IF NOTE = 3 THEN 330
200 IF NOTE = 4 THEN 350
210 IF NOTE = 5 THEN 370
220 IF NOTE = 6THEN 390
230 IF NOTE = 7 THEN 410
240 NOTE = C2
250 REM**THIS LINE PLAYS THE NOTE**
260 CALL SOUND(TIME,NOTE,VOLUME)
270 GO TO 130 Return for next note
280 REM**ASSK3N NOTE TO BE PLAYED**
290 NOTE =C N
300 GO TO 260
310 NOTE = D
320 GO TO 260
330 NOTE = E

340 GO TO 260
350 NOTE = F
360 GO TO 260

370 NOTE = G
380 GO TO 260
390 NOTE = A

400 GO TO 260
410 NOTE = B

420 GO TO 260

Notes for "middle C" through "high C

Check which note to be played

Assign "high C" to note

• Define the notes

Now run the program, and enjoy the "music,
just press SHIFT C.

When you're ready to "stop the music,

You might Uke to experiment with this program in various ways. For example, do
you notice anything different in the "music" if you change lines 140 and 150 to:

140 TIME = 500

150 VOLUME = 5

Now that we've let the computer play its own
of our own?

'music," why not play some music

More Program Control Statements 129

Musical Interlude

With this program, you can use the keyboard to input notes that you want to play.
Enter these lines:

NEW

10 REM**HUMAN ASSISTED COMPUTER MUSIC**
20 REM**SET UP C-SCALE OF NOTES**

30 LET C = 262

40 LET D = 294

50 LET E = 330

60 LET F = 349

70 LET G = 392

80 LET A = 440

90 LET B = 494

100 REM**ACCEPT AND VALIDATE NOTE TO BE PLAYED**

110 INPUT "NOTE ":A$
120IF A$="C" THEN 200

"Middle C" scale

130IFA$="D"THEN220
140 IF A$ = "E" THEN 240
150IFA$="F"THEN260
160IF A$="G" THEN 280
170IFA$ = "A"THEN300J
180IFA$ = "B"THEN320
190 GO TO 110 Not A through G! Doit again
??2U5H=^ Set UP note to be played
210 GO TO 330
220 NOTE = D

230 GO TO 330

240 NOTE = E

250 GO TO 330
260 NOTE = F

270 GO TO 330
280 NOTE = G

290 GO TO 330
300 NOTE = A

310 GO TO 330
320 NOTE = B

330 REM**PLAY THE NOTE**

340 CALL SOUND(100,NOTE,2)
350 FOR DELAY = 1 TO 50

360 NEXT DELAY

370 GO TO 110 Return for a new note

When you run the program, the computer will ask you for a note. You then press one
of the letter keys (A,B,C,D,E, F, or G), followed by the ENTER key. For example,
when the screen shows

NOTE •

and you press A ENTER the "note" A will play. The screen keeps a record of the
keys that you depress:

NOTEC

NOTED

NOTEE

NOTE F

Check for which key was depressed on keyboard

130 Introduction to TIBASIC

Having to depress the ENTER key for each note slows down your musical performance
a bit, doesn't it? Also, the INPUT statement sounds a note when it is executed. Unless
you can work this extra tone into your melody, your music sounds odd. You'll find a
quicker and better way to use your computer as an organ keyboard later.

IF-THEN-ELSE Statement

Now that you've become well acquainted with the IF-THEN statement, let's take a look
at a variation. Remember the IF-THEN statement allows brahcning to a nonsequential
line number when the IF condition is true. Otherwise, it continues on to the next
sequential line number.

IF condition THEN XX

I TRUE
I FALSE

The IF-THEN-ELSE statement allows branching to one of two different line numbers.
It does not proceed to the next sequential line unless that line is specified. For example,

50

60

70

80

90 IF A$="S" THEN 840 ELSE 50
100

To 840
ifA$="S'

840

To 50 if A$ is
not equal to "S"

Consider the Musical Interlude program just discussed. Suppose you want to stop the
program by typing an S when the program requests a note. You could change line 90
as shown in this example and add line 840.

190 IF A$="S"THEN 840 ELSE 110

840 END

Now, if no correct note has been pressed, the computer checks A$ to see if you want
to stop or not. If you have typed an S, the computer goes to line 840 and stops. If
you have not typed an S, there was an error in your input. The computer goes back
to line 110 for a new input.

The difference between IF-THEN and IF-THEN-ELSE is shown in the diagram that
follows. When the IF condition is false, the IF-THEN statement always sends you to
the next sequential line. This can be changed by using IF-THEN-ELSE where the
line number for the false condition may be specified following the word ELSE.

More Program Control Statements

IF-THEN

40IFX=5THEN 100

50 -*—! IfX =5
60
70 If X not = 5
80

90

100 -+

IF-THEN-ELSE

40 IF X=5 THEN 100 ELSE 120

50 IfX=5
60
70 If X not = 5
80

90

100

110

120

131

The main errors that can occur in using the IF-THEN statement or the IF-THEN-ELSE
statement are shown below:

20 IFA=B THEN 200

20 IF A=BTHEN 200 ELSE 300

20 IF A=B THEN200 ELSE 300

20IFA==BTHEN200

20IFA= THEN 200

No space after IF
No space before THEN
No space after THEN
Invalid relational symbol combinations
No expression on one side of the relational symbol

All of the above conditions produce an error message during the running of the program
along with a reference to the line number of the statement in which the error occurs.

You have used the GO TO statement in previous programs. When it is executed, control
is transferred to the specified line number. Since there are no options, this statement is
called an unconditional transfer to the specified line number.

The ON - GO TO Statement

A more powerful version of the GO TO statement allows a branch to one of several line
numbers, depending on a given condition. The ON-GO TO statement is a conditional
branch to one of several hne numbers. The condition, which follows the word ON, may
be a numeric expression. This expression is evaluated and rounded to obtain an integer.
The value of the integer is then used to select a line number from a list that follows the
word GO TO.

Example:

30 ON X+1 GO TO 100,150,200

(1) If X+1 evaluates to 1, execution would be transferred to the//rsr hne number in
the list (line 100).

(2) If X+1 evaluates to 2, execution would be transferred to the second line number
in the list (line 150).

(3) If X+1 evaluates to 3, execution would be transferred to the third line number
in the list (line 200).

(Note: Care must be taken that the condition (X+1) in the example does not evaluate
to less than 1 or more than the number of line numbers in the list. If this error
condition occurs, the computer stops and displays an error message.

132 Introduction to TI BASIC

Look back to the Random Notes program in this chapter. The seven IF-THEN state
ments (lines 170-230) can be replaced by one ON-GO TO statement.

70 ON NOTE GO TO 290,310,330,350,370,390,410

/ \
NOTE should be equal 1st line 2nd line 7th line
to 1,2,3,4,5,6 or 7 number number number

Each item in the hst following GO TO replaced one of the IF-THEN statements.

IF-THEN

In Original
NOTE LIST

Value Item No. GO TO line

IF NOTE=1 THEN 290 1 1 290

IFNOTE=2THEN310 2 2 310

IFNOTE=3THEN330 3 3 330

IFNOTE=4THEN350 4 4 350

IFNOTE=5THEN370 5 5 370

IFNOTE=6THEN390 6 6 390

IFNOTE=7THEN410 7 7 410

Here is a variation of the Guess My Number program.
200 and 210.

It uses ON-GO TO in Unes

100 REM**GUESS MY NUMBER-VARIATION**
110 CALL CLEAR

120 REM**PICK RANDOMLY 1,2, OR 3**
130 N=INT(3*RND)+1 -<
140 PRINT "GUESS MY NUMBER GAME"
150 INPUT "WHAT IS MY NUMBER(1-3)?":G
160 IF G>3 THEN 140
170IFG<1 THEN 140

180 REM**INPUT OK-NOW CHECK IF CORRECT GUESS**
190 IF N>G THEN 210
200 ON G-N+1 GO TO 240,260,280 -«-—^="—Compare the two numbers
210 ON N-G GO TO 260,280 -«
220 REM**RESPONSE MESSAGES**
230 REM**CORRECT GUESS**
240 PRINT "RIGHT ON! MY NUMBER WAS";N
250 GO TO 310
260 REM**GUESS OFF BY ONE**
270 PRINT "YOU MISSED IT BY 1.", "MY NUMBER WAS";N
280 REM**GUESS OFF BY TWO**
290 GO TO 310

300 PRINT "YOU MISSED IT BY 2.","MY NUMBER WAS";N
310 REM**TIME DELAY**
320 FOR W=1 TO 900
330 NEXT W

340 GO TO 110

Gives 1,2, or 3

Incorrect input checks

More Program Control Statements 133

Line 190 is the key to the ON-GO TO statements. If the computer's number is greater
than your guess, line 210 is used. In this case, there are two options.

If N—G=l, then your message comes from line 260.
If N—G=2, then your message comes from hne 280.

If the computer's number is less than, or equal to, your guess, line 200 is used. Here
there are three options.

If G—N+l=l, then your message comes from line 240.
If G—N+l=2, then your message comes from line 260.
If G—N+l=3, then your message comes from hne 280.

Lines 160 and 170 ensure that the rules (G=l, 2 or 3) are followed.

The ON - GOSUB Statement

The statement ON-GOSUB has the same relationship to GOSUB as ON-GO TO has to
GOTO. GOSUB is an unconditional call to a subroutine. ON-GOSUB allows the option
of one of several subroutines, depending on the condition following the word ON.
For example:

140 ON X GOSUB 500,600,500,600,500,600

X = 1,2,3,4,5 or 6 The same line number may
be used more than once

Here is a use of ON-GOSUB in a program.

100 REM**ON-GOSUB DEMO**

110 CALL CLEAR

120 FOR X=1 TO 6
130 PRINT "X=";X
140 ON X GOSUB 500,600,500,600,500,600
150 PRINT

160 NEXT X

170 END

500 REM**LONG DELAY**
510 PRINT 'TIME DELAY=500"

520 FOR W=1 TO 500

530 NEXTW

540 RETURN

600 REM**SHORT DELAY**

610 PRINT 'TIME DELAY=200"

620 FOR W=1 TO 200

630 NEXT W

640 RETURN

This program demonstrates the use of ON-GOSUB to select time delays of different
lengths. The value of X and the length of the time delay are both printed so that you
can follow the execution of the subroutines for each value of X.

134 Introduction to TIBASIC

Chapter Seven Summary

In this chapter you have learned more ways to alter the normal sequential execution
of computer statements. Number guessing and note guessing games have been used to
demonstrate these new features. Color Bar demonstrations have also been shown. You
have learned to use the following statements:

• The IF-THEN statement, which allows branching depending on the truth of
the IF condition.

ELSE was added to the IF-THEN statement to make it more flexible for
branching on the IF condition.

ON-GO TO provides for branching to one of several program lines depending
on the value of the expression following the word ON.

ON-GOSUB provides for using one of several subroutines depending on the
value of the expression following the word ON.

Introduction to TI BASIC 135

Chapter Seven Exercises

(1) Given the consecutive statements:

50IFK>10THEN 180
60 PRINT 'THIS IS"; 1979+K

If line 50 is executed, will line 60 be executed next if

(a) K = 5?

(b) K=10?

(c) K= 11?

(2) Use this part of a program to answer questions a, b and c below.

100 CALL CLEAR
110 N = RND

120 IFN<= .33 THEN 170
130 IFN>= .67 THEN 200
140 FOR X = 1 TO 500
150 NEXT X
160 GO TO 220

170 FOR X = 1 TO 50
180 NEXT X

190 GO TO 220

200 FOR X = 1 TO 1000
210 NEXT X

220 PRINT "END OF TIME TEST"

(a) What values of N give the longest time delay?
(b) If N = .30, which time delay will be used?
(c) If N = .33, whichtime delay will be used?

(3) Complete this number guessing program. Use the strings: "TOO BIG", "TOO
SMALL", and "JUST RIGHT".

100 N = INT(100*RND)+1
110 CALL CLEAR

120 INPUT "GUESS =":G
130 IF N>G THEN 170
140 IF N<G THEN 190

150 PRINT "

160 GO TO 230

170 PRINT "

180 GO TO 200

190 PRINT "

200 FOR X = 1 TO 500
210 NEXT X

220 GO TO 110
230FORX = 1 TO 1000
240 NEXT X

250 GO TO 100

136 More Program Control Statements

(4) The color codes for color graphics are the integers 1 to 16. Complete the lines in
this partial program so that the correct code range is input. Use IF-THEN
statements in lines 40 and 50.

20 INPUT "COLOR, PLEASE?":C
30 CALL CLEAR

40

50

200 PRINT "COLOR CODE INCORRECT!"
210 PRINT "CODE MUST BE 1 TO 16"
220 PRINT 'TRY AGAIN."

230 FOR DELAY = 1 TO 500
240 NEXT DELAY

250 GO TO 20

(5) The following lines exist in a program.

100 IF A$ = "STOP" THEN 900 ELSE 50

900 END

(a) If A$ = "END" and line 100 is executed, what line will be executed next?

(b) If A$ is a true statement, which line will be executed next?.

(6) Answer the questions below after studying this line.

70 ON ROLL GO TO 300,400,500,600,700,800

(a) If ROLL=3, what line will be executed following line 70? _

(b) If ROLL=6, what line will be executed following line 70? _

(c) What value of ROLL would cause line 400 to be executed following line 70?

(7) Replace the four IF-THEN statements below with one ON-GO TO statement that
would accomplish the same result.

140IFNOTE=1THEN500

150IFNOTE=2THEN600

160 IF NOTE=3 THEN 700

170 IF NOTE=4THEN 800

140

More Program Control Statements 137

(8) Suppose line 50 below has just been executed.

50 ON X+2 GOSUB 200,300,400

(a) If X=l, which subroutine would be called?

(b) Is 2 a legal value for X in this statement? _

(9) Write an ON-GOSUB statement, so that a subroutine at line 400 will be used if
NOTE<3, line 500 if NOTE>6 and subroutine 1000 if NOTE is in the range
3 to 6 inclusive. The legal range for values of NOTE is 1 to 8.

200

Answers to Exercises

(1) (a) yes (b) yes (c) no

(2) (a) N greater than, or equal to, .67
(b) Lines 170-180 (FOR X=l TO 50, NEXT X)
(c) Lines 140-150 (FOR X=lTO 1000, NEXT Y)

(3) 150 PRINT "JUST RIGHT"
170 PRINT 'TOO SMALL"

190 PRINT 'TOO BIG"

(4) 40 IF C<1 THEN 200 (Lines could be in reverse order)
50 IF C>16 THEN 200

(5) (a) 50 (b) 900

(6) (a) 500 (the 3rd item in the list)
(b) 800 (the 6th item in the list)
(c) ROLL=2 (400 is the 2nd item in the list)

(7) 140 ON NOTE GO TO 500, 600, 700,800

(8) (a) 400 (X+2 = 3)
(b) no (2+2 = 4 — only 3 items in the list)

(9) 200 ON NOTE GOSUB400,400,1000,1000,1000,1000,500,500

Chapter Eight
Using Data Files

With the addition of more and more programming statements at your command, you
are now becoming quite proficient in controlling your computer. You have used
assignment statements (with or without the word LET) to assign values to variables.
In Chapter Three, you learned to input the values for both numeric and string variables.
Now you will explore another method of assignment.

READ and DATA Statements

Values may be assigned to variables by reading them from a data hst. Every program
that contains a READ statement must provide a DATA list to READ from, of course.
For example:

100 CALL CLEAR

110 READ X ~+ READ...
120 PRINT X

130 GO TO 110

140 DATA 1,2,3,4,5,6,7,8 ... from this list

The DATA statement is not executed. The items are merely read from it. Therefore,
the DATA statement may be placed anywhere in the program. This order would be
all right:

100 CALL CLEAR

110 READ X

120 DATA 1,2,3,4,5,6,7,8
130 PRINT X

140 GO TO 110

Using Data Files 139

If either of the two programs shown were run, you would see:

1

2

3

4

5

6

7
o

This message just means that
••DATA ERROR IN 110** -<- you've used all of your data

>•

When your program is entered, the items from the data list are stored sequentially in
memory. A data "pointer" is set to "point at" the first item in the data list at the
start of a program.

120 DATA 1,2,3,4,5,6,7,8

*
After the first item of DATA is READ, the pointer moves on to the next item to be
ready for the next READ statement.

120 DATA 1,2,3,4,5,6,7,8

♦
This process continues until the last data item in your list has been read. Since there is
no more data in the list, the DATA ERROR message is given.

120 DATA 1,2,3,4,5,6,7,8

T
Pointer here after 8th READ

It would be helpful if you had some way to tell when you reach the end of your data
hst. Remember the IF-THEN statement? You could insert one at line 125 to avoid

the error message.

125 IF X=8 THEN 150

150 PRINT "INPUT COMPLETE"

Let's see how we can apply this to a practical situation. Remember the CALL COLOR
program of Chapter Four? It looked like this:

100 CALL CLEAR

110 CALL COLOR{1,6,16)
120 CALL COLOR(2,6,16)
130 CALL COLOR(3,6,16)
140 CALL CO LOR (4,6,16)
150 CALL COLOR(5,6,16)
160 CALL COLOR(6,6,16)
170 CALL COLOR(7,6,16)
180 CALL CO LOR (8,6,16)
190 PRINT "MY MESSAGE

200 GO TO 200

8 CALL COLOR statements

140 Introduction to TI BASIC

If we use the READ and DATA statements, the program might look Uke this:

100 CALL CLEAR

GO TO[110 READ C
loop 120 IF C=99 TH EN 150
to 130 CALL COLOR(C,6,16) -*-
READ L140GOTO110
data 150 PRINT "MY MESSAGE"

160 GO TO 160

170 DATA 1,2,3,4,5,6,7,8,99

Only one CALL COLOR statement

99 signalsend of list

Each time through the loop (lines 110-140), C is tested at hne 120. If C is not equal
to 99, the execution proceeds through the loop. When C=99, we "jump" out of the
loop to hne 150. Of course, you may substitute any message you wish at line 150.

More Than One DATA Statement

You are not restricted to one DATA statement. If more than one appears in a program,
the statements are used in the order in which they occur in the program. When the
first one is used up (all items read), items from the next DATA statement are used. In
other words, the computer sees them as one extended list. For example:

140 DATA 100,90,80 *
150 DATA 70,60,50,40-

The computer sees this:

Data

Pointer

100

>

From

90
line

' 140

80

70

60
From
line

50 150

40

These used first
Then these

• Computer sees one list

You can make the Home Computer into an expensive adding machine for demonstration
purposes. The DATA list could be entries in your check book, with a comfortable
starting balance assigned to the variable B. The program will calculate the ending
balance. A "flag" will be used to show the last data item in the list.

Using Data Files

100 REM**CHECK BALANCE PROGRAM**
110 CALL CLEAR

120 REM**B IS THE BEGINNING BALANCE**

130 B=1000

140 REM**READ A CHECK OR DEPOSIT AMOUNT INTO C**

150 READ C

160 REM**LOOK FOR ENDING FLAG -99999**

170 IF C=-99999 THEN 220

180 PRINT C

190 REM**ADJUST BALANCE BY CHECK/DEPOSIT AMOUNT**
200 B= B+C

210 GO TO 150

220 PRINT "ENDING BALANCE=";B
230 DATA -17.41,-82.56,-5.40,-72.13
240 DATA -175,650,47,-350,-45.92
250 DATA -55.01,-73.50,-99999 ^^Flag to tellwhen end

of data is reached

Trace the values for C and B as the GO TO loop is executed.

PASS NO. C NEWB

0 - 1000

1

2

3

4

5

6

7

8

9

10

11

(The results are shown on the next page.)

Starting balance

Ending balance

Remember the Random Notes program in Chapter Seven? With READ, DATA and
ON-GO TO statements we can now shorten that program.

U1

K2 Introduction to TI BASIC

100 REM**RANDOM NOTES**

110 REM**INPUT NOTES**

120 READ C,D,E,F,G,A,B,C2
130 REM**SET UP THE NOTE TO BE PLAYED**
140 RANDOMIZE

150 NOTE=INT(8*RND)+1
160 TIME=INT(1000*RND)+100
170 VOLUME=2
180 REM**CHECK WHAT NOTE WAS SELECTED**
190 ON NOTE GO TO 260,280,300,320,340,360,380,210
200 REM**HIGH C WAS CHOSEN**
210 NOTE=C2

220 REM**PLAY THE NOTE**

230 CALL SOUND(TIME,NOTE, VOLUME)
240 GO TO 150

250 REM**SET NOTE TO APPROPRIATE VALUE**

260 NOTE=C

270 GO TO 230
280 NOTE=D

290 GO TO 230
300 NOTE=E

310 GO TO 230

320 NOTE=F

330 GO TO 230

340 NOTE=G

350 GO TO 230

360 NOTE=A

370 GO TO 230

380 NOTE=B

390 GO TO 230

400 DATA 262,294,330,394
410 DATA 392,440,494,523

(Results from preceding page)

PASS NO. C NEWB

0 — 1000

1 -17.41 982,59
2 -82.56 900.03

3 -5.40 894.63

4 -72.13 822.50

5 -175.00 647.50

6 650.47 1297.97

7 -350.00 947.97

8 -45.92 902.05

9 -55.01 847.04

10 -73.50 773.54
11 -99999 773.54

Recall the Musical Scale Program in Chapter Four? We used a long list of assignment
statements for the notes, middle C, D, E, F, G, A, B and high C. To play the notes,
we had to use many BASIC statements. The program below shows how a DATA list
and a READ statement shortens the program. If we use a FOR-NEXT loop, we can
eliminate the need for a flag at the end of the DATA hst.

100 REM**MODIFIED MUSICAL SCALE PROGRAM**

110 REM** T IS DURATIONS IS LOUDNESS**
120T=100
130 L=2

140 REM**LOOP OVER ALL NOTES**

150 FOR X=1 TO 15

160 READ N

170 CALL SOUND(T,N,L)
180 NEXT X

190 END

200 DATA 262,294,330,349,392
210 DATA 440,494,523,494,440
220 DATA 392,349,330,294,262

Using Data Files K3

The original program was 25 lines long. So we've cut it to less than half of what it was.
However, if you run this new program it will go up and down the scale only once. The
previous program ran continuously up and down. If we could use the data list over and
over again, we could make this program work the same way. BASIC is an amazing
language. Every time we need a new instruction (or statement), there seems to be one
that satisfies our need. Such is the case now.

The RESTORE Statement

When the computer executes a RESTORE statement, the data pointer moves back to
the beginning of your DATA hst. You can now use the DATA all over again.

In our Musical Scale program, we change line 190 and add line 195 as follows:

190 RESTORE

195 GO TO 150

Now when the program is run, we hear the same continuous scale that we heard in
Chapter Four. Our new program is only 14 lines long.

You can now substitute any data that you want in the DATA list and play "songs" of
your own choosing. The program that you now have plays all the notes for the same
time duration and at the same volume. These can be custom designed to fit your needs
by reading in the duration and volume for each note just as you read the note in this
program.

READ a List

READ statements may contain more than one variable. A whole hst of variables can
be read. In our Custom Fitted Notes Program, below, we'll READ the time duration,
the volume, and the note itself.

10 READ T,N,V ** Read three values at a time —T first, then N, then V

Here are the first 3 values

70 DATA 100,262,2,100,294,3

Time duration Note Volume

70 DATA 100, 262,2,100, 294,3
AAA

/ ♦
IT'The data pointer ' ^\After thefirst READ, the pointer moves past

the first three data items and ends by pointing
to the fourth value

1U Introduction to TI BASIC

100 REM**CUSTOM FITTED NOTES PROGRAM**
110 REM**LOOP TO READ AND PLAY NOTES**

120 FOR X=1 TO 8

130 READ T,N,V
140 CALL SOUND(T,N,V)
150 NEXT X
160 RESTORE Data pointer is moved to beginning of list here
170 GO TO 120

180 DATA 100,262,2,100,294,3
190 DATA 200,330,2,100,349,3
200 DATA 100,392,2,100,440,3
210 DATA 100,494,2,500,523,2

The program plays up the scale with varying note durations and volumes. By changing
only the DATA items, you may customize your own music. If you add more notes,
the upper limit of the FOR statement in hne 120 must be changed accordingly.

String DATA

DATA statements may contain strings as well as numeric values, but the type of DATA
(string or numeric) must correspond to the type of variable used in the READ statement.
Numeric variables require numeric constants, and string variables require quoted, or
unquoted, strings. For example,

120 READ N$, K

String T \Numeric
180 DATA "CHECK",-17.41

or

210 DATA "DEPOSIT",650.47

Going back to the checkbook program that we used earlier in the chapter, we could
label each entry by making these program modifications:

100 REM**CHECK BALANCE PROGRAM**

110 CALL CLEAR

120 REM**B IS THE BEGINNING BALANCE**
130 B=1000

140 REM**READ LABEL AND AMOUNT**

150 READ N$,C
160 REM**LOOK FOR ENDING FLAG -99999**
170 IF C=-99999 THEN 220

180 PRINT N$,C
190 REM**ADJUST BALANCE BY CHECK/DEPOSIT AMOUNT**
200 B=B+C

210 GO TO 150

220 PRINT "ENDING BALANCE=";B
230 DATA "CHECK",-17.41
240 DATA "CHECK",-82.56
250 DATA "CHECK",—175 (Note: You must provide a string to be read
260 DATA "DEPOSIT",650.47 with this flag, -99999, since the READ
270 DATA "END",—99999 statement asks for a pair of inputs.)

Using Data Files H5

The printout of the results now provide a clearer picture of the transactions that have
taken place. Checks and deposits will be labeled. The quotation marks in the DATA
lists are optional but are used here to emphasize that these are strings assigned to a
string variable.

Plain and Fancy PRINTing

When you used the PRINT statement in the Immediate Mode, you saw the difference
in spacing between printed numeric values using a comma or a semicolon as a separator.
Let's take another look at this. Try each of the following examples. In each, assume
that the screen has been cleared by typing CALL CLEAR and pressing ENTER.

Type PRINT 1,2 and press ENTER.

Type PRINT 1,2,3 and press ENTER.

Type PRINT 1,2,3,4,5,6,7 and
press ENTER.

>PRINT1,2
1

>•

>PRINT1,2,3
1

3

>D

>PRINT 1,2,3,4,5,6,7
1 2
3 4
5 6
7

>•

As you have probably guessed, with comma spacing the computer will print up to two
items on each line. If the PRINT statement has more than two items, the computer
simply continues on the next line until all items have been printed.

146 Introduction to TI BASIC

Now let's look at semicolon spacing.

Type PRINT1;2 and pressENTER.

Type PRINT 1;2;3 and press ENTER.

Type PRINT 1;2;3;4,5;6;7 and
press ENTER.

>PRINT1;2
1 2

>•

>PRINT1;2;3
1 2 3

>PRINT1;2;3;4;5;6;7
12 3 4 5 6 7

So far, you have used only small positive integers. Try some negative numbers.

Type PRINT -1;-2 and press ENTER.

Type PRINT -1;-2;-3;-4 and
press ENTER.

> PRINT -1,-2
-1-2

>•

>PRINT-1;-2;-3;-4
-1 -2 -3 -4

>•

Using Data Files 147

Now let's discuss the rules for comma and semicolon spacing. With comma spacing,
items are printed in standard printing positions. There are two such positions on the
screen. Position 1 is at the extremem left. Position 2 is halfway across the screen.

Position 1 Position 2

-1 -2

* \
Position 1 Position 2

Now look at the semicolon spacing.

Type PRINT 1;22;333 and press ENTER.

Type PRINT -1 ;-22;-333 and press ENTER.

Note that the computer always leavesa space
preceding the number for the "sign" of the number.
For positives, the plus sign (+) is assumed and is
not printed on the screen. For negatives, the
computer prints a minus sign (—) before the number.

>PRINT1;22;333
1 22 333

>•

>PR INT -1,-22,-333
-1 -22 -333

>•

The semicolon instructs the computer not to leaveany spaces between the values or
variables in the PRINT statement. Then why do we see spaces between the numbers
on the screen? There are two reasons.

(1) Remember that each positive number is preceded by a space for its sign.

(2) Every number is followed by a trailing space. The trailing space is there to
guarantee a space between all numbers, even negative numbers.

148 Introduction to TI BASIC

Now, instead of short, simple numbers, let's try some long, messy numbers.

Comma Spacing

Type PRINT 4/3,8/3 and press ENTER.
> PRINT 4/3,8/3

1.333333333 2.666666667

Notice that the semicolon causes the second number to be moved left one additional
space.

Semicolon Spacing

Type PRINT 4/3;8/3 and press ENTER. >PRINT4/3;8/3
1.333333333 2.666666667

Let's try some examples with string variables, using commas as separators.

>LETA$="ZONE1"

>LETB$="ZONE2"

>PRINTA$,B$
ZONE 1 ZONE 2

>•

The "strings" (the letters and numbers within quotation marks) are also printed in
different zones on the screen when a comma is used to separate the string variables.
Try this set of statements.

>LETA$="ONE"

> LET B$="TWO"

>LETC$='THREE"

> LET D$="FOUR"

>PRINTA$,B$,C$,D$
ONE

THREE

>•

TWO

FOUR

Using Data Files

If the semicolon tells the computer to leave no spaces between variables in a PRINT
statement, what happens when we use string variables rather than numeric?

>LETA$="HI THERE!"

>LET B$="HOW ARE YOU?'

>PRINTA$;B$
HI THEREIHOW ARE YOU?

>D
•They ran together —no space!

149

As you saw, the two strings had no space between them. If we want a space to appear
between them, we must include the space inside one of the sets of quotation marks.
For example, change A$:

LET A$="HI THERE! "
PRINT A$;B$ V

One space

>LET A$="HI THERE!"

>LET B$="HOW ARE YOU?"

PRINT A$;B$
HI THEREJHOW ARE YOU?

>LETA$="HI THERE! "

>PRINTA$;B$
HI THERE! HOW ARE YOU?

First example

Second example

There is a third separator that can be used - the colon. The colon instructs the
computer to print the next item at the beginning of the next line. It works the
same way with both numeric and string variables. Enter these lines as an example:

LET A=-5

LET B$="HELLO"
LET C$="MY NAME IS ALPHA"
PRINT A:B$:C$

>LET A=-5

>LET B$="HELLO"

>LET C$="MY NAME IS ALPHA'

>PRINTA:B$:C$
-5

HELLO

MY NAME IS ALPHA

>•

150 Introduction to TIBASIC

To review for a moment, these are the three print separators that we have used.

Punctuation Mark

Comma

Semicolon

Colon

Operation

Prints values in different print zones;
maximum of two items per line.

Leaves no spaces between items (except
those mentioned for numerics).

Prints next item on the following line.

The TAB Function

Anothermethod of controlling the format of a PRINT statement is through the TAB
function. This function is similar to that of a typewriter TAB key. You may state
how many spaces to indent the printed matterby means of the TAB function.

Example: TAB(IO) would indent 10 spaces from the left margin. Therefore,
the statement:

PRINT TAB(10);"THREE'

would cause the word THREE to be printed with the letter T in the
tenth space in from the left margin.

>PRINT TAB(10);"THREE'
THREE

Notice that the print line on the screen has 28 columns or character positions. Thus
the first position on the print line counts as column 1. This iswhere the Pappears in
the word "PRINT" on the screen above. The last print position on the line is column 28.

You can also use the TAB function more than once in a PRINT statement.

>PRINT TAB(10);3;TAB(20);-
3 -4

>•

Noticethat the first number (3) is actually printed in column 11 because the preceding
or "leading" space (reserved for the sign of the number) occupies column 10, just as
the minus sign of the second number(-4) occupies column 20.

Using Da ta Files 151

The TAB function always starts counting in column 1 (the leftmost print position on
the line), regardless of where or how many times it appears in the PRINT statement.
In the example above, the second number (-4) was printed starting in the twentieth
column on the print line, not 20 spaces from the position at which the first number
(3) was printed.

Here is another example for analysis that involves multiple TABs.

LET A=201

LET B=202

LET C=203

CALL CLEAR

PRINT TAB(3);A;TAB(10);B;TAB(17);C

(1) TAB(3)A; causes

20 1

Two spaces due Leading blank for non-negativevalue
to TAB(3) of A, then A itself followed by one

trailing space

(2) TAB(10)3; causes

2(M_ 2 0 2

v

'V
Nine spacesdue Leadingspace,B, and
to TAB(10) trailing space

(3) TAB(17);C; causes

2 0J 202 20 3

v
V ^v

Sixteenspaces due to TAB(17) Leading space C, and
trailing space

When all of the TABs are used together in a single PRINT statement the result looks
like this:

201 202 203

>•

152 Introduction to TIBASIC

What happens if we indicate a column that is already occupied by another message,
orif there isn't enough room left on the line to print the message positioned by a TAB?
Enter the following short program to find the answer.

NEW
10 CALL CLEAR
20 LET A$="HELLO! HOW ARE YOU?"
30LETB$="HI!"
40PRINTA$;TAB(5);B$
50 PRINT B$;TAB(20);A$
60 END

#

Now RUN the program.

HELLO! HOW ARE YOU?

HI! -*

HI!
HELLO! HOW ARE YOU? -«-

>•

•Line 40: column 5 is already taken
by the O in HELLO. So HI! starts

"in column 5 of the next line

•Line 50: the whole messageof A$
won't fit on a line if it starts at
column 20, so "HELLO! HOWARE
YOU?" is printed starting in column
1 of the next line

Now, imagine that yourHome Computer isconnected to a TV with a giant screen. It
isthe big game of the season, and your computer is in front of the home team fans,
running the following program. Try it!

100 REM**CHEER LEADING PROGRAM**
110 CALL CLEAR

120 REM**LOOP TO PUT UP CHEER THREE TIMES**
130 FOR X = 1 TO 3
140 REM**DISPLAY MESSAGE ELEMENTS**
150 PRINT TAB(13);"GO"
160 PRINT "* Prints a blank line
170 PRINT TAB(12);'TEAM"
180 PRINT
190 PRINT TAB(13);"GO!"
200 REM**DELAY TO SEE MESSAGE**

210 FOR Z = 1 TO 1000>»
220 NEXT Z ^> Time delays
230 CALL CLEAR J^
240 REM**DELAY TO KEEP SCREEN BLANK**
250 FOR Z=1 TO 500
260 NEXT Z
270 NEXT X

Type NEW, enter the above program and RUN it. The computer will blink the message
GO TEAM GO! on the screen three times.

Using Data Files 153

GO

TEAM -*—• Here is what vou see blinking
on and off

GO!

Note that GO TEAM GO! is approximately centered left to right. This was done with
the TAB function in lines 150, 170 and 190. Ifyou wish to move the message up
toward the center of the screen, put several empty PRINT statements between lines
190 and 200. Or you can use the following FOR-NEXT loop.

192 FOR UP=1 TO 9

194 PRINT

196 NEXT UP

Presto! GO TEAM GO! is now center stage...er, center screen that is. May the best
team win!

The two programs we will develop next continue our exploration ofcomputer graphics
by showing how to construct patterns out ofstandard characters. Although the state
ments and functions used in the programs are elements ofBASIC that you already know,
you may see some new applications of these features.

Rectangles and Squares

The first program allows you to place a rectangle or square of standard characters on
the screen. In the previous chapters of this book, you've identified characters by
their character codes, numbers 32 through 96. (The characters and their corresponding
codes are listed mthe Appendix.) Now, we want to demonstrate anew technique:
assigning a character to a string variable from the keyboard.

Try these examples in the Immediate Mode before entering the program.

LET A$="*"
PRINT A$
PRINT A$;A$
PRINT A$;TAB(10);A$

154 Introduction to TIBASIC

>LET A$="*'
>PRINT A$

* -*

>PRINT A$;A$
** __*

>PRINTA$;TAB(10);A$
* * <

>D

One asterisk

Two asterisks, side by side

One asterisk at left margin, one in column 10

Try a few more Immediate Mode experiments on your own. For example, what would
happen if you redefined A$ as "***" or as "()"? Try it and see what happens!

This method is convenient if you want to print only a short line of characters. But
what if you want to print long lines or vary the line length or character that the program
prints? INPUT statements and a FOR-NEXT loop will solve the problem. Type NEW,
then enter this program.

100 REM**PRINTING CHARACTER PATTERNS**

110 CALL CLEAR

120 REM**GET CHARACTER AND SIZE OF PATTERN**
130 INPUT "CHARACTER?":A$
140 INPUT "WIDTH?":W

150 REM**LOOP TO PRINT ROW OF CHARACTERS**

160 FOR X=1 TOW

170 PRINT A$;
180 NEXT X

When you run the program, you'll first be asked to input the character that you want
to use. Just type the character and press ENTER. Then you'll be asked for the width,
or the number of characters in the line that you want to print. Type in the number and
press ENTER to continue the program. Suppose you entered * as the character and
28 as the width. The screen would look something like this:

CHARACTER?*
WIDTH728

DONE

>•

RUN the program a few times, entering different characters and lengths. Then try adding
the following lines to allow you to make rectangles and squares of characters.

Using Data Files 155

140 INPUT "SIZE(WIDTH,HEIGHT)?:W,H-« Replaces old line 140
150 FOR Y=1 TO H
190 PRINT : :-« Skips two lines
200 NEXT Y

210 GO TO 140

There are a couple of items that need to be explained about these lines. First, notice
in line 140 that we are using one INPUT statement to assign values to two variables!
When you input the width and height, you'll need to use this form:

The number of characters • 8 ,5 -* The number of rows you want
you want in each row A

comma

Second, line 190 prints two "empty" lines. The first line is needed to "clear" the
semicolon (;) in line 170 and to start a new row the next time the program loops
through the "Y loop." (As you've seen already, the semicolon causes the characters
to be printed on the same line throughout the loop on X.) The second line is used to
spread the design on the screen.

Before we list the program to see the changes, let's add a few more lines. We can use
IF-THEN statements to "build in" some tests.

135 IF A$<>"!" THEN 140 -*-Exclamation point stops the program
137 END .

145 IF W<0 THEN 140 I Check for negative numbers146 IF H<0 THEN 140 J negative uuiuucia
147 IF W+H=0 THEN 130 •< If both width and height are 0,
148 CALL CLEAR ask for new character

Line 135 gives you a handy way to stop the program by pressing the ! key. Lines 145
and 146 check to be sure that the width and height are positive numbers. If you want to
experiment with a different character, all you have to do is enter 0,0 as size inputs.
The test in line 147 then sends you back to line 130 to input a new character. Clear
the screen and list the program.

100 REM**PRINTING CHARACTER PATTERNS**

110 CALL CLEAR

120 REM**GET CHARACTER AND SIZE OF PATTERN**

130 INPUT "CHARACTER?":A$
135 IF A$<>"!" THEN 140

137 END
140 INPUT "SIZE(WIDTH,HEIGHT)?":WfH
145 IF W<0 THEN 140

146 IF H<0 THEN 140

147IFW+H=0THEN130

148 CALL CLEAR

150 FOR Y=1 TO H

160 FOR X=1 TOW

170 PRINT A$;
180 NEXT X

190 PRINT : :

200 NEXT Y

210 GO TO 140

156 UsingData Files

RUN the program. For this example, enter * when the program asksCHARACTER?
Then enter 8,5 when you're asked for width and height:

******** An 8 x 5 rectangle of asterisks

SIZE(WIDTH,HEIGHT)?L>« Waiting for new values

Experiment with the program. Try entering the control values (width and height both
zero) so that you can change the character. Vary width and height so that the display
fills the screen or makes only tall, thin bars and wide, flat strips. What happens if you
enter a width greater than 28 or a height greater than 12? Try it and see what happens.

Perhaps a flow chart will help to describe how the program works. The following
diagram doesn't show the whole program in detail; it covers only the parts that relate
to program control by input values.

Linn 160 to 210
Display iKtingle or
tquaia md latum
to Una 140

Using Data Files 157

'Holes"

Let's expand the Rectangles and Squares program one more time. These new lines
will create rectangles or squares with a random sprinkling of "holes" (blank spaces)
in the display field. Enter the following lines:

115 RANDOMIZE
162 IF INT(2»RND)=0 THEN 170
164 PRINT" ";
166 GO TO 180

Now clear the screen and list the changed program so that we can discuss the effect of
these additions.

LIST

100 REM**PRINTING CHARACTER PATTERNS**
110 CALL CLEAR
115 RANDOMIZE

120 REM**GET CHARACTER AND SIZE OF PATTERN**
130 INPUT "CHARACTER?":A$
135IFA$ "!" THEN 140
137 END

140 INPUT "SIZE(WIDTH,HEIGHT)?":W,H
145 IF W<0 THEN 140

146 IF H<0 THEN 140
147IFW+H=0THEN 130
148 CALL CLEAR

150 FOR Y= 1 TO H

160 FOR X= 1 TO W

162 IF INT(2*RND)=0 THEN 170
164 PRINT" ";
166 GO TO 180

170 PRINT A$;
180 NEXT X

190 PRINT : :

200 NEXT Y

210 GO TO 140

The test with the RND function in line 162 causes a character to be printed whenever
INT(2*RND) is equal to 0; a space when INT(2*RND) is equal to 1. Approximately
half the time the program prints a character and half the time a space. RUN the program
now and observe the kind of pattern that emerges.

158 Introduction to TIBASIC

Chapter Summary

In this chapter you have learned some new tools for assigning string and numeric
variables. You have also learned to control an exit from a GO TO loop. You have used
this new technique in sound and color programs. You can now INPUT dataand output
screendisplays in more and better ways. You havelearned how:

To READ data from a DATA list

To avoid OUT OF DATA errors

A data pointer works

To use an IF-THEN statement with a flag

To READ in data for use in creating sound and color

To READ data for use in arithmetic applications

To use more than one DATA statement in a program

To trace the steps of the computer as it READS and uses data
To READ more than one item in a READ statement

To use commas, semicolons, and colons as item separators

To use the TAB function for precise spacing

Using Data Files 159

Chapter Eight Exercises

(1) Complete this statement.

If a program contains a READ statement, it must also include a statement.

(2) If a READ statement is executed 5 times, and there are only 4 items in the program's
only DATA statement, what happens (assume the RESTORE statement has not
been used)?

(3) If X = 15 and line 190 (below) is executed, what line will be executed next?

190 IF X>15 THEN 300
200 GO TO 100

(4) Study this program. Then answer the questions that follow.

100 CALL CLEAR

110 READ C

120IFC=555THEN150
130 PRINT C

140 GO TO 110

150 END

160 DATA 500,495,520,555,313

(a) How many values of C would be printed?

(b) How many values of C would be read?

(c) Would the data item 313 be read?

(d) Would the data item 555 be printed?

(5) Complete this statement.

If two DATA statements are used in a program, the computer reads the two as

(one extended list, two separate lists)

(6) Suppose the two lines below were the only READ and DATA statements in a
program.

10 READ T,N,V
100 DATA 100,262,2,200,294,2

(a) When line 10 is executed the first time, what value is assigned to N?

(b) What value would be assigned to N the second time that line 10 is executed?

160 Introduction to TI BASIC

(7) If these are the only DATAlines in a program, show the order in which the com
puter stores (or holds) the data items.

180 DATA "CHECK",-43.10, "CHECK"
190 DATA -17.45, "DEPOSIT",355.55

Order: 1

2

3

4

5

6

(8) Complete.

(a) For wide spacing, separate the items in a PRINT statement by
(b) For close spacing, separate the items in a PRINT statement by
(c) For printing on separate lines, separate itemsin a PRINT statement by

(9) If a semicolon is used to separate string variables in a PRINT statement, describe
how the strings are displayed.

(10) How can you use strings to print wordswith spaces between the words?

(11) This statement is executed: PRINT TAB(5);"FIVE"

At what space on the printed display would the V of "FIVE" appear?

(12) Show what would be printed and where the results are displayed when this
program is RUN.

10A=131

20B = -313
30 C=345
40 CALL CLEAR
50 PRINT TAB(2);A;TAB(11);B;TAB(19);C

«

5 10 15 20 25

Using Data Files 161

Answers to Exercises

(1) DATA statement

(2) The computer gives an OUT OF DATA ERROR message.

(3) Line 200 (then line 100 - X=15 but is not greater than 15)

(4) (a) 3 (500,495 and 520)
(b) 4 (500, 495, 520 and 555)
(c) no (when C=555 the program stops)
(d) no (line 120 causes execution to go to line 150 - line 130 is skipped)

(5) As one extended list

(6) (a) 262
(b) 294

(7) Order: 1 CHECK
2 -43.10

3 CHECK

4 -17.45

5 DEPOSIT

6 355.55

(8) (a) commas
(b) Semicolons
(c) colons

(9) They run together with no spacing in between.

(10) Include spaces in the string (inside the quotes).

(11) 7th space from the left (the word FIVE would start 5 spaces in).

(12) __1_3 1_ -111 3 4 5
5 10 15 20 25

Chapter Nine
One Dimensional Arrays

In Chapter Eight you learned to use data that were entered with READ, DATA, and RE
STORE statements. In this chapter, we will introduce subscripted variables and one-
dimensional arrays.

Subscripted variables are similar to the simple variables that you have been using for numeric
values and strings, except that subscripted variables are followed by a number in parentheses.
They can be thought of as a family of variables, and the number in parentheses distinguishes
which member of the family is being referred to.

Example: N(X) -«-

N(1)
N(2)
N(3)

etc.

subscripted variable of
the family called N

,individual members of the
the family N

One-dimensional arrays are simply ordered lists with each data item assigned a unique number
by its subscript. When we read in items from a DATA statement, the items were READ in the
order that they appeared in the DATA list. Items from an array may be used in any order
since each item is numbered and may be accessed by that number. Once used, the item re
mains in the array, and no RESTORE statement is required to use it again.

In the Modified Musical Scale program (Chapter Eight), we read in the note values 262,294,
330,349,392,440,494, and 523. We also read the notes in the reverse order. We will now
show how to assign these values to the subscripted variable:

variable
N for note

N(X)

/ subscript
..tells which note

One Dimensional Arrays 163

The variable names the array. The subscript (number in parentheses) labels one element of
that array. Thus we can assign these values:

N(l) = 262 (first note)
N(2) = 294 (second note)
N(3) = 330 (third note)
N(4) = 349 (fourth note)
N(5) = 392 (fifth note)
N(6) = 440 (sixth note)
N(7) = 494 (seventh note)
N(8) = 523 (eighth note)

Now, when you want to play a particular note (say 440), you could use the statement:

SOUND(1000,N(6),2)

S \ \
duration note volume

The size of an array is limited by the amount of memory that is in your computer. Memory
space used by a one-dimensional array is normally set for eleven array elements having the
subscripts 0 through 10. However, you may increase the memory space reserved for an array
by using a DIMension statement.

If we wanted to place 20 notes in our array, we would reserved space with the statement:

DIM N(20)

dimension array N for 20 notes
(actually 21, N(0) through N(20))

An array can be dimensioned only once in a given program. The dimension statement must
occur before the array is used in the program. If no dimension statement is given, memory
space for the array is limited so that it holds only 11 elements.

The data placed in the array may be either numbers or strings depending on how the array is
defined. DIM N(20) would define an array consisting of 21 numeric values. DIM N$(20)
would define an array consisting of 21 alphanumeric strings.

Although the zero subscripted variable is available, it does not have to be used. Most people
like to start their array with the number one.

164 Introduction to TI BASIC

It is convenient to think of a one-dimensional array as a series of items stored in separate
memory "boxes." The eight notes used in the previous example are held in memory in the
order of their subscripts.

Memory

N(0) 000

N(1) 262

N(2) 294

N(3) 330

N{4) 349

N(5) 392

N(6) 440

N(7) 494

N{8) 523

Wedidn't use N(0).

The array is stored in memory.

Each of the eight values is
designated by its subscript.

You can assign the values to an array through the READ and DATA statements used in the
last chapter. Since our array has only eight elements, we do not need a DIMension statement.

Example:

100 CALL CLEAR

110

120

FOR X = 1 TO 8

READ N(X)
130 NEXTX

500 DATA 262,294,330,349
510 DATA 392,440,494,523

•Loop to read 8 values
and assign them to N(l)
through N(8).

When the above lines are executed, the array is stored in the computer. Any note may now
be taken from the array and played. Try playing some random notes by adding the follow
ing lines to those above, making a complete program.

200 RANDOMIZE

210 FOR S = 1 TO 30 -*•

220 Y=INT(8*RND)+1 -*•
230 CALL SOUND(500,N(Y),2).
240 NEXTS

Play 30 notes
•Select a random value (1 through 8)

duration, note, loudness

One Dimensional Arrays 165

Some variations to the program can be provided by changing the upper limit in line 210 to
play more or fewer notes. You may also want to vary the duration and loudness. If you do,

add 225 T = INT(901*RND)+100-«-

add 227V = INT(31*RND)

and change 230 CALL SOUND(T,N(Y),V)

•duration 100 through
1000 milliseconds

•volume 0 through 30

Tone Guessing Game

Test your ear for tones with the Tone Guessing Game which follows. The computer will
pick a random tone (C,D,E,F,G,A or B) in the scale of C. You will then be asked to pick
the number of the correct tone. The values you must input are shown in this table with
the appropriate matching tone.

INPUT TONE

1 C

2 D

3 E

4 F

5 G

6 A

7 B

If your guess is incorrect, the computer will tell you if your guess was too high or too low.
It will then play the note again and ask for another input. If you are correct, the computer
confirms your guess with an appropriate message, including the note's frequency. The pro
gram uses two arrays —N and N$. The N array contains the frequency of the notes; N$ the
name of each note.

166 Introduction to TI BASIC

TONE GUESSING GAME

100 CALL CLEAR
110 REM*DIRECTIONS*
120 PRINT "WHEN YOU HEAR THE SOUND,"
130 PRINT "TYPE THE NUMBER OF THE"
140 PRINT "NOTE THAT YOU THINK"
150 PRINT "WAS PLAYED."

200 REM*READ IN TONES AND NOTE NAMES*
210 FORX=1T0 7
220 READ N(X),N$(X)
230 NEXTX

300 REM*PICK RANDOM TONE*
310 Y=INT(7*RND)+1

400 REM*PLAY AND COMPARE*
410 CALLSOUND(500,N(Y),2)
420 INPUT "TONE NUMBER?":T
430 IF T>Y GO TO 600
440 IF T<Y GO TO 700

450 PRINT 'THAT'S IT!"
460 PRINT "MY TONE WAS";N(Y)
470 PRINT "CYCLES PER SECOND WHICH"
480 PRINT "IS THE NOTE";
490 PRINT N$(Y); " IN THE SCALE OF C."

500 PRINT

510 GO TO 310

600 REM* HIGH ERROR *
610 PRINT "TOO HIGH! TRY LOWER."
620 GO TO 720

700 REM*LOW ERROR*
710 PRINT "TOO LOW! TRY HIGHER."
720 FOR W = 1 TO 200
730 NEXTW
740 GO TO 400

800 DATA 262,C,294,D,330,E,349,F
810 DATA 392,G,440,A,494,B

Remember, you must input the note number, not the letter of the note.

Color Organ

The Tone Guessing Game used two single one-dimensional arrays to hold the notes in the
C-scale. Next, let's use two arrays to build a color organ. One will hold color values, and the
other will hold note values. Well use them to combine colors on the screen with sounds
from the speaker. This will give us a simple color organ with notes chosen in a random
fashion. Since the program will choose the appropriate color for the note selected, the

One Dimensional Arrays 167

sounds will be color coordinated. A low-frequency color will be displayed with a low-
frequency sound; high frequency colors will be displayed with high-frequency sounds. The
colors will be displayed near the center of the screen.

First the data is read into the arrays.

100 CALL CLEAR

200 REM* READ DATA TO ARRAYS *
210 FOR X = 1 TO 8

220 READ N(X),C(X) N(X)=tone, C(X)=color
230 NEXT X

Now we come to the heart of the program, where a random value from 1 through 8 is
selected and the color associated with this note is placed on the screen. The note is then
played. The color stays on for a short time after the note finishes, then a new note is select
ed, and the sequence repeats. Twenty notes will be played before the program ends.

300 REM* COLOR AND SOUND *

310 FORT=1 TO 20

320 Y=INT(8*RND)+1
330 CALLCOLOR(2,C(Y),C(Y))
340 CALL HCHAR(16,10,42,10)
350 CALLSOUND(200,N(Y),2)
360 FORW=1TO100

370 NEXTW

380 NEXTT

We also need to add the DATA list for line 220 to READ. Notice that the order of the data
is: NOTE 1, COLOR 1, NOTE 2, COLOR 2, etc

500 DATA 262,7,294,9,330,11,349,12
510 DATA 392,13,440,6,494,5,523,14

Here are the tables showing the values used in the two arrays.

Sounds

Array Freq. Note
Element

N(1) 262 C

N(2) 292 D

N(3) 330 E

N(4) 349 F

N(5) 392 G

N(6) 440 A

N(7) 494 B

N(8) 523 HighC

Colors

Array Color Color

Element Code

C(1) 7 Dark red
C(2) 9 Medium red
C(3) 11 Dark Yellow
C(4) 12 Light Yellow
C(5) 13 Dark green
C(6) 6 Light blue
C(7) 5 Dark blue

C(8) 14 Magenta

168 Introduction to TI BASIC

Customizing the Color Organ

With one minor change to the Color Organ program, you can choose and play your own
notes. Line 320 randomly picked one of the eight notes. If you change that line as follows,
you will be able to input one of the eight notes each time the program goes through the
FOR-NEXT loop.

320 INPUT "NOTE

322 CALL CLEAR

:1 THROUGH 8?": Y

Let's also move the color swatch around the screen depending on whether you play a high
or low note. This can be done by altering the CALL HCHAR statement in line 340. We'll
also add lines 333 and 336 to calculate the parameters for the CALL HCHAR statement.

333 ROW = 9-Y-«-

336 COL = Y+2 -*-
340 CALL HCHAR(ROW,COL,42,5)

row

column

Now the color swatch is not so long, and it will move about in the following way as the
different notes are played.

dark-
red

medium.
red

If INPUT = 1, then row = 8 and column = 3

If INPUT = 2, then row = 7 and column = 4

low note = C

one note up = D

dark
yellow •

Magenta

One Dimensional Arrays

If INPUT = 3, then row = 6 and column = 5

etc.

If INPUT = 8, then row = 1 and column = 10

V

169

next higher note = E

highest note = high C

Type LIST on your computer, and you will see the Customized ColorOrgan program.

100 CALL CLEAR

200 REM* READ DATA TO ARRAYS *
210 FOR X = 1 TO 8
220 READ N(X),C(X)
230 NEXTX

300 REM* COLOR AND SOUND *
310 FORT=1TO20
320 INPUT "NOTE:1 THROUGH 8?":Y
322 CALL CLEAR
330 CALLCOLOR(2,C(Y),C(Y))
333 ROW=9-Y

336 COL=Y+2

340 CALL HCHAR(ROW,COL,42,5)
350 CALLSOUND(200,N(Y),2)
360 FORW=1TO100
370 NEXTW

380 NEXTT

500 DATA 262,7,294,9,330,11,349,12
510 DATA 392,13,440,6,494,5,523,14

170 Introduction to TIBASIC

Other Uses for Arrays

Arrays are useful wherever data must be manipulated in a nonsequential way. Suppose a
store owner wishes to keep track of weekly sales. At the end of each week, salesmen turn
in their weekly sales reports. The data is entered in the computer and totalled.

For example, a store might want the itemized totals for magazine, book, computer, power
supply, keyboard, and video display sales. The total number of items sold might also be
desired.

An array could be used to hold the data as follows:

S(1)= magazines

S(2)= books

S(3)= computers

S(4)= power supplies

S(5)= keyboards

S(6)= video displays

S{0)=Total of S(l) through S(6)

< We finally make use of
the zero position in an array

The steps in the program are:

(1) Clear the screen and set each item in the array to zero.

100 CALL CLEAR

110 FORN = 0TO6

120 S(N) = 0
130 NEXTN

(2) Input the data and keep a running sum. When all entries have been made,
INPUT 99 for the item number. '

200 INPUT "ITEM NUMBERd THROUGH 6)?":N
210 IF N = 99 THEN 300

220 INPUT "HOW MANY?":A
230 S<N) = S(N)+A
240 GO TO 200

(3) Total all the categories.

300 FOR Z = 1 TO 6

310 S(0) = S(0) + S(Z)
320 NEXTZ

One Dimensional Arrays

(4) Print results.

400 PRINT "MAGAZINES =";S(1)
410 PRINT "BOOKS =";S(2)
420 PRINT "COMPUTERS =";S(3)
430 PRINT "POWER SUPPLIES ="£(4)
440 PRINT "KEYBOARDS =";S(5)
450 PRINT "VIDEOS =";S(6)
460 PRINT'TOTAL SALES =";S{0)

171

Enter the program in the computer. The store has five salesmen who turn in the following
sales totals. Run the program using this data. Input each salesman's totals separately.

SALESMEN

ITEM CANE BAKER ABLE DEAL HOLMS

Magazines 14 7 12 22 17

Books 5 8 4 12 9
Computers 2 1 0 0 3

Power Supplies 0 3 0 1 1

Keyboards 1 4 1 0 0

Videos 1 0 2 0 3

Sample INPUT for Salesman Cane

ITEM NUMBERd
HOW MANY714

ITEM NUMBERd
HOW MANY75

ITEM NUMBERd
HOW MANY?2

ITEM NUMBERd
HOW MANY71

ITEM NUMBERd
HOW MANY71

ITEM NUMBERd

THROUGH 6)?1

THROUGH 6)?2

THROUGH 6)?3

THROUGH 6)?5-

THROUGH 6)?6

THROUGH 6)?D-*-

.Cane had no sales from
item 4

Now input Baker'ssales for items 1 through 6

172 Introduction to TIBASIC

When all the salesmen's entries have been made, the totals are shown on the screen.

HOW MANY73

ITEM NUMBERd THROUGH 6)799 -«-
MAGAZINES = 72

BOOKS = 38

COMPUTERS = 6

POWER SUPPLIES =5
KEYBOARDS =6

VIDEOS =6

TOTAL SALES = 133

** DONE **

Signals the end of data

You might want to make an addition to the program which would show the total sales in
dollars. If all the magazines were identically priced, all the book prices were identical, etc.,
you would merely multiply each item total by the unit price and sum the totals.

Calculating Salesmen's Commissions

Our computer store has decided to calculate and print weekly sales records of its salesmen.
The individual reports will show how many of each item was sold and the salesman's com
mission on that item as well as his total commission.

Arrays used in the program:

A(N) number of each item sold by Able
B(N) number of each item sold by Baker
C(N) number of each item sold by Cane
D(N) number of each item sold by Deal
H(N) number of each item sold by Holms
ACOM(N) commission on each item for Able
BCOM(N) commission on each item for Baker
CCOM(N) commission on each item for Cane
DCOM(N) commission on each item for Deal
HCOM(N) commission on each item for Holms
N$(N) names of each item

Variables used in the program:

TA total commission for Able
TB total commission for Baker
TC total commission for Cane
TD total commission for Deal
TH total commission for Holms
S$ salesman's name
N item number
S number of items sold
P commission for each item
X,Y loop counters

One Dimensional Arrays

Values used in the program:

Magazine price $2
Book price $9.95
Computer price $1000
Commission 40%
Power Supply price $49.50
Keyboard price $125
Video price $150

COMMISSION CALCULATOR

100

110

120

130

140

150

160

170

175

180

185

200

210

220

230

240

250

260

270

280

290

CALL CLEAR

REM** CLEAR TOTALS **

TA = 0

TB=0
TC=0-+
TD = 0

TH = 0

REM** INPUT NAMES OF PRODUCTS **

FOR X = 1 TO 6

READ N$(X)
NEXTX

INPUT "SALESMAN?":S$
IF S$ = "DONE" THEN 800-
INPUT "ITEM NUMBER?":N

IF N = 99 THEN 200 -«

INPUT "HOW MANY?":S

IF S$ = "CANE" THEN 400
IF S$= "BAKER" THEN 500
IF S$= "ABLE" THEN 600
IF S$ = "DEAL" THEN 700
IF S$<>"HOLMS"THEN 200

Initialize totals

Salesman's last name —
type done if finished

Type 99 if salesman's items
have all been entered

300 H(N) = S
310 ON N GOSUB 1000,1020,1040,1060,1080,1100
320 HCOM(N) = P
330 TH = TH+P

340 GO TO 220

400 C(N) = S
410 ON N GOSUB 1000,1020,1040,1060,1080,1100
420 CCOM(N) = P
430 TC = TC+P

440 GO TO 220

500 B(N) = S
510 ON N GOSUB 1000,1020,1040,1060,1080,1100
520 BCOM(N) = P
530 TB = TB+P

540 GO TO 220

600 A(N) = S
610 ON N GOSUB 1000,1020,1040,1060,1080,1100
620 ACOM(N) = P
630 TA = TA+P

640 GO TO 220

173

174 Introduction to TI BASIC

700 D(N) = S
710 ON N GOSUB 1000,1020,1040,1060,1080,1100
720 DCOM(N) = P
730 TD = TD+P

740 GO TO 220

800 PRINT "CANE COMMISSION REPORT"
805 FOR Y = 1 TO 6
810 PRINT C(Y);N$(Y);"= ",-CCOM(Y)
815 NEXTY

820 PRINT 'TOTAL COMMISSION";TC
825 PRINT

830 PRINT "BAKER COMMISSION REPORT"
835 FOR Y = 1 TO 6
840 PRINT B(Y);N$(Y);"= ";BCOM(Y)
845 NEXTY

850 PRINT "TOTAL COMMISSION";TB
855 PRINT

860 PRINT "ABLE COMMISSION REPORT"
865 FOR Y = 1 TO 6

870 PRINT A(Y);N$(Y);"= ";ACOM(Y)
875 NEXTY

880 PRINT 'TOTAL COMMISSION";TA
885 PRINT

890 PRINT "DEAL COMMISSION REPORT"
895 FOR Y = 1 TO 6
900 PRINT D(Y);N$(Y);" = ";DCOM(Y)
905 NEXTY

910 PRINT "TOTAL COMMISSION";TD
915 PRINT

920 PRINT "HOLMS COMMISSION REPORT"
925 FOR Y = 1 TO 6

930 PRINT H(Y);N$(Y);"= ";HCOM(Y)
935 NEXTY

940 PRINT 'TOTAL COMMISSION";TH
950 END

1000 P=S*2*.4
1010 RETURN

1020 P=S*9.95*.4
1030 RETURN

1040 P=S*1000*.4
1050 RETURN

1060 P=S*49.50*.4
1070 RETURN

1080 P=S*125*.4

1090 RETURN

1100 P=S*150*.4
1110 RETURN

2000 DATA "MAGAZINES","BOOKS","COMPUTERS"
2010 DATA "POWER SUPPLIES","KEYBOARDS" "VIDEOS'

OneDimensional Arrays 17^

How To Run the Program

After the program has been entered, run it using the data from the previous program. This
program will clear the screen, initiaUze the variables used for the running sums of the sales
men's total commissions, and read in the item name array. The computer will then ask for
the salesman's name.

SALESMAN?!!!

After you type in the name, it will ask for the item number.

SALESMAN7CANE

ITEM NUMBER7D

When the item number has been entered, it will ask how many of that item has been sold
(by that salesman).

SALESMAN7CANE

ITEM NUMBER71

HOW MANY7D

176 Introduction to TI BASIC

After the number sold has been entered, the computer will select the appropriate line to
execute (400,500,600,700, or 300) depending on the current salesman being processed (400
in the case of Cane). The numberof sales is entered for the appropriate item in the appro
priate array.

For Cane: C(1) =14-+ 14 magazines (item 1) sold by Cane

The commission is then calculated in the subroutine selected by the item number.

For Cane: N = 1GOSUB 1000
P= 14*2*.40=11.2

14 mags. $2 each 40% commission

Pis then that salesman's (Cane's) commission on that item (magazines)

On return from the subroutine, the salesman's commission for that item is entered in the
appropriate array.

For Cane: CCOM(1) = 11.2

His running total is then calculated.

For Cane: TC = TC+P
TC = 0+11.2 =11.2

The program then returns to line 220 for the next item number.

At this point, the screen shows only:

SALESMAN7CANE

ITEM NUMBER71

HOW MANY714

ITEM NUMBER7D

One Dimensional Arrays 777

The process above is repeated for each item sold by that salesman. When all of a salesman's
items have been entered, type 99 for the item number. The computer will then ask for the
next salesman's name.

SALESMAN7CANE

ITEM NUMBER71

HOW MANY714

ITEM NUMBER72

HOW MANY75

ITEM NUMBER73

HOW MANY72

ITEM NUMBER75-* Cane sold no power supplies
HOW MANY71

ITEM NUMBER76

HOW MANY71

ITEM NUMBER799

SALESMAN7D

When all entries have been made for all salesmen, type DONE in answer to the request for
the salesman's name. The computer will then print the report for each salesman.

A typical report:

CANE COMMISSION REPORT

14 MAGAZINES =11.2

5 BOOKS =19.9

2 COMPUTERS = 800

0 POWER SUPPLIES = 0

1 KEYBOARDS = 50

1 VIDEOS = 60

TOTAL COMMISSION 941.1

178 Introduction to TIBASIC

Chapter Nine Exercises

(1) Locate the subscripted variables from those shown below:

(a) TA (d) S$(5)
(b) T(3) (e) XY(3)
(c) T3 (f) TA3

(2) Is a RESTORE STATEMENT necessary in order to use an item of an array
more than once?

(3) May an array have more than 11 items?

(4) Write a dimension statement that will provide for 25 elements in an array using
the variable B

(5) How many times may an array be dimensioned in a given program?

Questions 6 through 8 use the information in this array.

A(0) = 0 A(5) = 16 A(10) = 50
A(1) = 10 A(6)=13 A(11) = 40
A(2) = 20 A(7) = 30 A(12) = 22
A(3) = 25 A(8) = 14
A{4) = 7 A(9) = 35

(6) Write a dimension statement for the array above.

(7) What is the value of A(5) + A(8)?

(8) If the above array had been stored in the computer, and the following lines of a
program were run, what value will be stored in A(0)?

100P = A(11)+A(2)
110A(0) = P + A(4)

A(0) =

(9) Suppose you are running the Tone Guessing Game on page 166. The computer
has picked the tone of 330 cycles per second (the note E). You have input the
number 4 as your guess. What message will appear on the screen?

One Dimensional Arrays 179

(10) Suppose that you arerunning the Color Organ program on page 167. The value
selected at random for Y in line 320 was 4.

a. What color swatch will be displayed?

b. What tone will sound?

(11) a. Which salesman earned the most commission according to the Commission
Calculator program?

b. How much commission did he earn?.

Answers to Chapter Nine Exercises

(1) The varaibles at (b), (d), and (f) are subscripted variables.

(2) No

(3) Yes (if it is properly DIMensioned)

(4) DIMB(24) (Well also accept DIM B(25))

(5) only once

(6) DIM A(12)

(7) 30 (16+14)

(8) 67 (P = 40+20 = 60, A(0) = 60+7 = 67)

(9)

TOO HIGH! TRY LOWER.

TONE NUMBER7D

(10) a. Light yellow

b. F (349)

(11) a. Holms

b. $1419.22

Chapter Ten
Two Dimensions and Beyond

In the last chapter, you were introduced to the use of one-dimensional arrays on your
TI Home Computer. You found that using arrays and the DIMension statement helped
you save programming effort. You were able to construct compact routines that ac
complished quite a lot.

In this chapter we'll examine multi-dimensioned arrays. We will begin with arrays of
two dimensions, and then progress to those of three dimensions. On the TI Home
Computer, three-dimensional arrays are the largest dimensioned arrays that you can use.

We will show you how to store and retrieve information from multi-dimensioned arrays
and how to use arrays effectively to reduce your programming efforts even more, and
we'll also touch on the use of multi-dimensioned string arrays.

Of course, we will use the arrays to look once again at some of the familiar programs
of sound, color, and graphics that you have seen before. To start, let's see how a two-
dimensional array is constructed in TI BASIC.

For one-dimensional arrays or lists, as they are sometimes called, we indicated that the
variable was a dimensioned array by the use of a subscript. What do you think we use
to indicate two-dimensional arrays? Correct! We use two subscripts.

If we have a two-dimensional array whose dimensions are of size 3x4 and whose label
(or name) is B, an element of that array might be:

The name of •
the array

Subscript 1"

B(2,3)

• Subscript 2

1
B(2,

/ft
comma required

Two Dimensions and Beyond 181

If the array is thought of as a table, the first subscript indicates the row of the table
where the element is located. The second subscript indicates the column of the table.
So, for our example, the element B(2,3) is located at row 2, column 3 of the array B.

12 3 4-« Columns

X- B(2,3)

Rows-

How many elements are in the array B? That's right! There are 3 times 4 elements, or
12 locations in the array that can hold values. If the array B were filled with values, it
might look something like this:

Rows-

4 -*-

12 3 0 7

-9 1 5 4

6 14 ' 8 10

Columns

Now we can talk about the specific value of B(2,3). Look at the table that represents
the array. What is the value of B(2,3)? Correct! B(2,3) has a value of 5. The location
in the TI computer's memory called B(2,3) contains the value 5. Similarly, the array
element B(l ,4) has the value 7.

If the computer had stored the above values in the array B, and we executed the statements:

PRINT B(2,3)
PRINT B(1,4)

We would see:

as the output. If we look at the 'name' of eachelement in the B array, we would find
the following:

Rows

B(1,1)
B(2,1)
B(3,1)

B(1,2)
B(2,2)
B(3,2)

B(1,3)
B(2,3)
B(3,3)

B{1,4)
B(2,4)
B(3,4)

Columns •

182 Introduction to TI BASIC

The last diagram gives you a picture of what the B array elements look like. This infor
mation expecially the ordering of the data elements, is important to know, when READ-
DATA statement are used to fill the arrays. We will have more to say on that later in the
chapter. For now, just notice how the array elements are labeled.

You may be wondering how the values that are shown on the last page got into the B
array. Well, there are several ways that it could have been done. The most direct way
is by using the assignment statements. For example, the following would put the value
5inB(2,3):

B(2,3) = 5

If this were done in the Immediate Mode, the line shown above would do the job. If
the assignment were needed inside a program, a line number in front of the assignment
would be sufficient:

10B(2,3)=5

So multi-dimensioned array elements behave just like simple variables in terms of doing
things with them inside a program. You can add them together, do any kind of arithmetic
on them, print them on the screen, and put the value of any array element into another
variable location by using the assignment sattement. All of the following operations are
legal in TI BASIC.

10B(2,3) - 5 y Assignment statements
20B(1,2)=3J 5
30B(3,3) =B(2,3) +B(1,2) ^
40 B(2,4) = B(2,3) - B(2,2) V Arithmetic operations
50 B(2,1) =-(B(2,2) +B(3,3))J
60 PRINT B(3,2)-« Printingon screen
70 Z = B(3,4)-« Assignment to anothervariable

Before we go into specific uses of the two-dimensional array feature, let's look at how
the array we have been discussing could be filled with the use of the READ and DATA
statements. In order to do this, we must use a set of nested FOR-NEXT loops. Type
NEW to clear your machine, and enter the following small program:

10 REM**READ AND PRINT ARRAY**
20 FOR ROW = 1 TO 3

30 FOR COL = 1 TO 4

40 REM**READ AND PRINT A ROW**
50 READ B(ROW,COL)
60 PRINT B(ROW,COL);
70 NEXT COL

80 PRINT

90 REM**GET NEXT ROW**

100 NEXT ROW

110 DATA 12,3,0,7,-9/1,5,4,6,14,8,10

Two Dimensions and Beyond 183

If you RUN the program, the values of the DATA statement will be transferred into
the appropriate locations of the B array. The elements will also appear on the screen.
Notice that if you interchange the order of the FOR-NEXT loops, the DATA statement
elements must be rearranged as well. For example, the following program performs the
same task of filling the B array as the routine listed above, look at how the DATA statement
must be entered:

10 REM**READ AND PRINT ARRAY**
20 FOR COL = 1 TO 4

30 FOR ROW = 1 TO 3

40 REM**READ BY COLUMNS**

50 READ B(ROW,COL)
60 NEXT ROW

70 NEXT COL

80 DATA 12,-9,6,3,1,14,0,5,8,7,4,10

In both of the examples shown above, the B array, at the end of program execution,
contains exactly the same values as shown below:

B(ROW,COL)

12 3 0 7

-9 1 5 4

6 14 8 10

^COLUMNS S

Axe you beginning to understand how the multi-dimensioned variables work? Great!
Let's see how we might use the two-dimensional feature in a program. We'll put together
a program that plays notes on the musical scale while displaying colors on the screen —
a sort of "color organ."

To make this program, we want to use the C-scale that you have heard before and
associate with each note a particular color. The table given below shows what we will
need:

NOTE FREQUENCY COLOR CODE COLOR

C 262 5 Dark blue

D 294 7 Dark red

E 330 11 Dark yellow
F 349 14 Magenta
G 392 6 Light blue
A 440 8 Cyan
B 494 10 Light red
C 523 12 Light yellow

184 Introduction to TI BASIC

First, let's build the part of the program that reads the data into a two-dimensional
array. We will use the array name B, and will store the frequency in the first column,
the color in the second. The array dimensions are 8 rows by 2 columns. Type NEW
and enter the following partial program:

10 FOR ROW = 1 TO 8

20 REM**LOAD FREQUENCY COLUMN 1**

30 FOR COL = 1 TO 2

40 READ B(ROW,COLM Pairs of frequencies and colors
50 REM**LOAD COLOR-COLUMN 2**
60 NEXT COL

70 NEXT ROW

80 DATA 262,5,294,7,330,11,349,14
90 DATA 392,6,440,8,494,10,523,12

This part of the program loads the B array with pairs of data for the note to be played
and the color to be shown. The array looks like this when this section is run:

Frequencies

t
Rows

B(ROW.COL)

262 5

294 7

330 11

349 14
392 6

440 8

494 10

523 12

Columns

Color codes

Now, we add the rest of the program that plays the notes and displays the colors. The
colors will appear in the middle of the screen and will form a small square that changes
color with the notes being played. You may enter and run the following:

95 REM**SET PARAMETERS**
100 T = 500-*"
110V = 2

Set duration (T) and
loundness (V)

120 REM**GET FREQ AND COLOR**

130 FOR ROW = 1 TO 8

140 TONE = B(R0W,1H Get frequency
150 C = B{ROW,2)
160 REM**DISPLAY SQUARE**

170 CALL COLOR(2,C,CM
180 CALL HCHAR(12,14,42,2)
190 CALL HCHAR(13,14,42,2)
200 REM**SOUND ON**

210 CALL SOUND(T,TONE,V)-*-
220 NEXT ROW

230 GO TO 130 M •

Set foreground and background
to same color

/
•Go back and do it again

Two Dimensions and Beyond 185

This part of the program sets the duration (T) and loudness (V) for the SOUND routine.
A loop is set up to cycle over the eight notes (line 130). The frequency of the tone to
be played is taken from the array B (line 140). The color code is assigned from B (line
150). Line 170 calls the COLOR routine. The foreground and background colors are
set the same. This action will produce a spot of color on the screen when a character is
displayed. At line 180 and line 190 two color spots are displayed on the screen. The
result is a small square, two units on a side, near the center of the monitor. The SOUND
routine is then called for the current note. The loop handles all eight notes and colors,
and then (line 230) the program branches back to line 130 to play the notes again. The
program continues until you press SHIFT C.

The last program just runs up the C scale and then starts over again. Let's add a little
randomness to the program and allowit to select its own notes and colors. Also, we
will change it so that the notes are played at varying durations. If wemake the following
changes, our new program will do all of these things.

100 T = INT(400*RND)+100-

130 ROW = INT(8*RND)+1 -

220 GO TO 100-«

•Set the duration from 100 to 500 milliseconds

•Pick a random row

"Loop back to get new note

230 (Just press the ENTER key)-*-Erases line 230 from program

RUN this new program. What do you hear? The program should be playing a "selection"
from the eight notes that it has available in the Barray. The screen shouldbe changing
colors near the center as each note is played. The monitor must look something like this:

This simple "color organ" can be expanded upon, especially the graphics portion of the
program. What would it be like to "paint" the screen with colors in time to the notes
being played? Also, we could put the colors on in either a vertical or horizontal direction,
and vary the length of the color bars beingdisplayed. Want to give this program a try?
OK! Let's go!

Igg Introduction to TI BASIC

The READ-DATA section of the program remains the same (lines 10 - 80). We now
add the lines:

172 H=INT(RND*24)+1 ^________ Pick a random horizontal and vertical
174A =.NT(RND*32)+1 ^ location on the screen
176 N = INT(RND*20)+1 -* Set number of characters to be printed (1 to 20)

178 IF INT(RND*2) =0 THEN 190^Random selection ofhorizontal or vertical display
180 CALL HCHAR(HA42.N) l = HCHAR 0 = VCHAR

185 GO TO 150

190 CALL VCHAR(HA42,N)

The complete program now looks like this:

10 FOR ROW = 1 TO 8

20 REM**LOAD FREQUENCY COLUMN 1**j
30 FOR COL = 1 TO 2 .
40 READ B(ROW,COL) ("* Section to fill Barray
50 REM**LOAD COLOR COLUMN 2**
60 NEXT COL

70 NEXT ROW
80 DATA 262,5,294,7,330,11,349,14
90 DATA 392,6,440,8,494,10,523,12
95 REM**SET PARAMETERS**

100 T = INT(400*RND)+100
110V = 2

120 REM**GET FREQ AND COLOR**
130 ROW = INT(8*RND)+1
140 TONE = B(ROW,1)
150C = B(ROW,2)
160 REM**DISPLAY BAR**

170 CALL COLOR(2,C,C)
172 H = INT(RND*24)+1 c t. ,. +„ . +„ ,
174 A= INT(RND*32)+1 ~* Section that paints colors on
176 N=INT(RND*20)+1 screen and Plays notes
178 IF INT(RND*2) = 0 THEN 190

180 CALL HCHAR(HA42,N)
185 GO TO 150
190 CALL VCHAR(H,A,42,N)
200 REM**SOUND ON**
210 CALL SOUND(T,TONE,V)
220 GO TO 70

Check to see if the program in your TI computer is the same as the one listed above. If
it is, RUN it. What appears on the screen?

Two Dimensions and Beyond 187

The screen will begin to look like this

Different colors everywhere!

It's time for you to experiment. Why don't you try changing the colors that are dis
played? Or better yet, why not set up two arrays with two different musical scales?
You could randomly pick a note from either scale and have the CALL SOUND routine
play both notes at the same time.

The scale we have been using is a C-natural scale. It has eight tones. There are many
other scales. Pythagoras, an ancient Greek, discovered a lot about music many years
ago. He devised a 7-tone scale. Later, around the time of J.S. Bach, it became possible
to construct and use twelve-tone scales. We can make our program work with twelve-
tone scales. We just have to enter the following changes:

5 DIM B(12,2) -*-

10 FOR ROW = 1 TO 12

80 DATA 440,8,466,9,494,10,523,12,554,13,587,5

90 DATA 622,7,659,11,698,14,740,6,784,2,831,15^

130 ROW = INT(12*RND)+1-«-Random selection of row in array

We put a DIMension statement in the program. This is good
practice most of the time since the DIM statement tells you
how big all your arrays are

New frequencies and colors

Let's take a breather from all this color, music and graphics and look at some other
uses of two-dimensional arrays.

Arrays are useful to hold information that is related. For example, if we had a list of
names of people and their telephone numbers, a single array could be used to hold this
information. Having the data in a single array makes it easy to retrieve and display the
data in tables.

188
Introduction to TI BASIC

We write a program that uses the array N$ to hold the names and telephone numbers of
five people that we know. The program loads the data into the N$ array with a READ-
DATA statement, and prints the information from the array in a table.

10 DIM N$(5,2)

20 REM**FILL THE ARRAY**

30 FOR ROW = 1 TO 5

40 FOR COL = 1 TO 2-

50 READ N$(ROW,COD-

60 NEXT COL

70 NEXT ROW

-We will use a DIMension statement. Your TI Home
Computer does not require one if the array dim
ensions are less than ten (10) in each position

•Set up nested loops over rows and columns

•Read the data. COL=l is for names; COL=2 is
for phone numbers

•End the loops

75 DATA "HARRY","555-0707"
80 DATA "BILL","555-2223"
85 DATA "KATHY","555-3735"„

90 DATA "MARY R.","555-2134'
95 DATA "MARY Z." "555-1796'

.Names and numbers

100 REM**PRINT THE TABLE**
110 CALL CLEAR

120 PRINT" NAMES "," PHONES
130 PRINT "
140 PRINT

•Print header on table

150 FOR ROW = 1 TO 5

160 PRINT N$(ROW,1), N(ROW,2)-
170 NEXT ROW

180 END

-Display names and numbers

When this program is RUN, the screen will look like this:

NAMES PHONES

HARRY 555-0707

BILL 555-2223

KATHY 555-3735

MARY R. 555-2134

MARY Z. 555-1796

Do you see how this program made use of two-dimensional string arrays? Can you
think of other applications? There are as many as there are people who own TI Home
Computers. Experiment with some variations of the last program for those applications
you have an interest in seeing.

When you are ready, move on to the next part of this chapter, where we will be going
into another dimension —three-dimensional arrays.

Two Dimensions and Beyond 189

Three-Dimensional Arrays

A son of the authors collects baseball cards. He has hundreds of cards that give player
statistics on teams played for, batting averages, and the league the team is in. He has
asked us to build a program that will allow him to store the number of player's with
specific batting averages, according to the league and team of each player.

This problem is a job for a three-dimensional array! We found out that there were ten
teams and two leagues that he wished to track. This part of the array is like the two-
dimensional tables we used in the preceding section.

TEAMS

1 2
1

2

3

4

5

6

7

8

9

10

A(10,2)

We will use the array A, and at this point, if we had no more information, it would be
referred to as A(10,2). However, the boy also wants to list the players according to
their batting averages. He wants to look at those with averages below 200, those from
200 to 250, those from 250 to 300, and those over 300. This additional detailed break
down of the data is like having four arrayslike the A(10,2) array shown above.

Teams

League League League League

Teams Teams Teams

200 200 to 250 250 to 300 300

190 Introduction to TIBASIC

With the breakdown by batting averages, we get four two-dimensional arrays like the
A(10,2) array. However, we can represent all of this information in a compact way.
We can refer to one three-dimensional array be adding a third dimension to A. We
would get:

A(10,2,4)

Teanr League Batting average

The first dimension in the A-array points us to the team the player is on; the second
dimension to the league; the third to the player's batting average. So if we had a player
who played on team 4 of league 2, and had a batting average of 275, we would increase
the contents of the array by one, for this player.

A(4 2,3)
4th team"*" / \

Third batting average slot

League 2

But wait! There might be a problem. What if a player hasan average of 250? What
location of the A array would he be counted into? Unless we relabel our array limits
for batting averages, he would go into both batting average slots 2 and 3 of A. To
correct this potential problem, we define the batting average slots to be:

Third Dimension of A-array Range of Batting Averages

1 199 and below

2 200 to 249

3 250 to 299

4 300 and above

We now have an array defined that will hold the information that the boy wishes to
store. The array has 10 x 2 x 4, or 80 locations in which to place data items. Our
first program dealing with this array shows how to fill it using the TI Home Computer
to prompt for INPUTs.

Two Dimensions and Beyond 191

10 REM**EXAMPLE 3-D ARRAY**
20 REM**BASEBALL CARD PROGRAM**
30 REM**DATA INPUT ROUTINE**
40 DIM A(10,2,4)-*— Dimension A and clear screen
50 CALL CLEAR

60 PRINT "INPUT TEAM NO., LEAGUE NO. AND BATTING AVERAGE"
70 INPUT "T,L,BA«?": T,L,BA-«-Input pointers T and L,and batting average (BA)
80 IF T = 0 THEN 200 -* If inputis complete, enter0,0,0
90 REM**THE NEXT FEW LINES COMPUTE THE SLOT NUMBER(B)**
100 REM**BASED ON THE BATTING AVERAGE(BA)**
110B = 1

120IFBA 199 THEN 130 ELSE 180
130B = B+1 -« ^
140IFBA 249THEN 150 ELSE 180 \
150B = B+1 -+ B is increased
160IFBA 249THEN 170 ELSE 180 /
170 B = B+1 -+ — r

180 A(T,L,B) =A(T,L,B)+1 -< Increment total players by one
190 GOTO 70 -* Return for next INPUT
200 REM**INPUT NOW COMPLETE**

The preceding program will accept inputs from the keyboard: information on the
team, league, and player's batting average. It stores the data in the A-array. An
entry of 0,0,0 in line 70 terminates the input. The program then branches to the
next part of the program. What shall we build next?

Let's suppose our "user" wishes to print three kinds of statistics from the entered data:
(1) the total number of players in eachleagues, (2) the total number of players in each
battingaverage slot, and (3) a summary table, by league, of teamsand batting average
breakdowns. Sounds like a lot, doesn't it? Well, let's just do it a piece at a time and
see what happens.

First, let's add a section, beginningwith lines 200, that allows us to find out which
table the "user" wants.

200 REM**INPUT COMPLETE**
210 CALL CLEAR

220 PRINT "DO YOU WANT:"
230 PRINT 'TOTALS BY LEAGUE(1)"

240 PRINT 'TOTALS BY BATTING AVERAGE SLOTS(2)"
250 PRINT "SUMMARY TABLE BY LEAGUE(3)"
260 PRINT "EXIT THE PROGRAMS)" •
270 INPUT N
280 CALL CLEAR
290 ON N GOTO 300,500,700,1000

The fourth option, to exit the program, is easily handled by the following line:

1000 END

192 Introduction to TI BASIC

Note: This program and the associated data file are quite large. They are presented
here as an example of how to use 3-D arrays. In practice, for large data files and
large programs, you will need to start considering what is going to be the best way
for you to create and save both data and programs. You would not want to reenter
this program each time you wished to use it. You most likely would want to use a
mass storage medium (tape, disk, etc.).

To get the totals by individual league, we enter the next set of program statements:

296 REM**ROUTINE TO CALCULATE LEAGUE TOTALS**
300 TOT = 0

-•310 FOR L = 1 TO 2
320 LTOT = 0

—•330 FOR B = 1 TO 4

C340 FOR T = 1 TO 10

350 LTOT = LTOT + A(T,L,B)
360 NEXT T

370 NEXT B

380 PRINT "NUMBER OF PLAYERS IN LEAGUE ";L;" = "; LTOT
390 TOT = TOT + LTOT

400 NEXT L

410 PRINT 'TOTAL PLAYERS IN BOTH LEAGUES = ";TOT
420 GOSUB 990

430 GOTO 210

Let's look at what this routine does:

Line 300: Sets TOT to zero. TOT will contain the total number of players in
both leagues at the end of execution of this routine.

Line 310: Begin loop over the number of leagues.

Line 320: Set LTOT to zero. LTOT will contain the number of players (total)
for a particular league.

Line 330: Begin loop over the number of batting average slots.

Line 340: Begin loop over the number of teams.

Line 350: Sum up players in this league.

Line 360: End the team loop.

Line 370: End the batting average slot loop.

Line 380: Display the number of players in league L.

Line 390: Add the number of players in league to total players.

Line 400: End the league loop.

Line 410: Display the total number of players.

Line 420: Delay routine call.

Line 430: Return to the "menu" of table options.

Two Dimensions and Beyond

For the totals by batting average slots, we enter:

495 REM**ROUTINE TO CALCULATE TOTALS BY BATTING AVERAGES**
500 TOT = 0

—•510 FOR L = 1T0 2
520 PRINT "LEAGUE ";L
530 PRINT "

—• 540 FOR B = 1 TO 4*" *
550 BTOT = 0

C560 FOR T = 1 TO 10

570 BTOT = BTOT + A(T,L,B)
580 NEXTT

590 PRINT "SLOT "; B; " # PLAYERS = "; BTOT
600 TOT = TOT + BTOT
610 NEXT B
620 PRINT

630 NEXT L

640 PRINT 'TOTAL PLAYERS IN BOTH LEAGUES = "; TOT
650 GOSUB 990

660 GO TO 210

This routine does the following:

193

Line 500

line 510

Line 520

Line 530

line 540

line 550

Line 560

Line 570

line 580

Line 590

line 600

line 610

Line 620

line 630

Line 640

Line 650

Line 660

Set TOT to zero. TOT will contain total number of players.

Begin league loop.

Begin displaying header message for league.

Decorations.

Begin batting average loop.

Set BTOT to zero. BTOT is variable that will contain the total number

of players in a particular slot.

Begin team loop.

Sum players by batting average, across all teams.

End team loop.

Display batting average slot number, and players.

Add partial sum of players to total sum.

End the batting average loop.

Display a blank line.

End the league loop.

Display the total number of players in the league.

Delay routine call.

Return to "menu" of table options.

194 Introduction to TI BASIC

The last routine is a bit longer. It provides the summary table, by league, of the number
of players that are on each team and in each batting average category. Here is the
routine:

695 REM**SUMMARY TABLE ROUTINE**
700 INPUT "INPUT LEAGUE NUMBER(1,2)?":L
710 PRINT "SUMMARY TABLE FOR"
720 PRINT" LEAGUE ";L
730 PRINT" BATTING AVERAGE" "^
740 PRINT " SLOT SLOT SLOT SLOT" L Header for table
750 PRINT" 12 3 4'
760 PRINT "

770 PRINT

C780 FOR B = 1 TO 4

790 STOT(B) =0-« Clear the STOT array
onn mcvtd

J
800 NEXT B

-810 FOR T = 1 TO 10
820 PRINT'TEAM"; T;
830 TB = 10

840FORB = 1TO4
850 STOT(B) = STOT(B) + A(T,L,B)
860IFB = 4THEN890
870 PRINT TAB(TB); A(T,L,B);
880 GO TO 900
890 PRINT TAB(TB); A(T,L,B)
900 TB = TB + 5

•910 NEXT B
•920 NEXT T
930 PRINT

940 PRINT "TOTALS";TAB(10);STOT(1);TAB(15);STOT(2);TAB(20);
STOT(3) ;TAB(25);STOT(4)
950 GOSUB 990

960 GO TO 210
990 FOR T = 1 TO 3000

992 NEXT T -* Delay routine
994 RETURN

Here is what the last routine does when it is executed:

Line 700: Requests an input of the league number.
Lines 710 to 770: Display a header message for the table.

Lines 780 to 800: Clear the STOT array. STOT is used to store the totals that
are printed at the bottom of the table.

Lines 810 to 920: Computes the totals, and displays the body of the table. The
variable TB is used to position the columns of the table. It is
the parameter for the TAB function calls.

Lines 930 to 950: Print a line of totals for the columns of the table, and return
the user to the "menu" of table options, after a delay.

Lines 990 to 994: The delay routine.

Two Dimensions and Beyond

If you have entered this entire program, takea break! Your fingers must be tired.
When you have rested, RUN the program. If you do, this is what happens on the
screen.

First, the screen clears and the
messages in lines 60 and 70 appear
on the monitor.

INPUT TEAM*, LEAGUE*
T,L,BA-.?D

AND BATTING AVERAGE

195

You then enter triplets of numbers representing the team number, league number, and
batting average for each player:

INPUT TEAM*, LEAGUE* AND BATTING AVERAGE
T,L,BA- -73,2,240
T,L,BA- -74,1^301
T,L,BA- -7

Team* League* ^BattingAverage

You would continue to enter data until all the information you wanted to tabulate was
in the computer. Thenyou type 0,0,0 to display the table.

196 Introduction to TI BASIC

When 0,0,0 is entered, the screen clears and the "menu" of table options appear:

DO YOU WANT:
TOTALS BY LEAGUE(1)
TOTALS BY BATTING AVERAGE SLOTS{2)
SUMMARY TABLE BY LEAGUE(3)
EXIT THE PROGRAM(4)?D

If you enter a one (1), the screen again clears. The totals, by league, are calculated, and
the screen shows:

NUMBER OF PLAYERS IN LEAGUE 1 = 155

NUMBER OF PLAYERS IN LEAGUE 2 = 160

TOTAL PLAYERS IN BOTH LEAGUES = 315

The computer delays for a moment to let you see the table. After the pause, the
"menu" appears once again on the screen.

If you enter a two (2), the following information is displayed:

LEAGUE 1

SLOT 1
SLOT 2

SLOT 3

SLOT 4

LEAGUE 2

*PLAYERS = 30
#PLAYERS = 50
*PLAYERS = 60

#PLAYERS = 15

SLOT 1 #PLAYERS = 25
SLOT 2 #PLAYERS = 55
SLOT 3 #PLAYERS = 65
SLOT 4 *PLAYERS = 15

Total players in both leagues = 315

Two Dimensions and Beyond

Here again, the screen holds the information for you to look at, then clears and
redisplays the "menu." If you now enter a three (3), the last table is displayed:

First you are asked for
the league number*"**-^

INPUT LEAGUE NUMBER(1,2)?n

When you enter the league number, the header message for the table and the table
begin to appear:

INPUT LEAGUE NUMBER{1,2)?1
SUMMARY TABLE FOR

LEAGUE 1

BATTING AVERAGE

SLOT SLOT SLOT SLOT
12 3 4

TEAM1 3 5 7 1
TEAM 2 4 7 5 2

TEAM 3 2 5 5 1

TEAM 4 1 3 8 1

TEAM 5 5 2 6 3
TEAM 6 3 9 6 0
TEAM 7 3 1 3 2

TEAM 8 4 8 9 1

TEAM 9 2 4 7 2
TEAM 10 3 6 4 2

TOTALS 30 50 60 15

197

Once more, the computer pauses while you scan the table, then branches back and
displays the "menu" again. If you enter a four (4) when the "menu" is on the screen,
the program stops executing.

This concludes the discussion on multidimensional arrays. You will have many uses for
these convenient variables as you develop more of your own applications.

198 Introduction to TI BASIC

Chapter Ten Exercises

The first six exercises relate to the two-dimensional array, B, shown below.

B(ROW,COL)

Columns

1 2 3

1 ' "*~
2

3

4

5

Rows

7 2 8

1 5 4

20 -6 1

11 9 12

19 10 6

B is a 5 by 3 position array (table).

(1) What are the values in the following B-array locations?

(a) B(3,l)=

(b) B(5,3)=

(c) B(3,2)=

(d) B(l,3)=

(2) What are the location names that contain these data values?

(a) 4

(b) 11

(c) 5

(d) 10

(e) 1 and

(3) Write the program statement below that would dimension the B-array.

10

(4) For matrix location B(5,l), what are the results of the next set of statements:

(a) B(5,1) = B(2,1) + B(1,2)

(b) B(5,1) = B(3,2) + B(2,3)

(c) B(5,1) = B(2,2)*B(2,3)

(d) B(5,1) = B(4,3)/B(2,3)

Two Dimensions and Beyond 199

(5) Describe what happens with this program, assuming the B-array contains the
data we started with in Problem 1:

10 FOR ROW = 1 TO 5

20 SUM = 0

30 FOR COL = 1 TO 4

40 SUM = SUM + B(ROW,COL)
50 NEXT COL

60 PRINT "SUM FOR ROW";ROW; " = "; SUM
70 NEXT ROW

(6) Write a DATA statement that could be used to read in the B-array.

100 DATA

(7) Suppose we are writing a program that needs an array with the properties:

One dimension represents seven classifications by age.
A second dimension represents ten weight categories.
A third dimension represents any one of twenty geographic locations.

If we call the array C, what does the dimension statement look like?

10

(8) For the array in Problem 7, write a set of loops that would total all the elements
of the C-array, and place the total in the variable TOT.

10 DIM

20 TOT =

30 FOR AGE =

40 FOR WEIGHT =

50 FOR LOC =

60 TOT = TOT + C{)

70 NEXT

80 NEXT

90 NEXT

(9) Change the program in Problem 8 so that it totals all the elements in the C-array
within any particular age classification.

(a) Change Line 30: 30 INPUT

(b) Delete line

200 Introduction to TI BASIC

Chapter Ten Solutions

(1) (a) 20 (b) 6 (c) -6 (d) 8

(2) (b) B(2,3) (b) B(4,l) (c) B(2,2)
(d) B(5,2) (e) B(2,l)andB(3,3)

(3) 10DIMB(5,3)

(4) (a) B(5,l) =3 (b) B(5,l) =-2 (c) B(5,l)=20 (d) B(5,l) =3

(5) The program totals each row of the B-array, putting the total in SUM. When a
row is totaled, across all columns, a message and SUM is printed on the screen.
The screen should look like this:

SUM FOR ROW 1 = 17

SUM FOR ROW 2 = 10
SUM FOR ROW 3 = 15

SUM FOR ROW 4 = 32

SUM FOR ROW 5 = 35

(6) If read by rows: 100 DATA7,2,8,1,5,4,20,-6,1,11,9,12,19,10,6

If read by columns: 100 DATA7,1,20,11,19,2,5,-6,9,10,8,4,1,12,6

(7) 10 DIM C(7,10,20)

(8) 10DIMC(7,10,20)
20 TOT = 0
30 FOR AGE = 1 TO 7
40 FOR WEIGHT = 1 TO 10
50 FOR LOC = 1 TO 20

60 TOT = TOT + C(AGE,WEIGHT,LOC)
70 NEXT LOC

80 NEXT WEIGHT
90 NEXT AGE

(9) (a) 30INPUT"AGECATEGORY(1-7)":AGE Or something similar,

(b) Delete line 90.

Chapter Eleven
Color, Graphics, Sound, and Animation

In preceding chapters, you were introduced to some of the musical and graphic capabili
ties of your TI Home Computer. What we want to do now is to expand your knowledge
in these areas.

It is possible, on your computer, to create your own graphics characters. As you develop
programs and simulations, you may discover that you would like to add some color,
sound, or graphical accents that go beyond the CALL COLOR, CALL SOUND, and
CALL VCHAR/HCAR applications discussed so far.

This chapter gives you hints and examples on how to approach an expanded use of color
and graphics. By using this material, you will begin to discover techniques for making
programs visually exciting. You can have images "moving" about the screen. They can be
changing colors. Appropriate sounds can accompany the movements. Sound interesting?
You bet it is! These capabilities of your TI Home Computer add many new dimensions
to what is possible with these small machines.

We will introduce three new routines: CALL SCREEN, CALL CHAR, and CALL KEY,
each of which expands your ability to create colorful graphics with your machine. In
brief, here is what each of the routines does:

• CALL SCREEN — Allows you to change the color of the entire screen.
• CALL CHAR — Can be used to create new graphics characters.
• CALL KEY — Lets you input data without pressing ENTER.

The CALL SCREEN Statement

When a program is running, the background screen color is light green. Up to this point,
there has been no easy way to change the color of the screen completely while in the
Run Mode. Now we can do so. We use the following statement:

CALL SCREEN (C)

\ Color code for the screen
color we want goes here

202 Introduction to TI BASIC

Clear the machine's memory by typing NEW, and enter the small program given below:

10 REM**CHANGING THE SCREEN COLOR **

20 CALL CLEAR

30 INPUT "SCREEN COLOR CODE?": C

40 IF C < 1 THEN 20-«—; Check for
50 IF C> 16 THEN 20^^ S2&A. code Change screen color
60 CALL SCREEN (C) •< from light green
70 INPUT "PRESS ENTER TO CONTINUE": A$ to color you input
80 GO TO 20

RUN the program. The request for a color code will appear, and the screen. If you enter
any color code (except 4, which is light green), the screen will change to that color.
The program pauses at line 70 so you can see the color. Pressing the ENTER key causes
the program to loop back and request a new color code.

What happens when you enter a color code of one (transparent) or color code two
(black)? Try it and see!

Introducing CALL CHAR

The CALL CHAR statement gives you the capability of creating your own characters on
the screen. One way to do this is to redefine one of the standard characters to be the
new character that you want. Thus, when the program attempts to display the standard
character, your new character, appears on the screen.

The redefinition of a standard character is handled by the CALL CHAR routine. Suppose
we wish to redefine the asterisk (character code 42). We do so by putting a statement in
our program that looks like this:

Code for character

CALL CHAR (42, A$)

,r ^\Astring variable that
will contain the "code"

we are redefining c , .„
b for our new character.

For now, we are going to use just the CALL CHAR routine without going into a lot of
detail on how it works. Later in the chapter we will provide an in-depth discussion.

The string variable parameter, A$ in the CALL CHAR statement contains a set of letters
and numbers that get translated into a new graphics character. For now, enter the next
program and RUN it.

10 REM** DISPLAY A NEW CHARACTER **
20 A$ = "0103070F1F3F7FFF" -« The "code" for the new character
30 CALL CHAR (42, A$)-« Redefine the
40 CALL CLEAR «*'

50 CALL VCHAR (12,16,42)-* Display new character near
60 GO TO60^_ center of screen

•Wait here!

Color, Graphics, Sound, and Animation 203

What do you see? A small triangular figure in the center of the monitor? Yes! We have
created a new character!

The character looks something like this:

A The symbol on the
' screen will be smaller

Now, press the SHIFT C to stop the program. What's on the screen after you do this?
Thit's right, the asterisk (*) appears in the place of the new symbol.

The CALL CHAR routine redefines the standard character, the asterisk, to be the new
symbolwhile the programis running. When the program stops, the redefinition iscanceled,
and the standard character appears wherever the new symbol was displayed on the
monitor.

We know that you have questions concerning the long, strangelooking "code" that is
put into A$. Hold those questions for a while, and let's use the CALL CHAR routine
in a couple of programs. We'll cover the questions later in this chapter.

COLOR with CHAR

We've experimented before with programs that put color on the screen. We now want
to combine our new capability of creating a graphics character with the use of color
displays. Thenext program createslarger blocksof triangularsymbols(redefinedasterisks),
and let's you specify what color they are to be.

10 REM**COMBINING COLOR AND CHAR**
20 CALL CLEAR
30 A$= "0103070F1F3F7FFF" -*-
40 CHAL CHAR (42, A$)
50 INPUT "COLOR CODES?": F, B
60 CALL CLEAR
70 CALL COLOR (2, F, B)
80 REM**SHOW COLORS**
90 FOR Y = 1 TO 4

100 CALL VCHAR (19, Y+2,42,4)
110 CALL VCHAR (19, Y+2,42,4)
120 CALL VCHAR (2, Y+24,42,4)
130 CALL VCHAR (19, Y+24,42,4)
140 CALL VCHAR (12, Y+13,42,4)
150 NEXT Y
160 INPUT "PRESS ENTER TO CONTINUE":B$
170 GO TO 50

Redefine asterisk

— Set color

Each CALL VCHAR places
a vertical strip of
color on the screen

Wait here

The program begins by redefining the asterisk to be the new graphics symbol. A request
is then made for a color code. When you enter a code, the screen clears, the colored
blocks of symbols are displayed, and the program waits for you to press the ENTER
key. When you press ENTER, the program goes back and asks for a new color code.

204 Introduction to TI BASIC

Clear the screen and RUN the program. First you'll see:

COLOR CODES7D ~* Flashing cursor

Try a 7 and 4 (dark red and light green) for the first color codes. Wow! The screen
should look like this:

Five dark red blocks of symbols

Light green screen

Press ENTER when you're
ready to go on to a new color

Examine one of the blocks of symbols closely. What do you see? There should be a
pattern made up of triangular symbols and triangular "holes." Try various color combi
nations. Which colors give the sharpest, clearest design?

Here are two interesting experiments. Delete line 40 from the program (the line that
redefines the standard character). Run the program with the same color for the fore
ground and background. What ahppens? Yes, solid blocks of color appear on the
monitor. Can you picture how this program could be modified to produce checker
boards or colored playing areas for tic-tac-toe?

A second experiment could involve the addition of the CALL SCREEN routine to the
program. This addition would allow you to vary the background of the entire screen as
you changed the colors of the blocked symbols.

Try these and other variations on your own. Become a color "artist" with your new
Home Computer.

Color, Graphics, Sound, and Animation 205

PRINTed Patterns

We will now show you a set of programs that can be used to create blocks of patterns
on the screen. The programs use the string variable features of the TI Home Computer
and the familiar PRINT statement. The first program demonstrates how to construct
squares or rectangles of standard characters.

Rectangles and Squares

The first program allows you to place a rectangle or square of standard characters on the
screen. Instead of using CALL HCHAR or CALL VCHAR and identifying the character by
its character code (numbers 32 through 95), we'll assign a character to a string variable
from the keyboard.

Try these examples in the Immediate Mode:

LET C$ = "*"
PRINT C$
PRINT C$;C$
PRINT C$; TAB (10); C$

>LETC$="*'

>PRINTC$
* ~f

>PRINTC$;C$
*«

>PRINTC$;TAB(10);C$
*

>•

One asterisk

Two asterisks side by side

One asterisk at left
margin; one in column 10

Try a few more Immediate Mode experiments on your own. For example, what would
happen if you redefined C$ as "***" or as "()"? Try it and see what results!

206 Introduction to TI BASIC

This method is convenient if you want to print only a short line of characters. But what
if you want to print a long line or vary the line length or character the program prints?
INPUT statements and a FOR-NEXT loop will solve the problem. Type NEW;then
enter this program:

10 REM**RECTANGLES AND SQUARES **
20 INPUT "CHARACTER?": C$ -*
40 INPUT "WIDTH?": W
60 CALL CLEAR

80 FOR X = 1 TO W

100 PRINT C$;,
120 NEXT X
140 END ""•» Semicolon

•Accept character

Accept number of
characters to be printed

When you run the program,you'll first be asked to input the character you want to use.
Just type the character and press ENTER. Then you'll be asked for the "width" or the
number of characters in the Une you want to print. Type in the number and press ENTER
to continue the program. Let's say that you entered * as the character and 28 as the
width. The screen will look something like this.

it***************************

** DONE **

(Note that the semicolon in Une 100 causes the characters to be printed in an unbroken
row.)

Run the program a few times,entering differentcharacters and lengths. Now let's try
addingsome program lines that will allow us to make rectangles and squaresof characters.

Enter these new lines:

40 INPUT "SIZE (WIDTH, HEIGHT)": W, H•*
70 FOR Y = 1 TO H
130 PRINT
135 NEXT Y
140 GO TO 40 -^ Replaces old line 140

Replaces old line 40

Color, Graphics, Sound, and Animation 207

There are a couple of items that need to be explained about these lines. First, notice in
line 40 that we are using one INPUT statement to assign values to two variables ! When
you input the width and height, you'll need to use this form:

Thenumber of_
rows you want"

Comma

{
"•8/5^

The number of
. characters you want

in each row

Second, lines 70 and 135 set up a loop on the variable Y. Your original "X loop" is now
nested inside the "Y loop."

Finally, line 130 prints an "empty" line. This line is needed to clear away the semicolon
(;) in line 100 so that a new row will begin the next time the program loops through the
"Y loop." (As you've seen already, the semicolon causes the characters to be printed on
the same line throughout the loop on X.)

Before we Ust the program to see the changes, let's add a few more lines. We can use
IF-THEN statements to "build in" some tests:

30 IF C$="END"THEN 150
50IFW+H = 0THEN20

150 END

If character string is
END, stop the program

If both width
and height are 0,

ask for new character

Here's what these tests provide. Line 30 gives you a handy way to stop the program by
typing END, pressing the X key twice and then pressing ENTER when you're asked for
a character input. If you want to experiment with a different character, aUyou have to
do is to enter 0,0 as size inputs. The test in Une 50 then sends you back to line 20 to
input a new character.

Now clear the screen and list the program:

>LIST

10 REM** RECTANGLES AND SQUARES**
20 INPUT "CHARACTER?": C$
30 IF C$ = "END" THEN 150
40 INPUT "SIZE (WIDTH, HEIGHT)": W, H
50 IF W+H= 0 THEN 20 -+
60 CALL CLEAR

70 FOR Y = 1 TO H
80 FOR X=1TO W"^ Prmt ahne
100 PRINT C$; > -*""" ofcharacters
120NEXT X J
130 PRINT

135 NEXT Y

140 GO TO 40 -* . Return for new
150 END size inputs

IfC$ = "END", stop!

If W and H both = 0, get
new character input

Start a new line

208 Introduction to TI BASIC

Clear the screen again and run the program. For this example, enter * when the program
asks CHARACTER? Then enter 8, 5 when you're asked for width and height:

•An 8x5 rectangle of asterisks

SIZE (WIDTH, HEIGHT) • -Waiting for new values

Next, enter the same value for both width and height, such as 8,8 or 5,5. With these
inputs the program wiU create a sqquare rather than a rectangle.

"Triangular" Rectangles and Squares

Let's take the last program and change it. Let's add a CALL CHAR that redefines the
asterisk (*) to be our triangular symbol. Also, let's have the program produce a random
sprinkling of holes (blank spaces) in the displayed pattern. We can use RANDOMIZE
and the RND function to make this last part happen.

Enter this altered program:

10 REM**RECTANGLES AND SQUARES WITH HOLES AND TRIANGLES**
20 A$= "0103070F1F3F7FFF"
30 CALL CHAR (42, A$)
40 RANDOMIZE

50 INPUT "CHARACTER?": C$
60 IF C$ = "END" THEN 210
70 INPUT "SIZE (WIDTH, HEIGHT)": W, H
80IFW+H = 0THEN50
90 CALL CLEAR

100 REM**PRINT CHARACTER OR BLANK**

110 FOR Y =1TO H mint(2*RND)
produces a 0 or a 1120 FOR X=1 TOW

130 IF INT(2*RND)'Sr0 THEN 160-*
140 PRINT " ";
150 GO TO 170
160 PRINT C$;
170 NEXT X

180 PRINT Skip line 160
190 NEXT Y

200 GO TO 70
210 END

The IF test in line 130contains INT(2*RND). This last expression randomly produces
either a 0 or a 1. When it is zero, then the characteris displayed. When it is a one, a
blank space is placed on the screen. Approximately half the time the program prints
a character; half the time it prints a space. RUN the program and observe the patterns
that emerge. Whathappens when you enter an asterisk (*) at the request for a character?

One space enclosed in
quotation marks and

followed by a semicolon

If true, go to
line 160 and PRINT
the character. If false
PRINT a blank space

(line 140)

Color, Graphics, Sound, and Animation 209

Animation and Sound

In chapter 5, you discovered the way to create the illusion of movement on the screen.
You used small programs that flashed characters on and off on the monitor so that they
appeared to "dance" or move. The next program reworks one you did in Chapter 5 to
include both the CALL CHAR and CALL SOUND features of your machine.

We use the CALL CHAR routine again to redefine the asterisk (*) to be the triangular
symbol. We place the character near the center of the screen. The FOR-NEXT loop
causes a delay. At the end of this delay, a sound is emitted from the program, the screen
clears, and a second delay is executed. The combination of the two delays creates the
"flashing" of the character. Finally, a second sound is produced, and the program loops
back to put the character on the screen again. Here is the program. Enter it and RUN it.

10 REM**SIMPLE ANIMATION WITH SOUND**
20 A$= "0103070F1F3F7FFF"
30 CALL CHAR (42, A$)
40 CALL VCHAR (12,16,42H Numeric code for *
50 FOR DELAY = 1 TO 200 \
60 NEXT DELAY
70 REM**PLAY THE SOUND**

-<80 CALL SOUND (100,110,1)
Play^ 90 CALL CLEAR
tones 100 FOR DELAY = 1 TO 100 \

110 NEXT DELAY /
120 CALL SOUND (100, 220,1!X
130 GO TO 40

-Pause after printing

•Delay after cleaning

•Repeat

The triangular symbol should be flashing on the screen, and two distinct sounds should be
occurring as the symbol appears and disappears.

Symbol flashes on
and off the screen

This program is an excellent one to try some experiments on. Change the calls on the
sound routine, and use "noise" instead of tones. Vary the duration of the noise being
generated. Can you make the program emit "clicks, "knocks," and other interesting
sounds? How about the sound a ball makes when it hits the paddle in a game? Does
it make a different sound when the ball hits a wall?

Can you see (and hear) that this small program represents a way that you can introduce
sound into "animated" programs. All the interesting sounds you have heard in other
computer games and simulations can be reproduced on your TI Home Computer. Give
it a try!

210 Introduction to TI BASIC

Musical Interlude

Break time from all this graphics stuff!! How about a little music to soothe the nerves
and rest the spirit? Great!

We are going to revisit our tone-playing program, but with a new twist. With all the
programming tricks you know by now, we can make the program really compact. We
can also introduce you to one new feature of the TI Home Computer —the CALL KEY
routine.

In previous programs, you had to enter the letter of the note to be played, and press the
ENTER key. This double-keying action interrupted your musical "creations." CALL
KEY is used to transfer one character, from the keyboard, directly into the computer.
You don't have to press the ENTER key! Let's enter the program, list it, and then
explain how CALL KEY works.

JJill NOTEarray with tones
10 REM** THE TI ORGAN - 8 TONES**
20 DIM NOTE (8) ^—^ Character code ofdepressed key
30 FOR N =1 TO8 _^-— ^—-"* ends up here
40 READ NOTE (N) ^
50 NEXT N

60 CALL KEY (0, KEYNOTE, STATUS) Status indicator
70 IF STATUS=0 THEN 60)^ ^ 1=New key since last time
80 FOR N=1 TO 8 ** = Same key as last time
90 IF KEYNOTE = 64+N THEN 120 ° = No key depressed
100NEXT N Not 65through 72.Go get
110GOTO60-* another input
120 CALL SOUND (100, NOTE (N), 2)
130 GO TO 60 "V_ Key pressed was A-H; play it
140 DATA 262, 294,330,349,292,440,494,523

Check code of Frequencies for NOTE array
depressed key
to see if it is
65,66,...,72

Here is how CALL KEY works in this program. Each character on the keyboard has
a numeric code. (You have used the code 42, the asterisk, several times earlier in this
chapter.) When a key is depressed, the character code for that key is assigned to the
second variable in the CALL KEY routine. In this example, the character code is
assigned to the variable KEYNOTE.

The last variable in the routine is a status indicator. The indicator lets the program
"know" what is occurring on the keyboard. If you press the same key twice, the status
indicator, STATUS, is set to -1. If you press a different key on the second time through
the routine, STATUS is set to 1. If no key is pressed, STATUS is set to 0.

Color, Graphics, Sound, and Animation 211

When you RUN the program, nothing appears on the screen as you hit the keys. The
program just plays the note you request. Try it! Make a little music. You will have to
press the SHIFT C key to stop the program.

The CALL KEY routine allows you to create "your own kind of music." The routine
can also be used in many games and simulations where single character input values
are requested. The effect of using the KEY routine is to speed up data input by elimi
nating the need to press ENTER each time.

You may want to augment this program in many ways. How would you alter the program
to accept sharp as well as natural notes? What would you need to do to allow yourself to
key in a range of durations for each note? This one program is the basic idea from which
you can begin to exploit fully the musical capabilities of your machine.

Perhaps, someday, there will be an organ keyboard that will plug directly into your
Home Computer. We bet it will happen soon!

The CALL CHAR Statement

You have used the CALL CHAR routine to redefine a standard screen character to be

a special graphics symbol. We now want to look at the CALL CHAR feature in some
detail. We begin by examining how a character, any character, is represented on the
screen.

Each printing position on the screen is made up of 64 tiny dots. The dots are arranged
in eight rows of eight dots each. Each row is partitioned into two blocks of four dots
each. The diagrams below show how an 8-by8 grid of dots would look it if were greatly
enlarged.

ROW1

ROW 2

ROW 3

ROW 4

ROW 5

ROW 6

ROW 7

ROW 8

Any Row

LEFT

BLOCKS

RIGHT

BLOCKS

left

block

right

block

•8 left blocks and 8 right
blocks =16 total blocks

Each block is 4 dots
wide and 1 dot high.

212 Introduction to TI BASIC

A character on the screen, either a standard character or one that you invent, is formed
by dots within the 8-by-8 grid. By turning some dots "on" and leaving others "off" a
character is created. Leaving all the dots "off" creates the space character (character
code 32) for example. Turning all the dots "on" produces a solid spot on the screen.

All turned —
off; invisible!

All turned
on; visible!

All the standard characters are automatically set so that they turn on the appropriate
dots to produce the images you have seen. To create a new character, we must tell the
computer which dots to turn on or leave off within a particular block. The following
table contains all the possible on/off conditions for the dots within a given block and the
shorthand notation for each condition.

BLOCKS DOT CODE SHORT

(0 = off; 1 = on) HAND

CODE

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

1000 8

1001 9

1010 A

1011 B

1100 C

1101 D

1110 E

1111 F

Let's take a look at one row (two blocks) to see how the "shorthand code" works.

Any row
Dot Code
Shorthand

The shorthand code for the row, then, is 5B.

LEFT

BLOCK

RIGHT

BLOCK

Color, Graphics, Sound, and Animation 213

The shorthand codes for an entire grid can be determined block by block,just by
converting the on/off conditions of each row. The following exampleprovides a translation
of an entire grid into the shorthand code.

LEFT

BLOCK
RIGHT

BLOCK

CODE

ROW1 X 01
ROW 2 X x 03
ROW 3 X X X 07
ROW 4 X X X X OF

ROW 5 X X X x x 1F
ROW 6 X X X X X x 3F

ROW 7 X x X X X x X 7F

ROW 8 X X X X X x K X FF

Left block code

Right block code

0103070F1F3F7FFF

\
Shorthand for
all blocks

The symbol in the grid and the shorthand code are those used in the early parts of this
chapter. This code shows how the string was developed that produced the triangular
symbol in those early programs.

Therefore, if we want to "define" a character shaped as the X's on the grid indicate, we
enter all the shorthand codes of the blocks as a single "string":

"0103070F1F3F7FFF"

In the shorthand code, then, one number or letter represents a whole block (4 dots) on
the grid. Two letters and/or numbers represent a whole row.

Based on the table, if all the dots in all the blocks were to be turned on, the shorthand
code for this condition would be:

'FFFFFFFFFFFFFFF F"-«- •One F for each block

This code may seem long, since it represents all 16 blocks within the grid. But it is still
shorter than trying to write down all 64 separate conditions dot by dot.

Once you've decided which dots you want on and off and worked out the code, you're
ready to use the CALL CHAR statement. It looks like this:

CALL CHAR{33, "F FFFFFFFFFFFFFFF F")

/ X \
"String" that turns
the dots on and off

Code for character
you are redefining

Comma

2U Introduction to TI BASIC

Let's try a simple program that redefines a character code 33(!) as a character with all
the dots turned on. The new character is then printed in the center of the screen, giving
you a chance to see exactly how big one of the individual print areas really is. The program
loops until you enter SHIFT C to cause it to stop. Enter these lines:

NEW ^00^^"Redefining this character
10 REM**CHAR TEST**

20 CALL CLEAR _
30 CALL CHAR (33, "F FFFFFFFFFFFFFFF")
40 CALL VCHAR (12, 16,33) — ^ \
50 GO TO 50^ -

'What does this do?

sString of shorthand codes

New character 33 in
center of screen

Run the program and observe your newly defined character on the screen!

\
Solid block character: all dots ON

So that you can experiment with other shorthand codes, let's edit the program. Type
these new lines:

15 INPUT "SHORTHAND?": A$
30 CALL CHAR (33, A$)
50 GO TO 15

This time when you run the program, you'll be asked to input the shorthand code for
the character you are redefining. Try the following examples.

Enter: FFFFFFFF

Top 32 dots set "on"

\
Same character as "FFFFFFFF00000000'

SHORTHAND7D

When you stop the program by pressing SHIFT C, the character you created changes
back into the character from the standard character set. In this case, character code 33
is restored to an exclamation point (!), and that symbol appears near the center of
the screen.

Color, Graphics, Sound, and Animation 215

Entering FFFFFFFF is the same as entering FFFFFFFFOOOOOOOO. That is, the CHAR
routine fills out the right side of the string variable with zeros when there are less than 16
characters in the string. Knowing this fact allows you easily to examine all the shorthand
codes individually. Just enter 0, 1, and so on up to F at the INPUT request.

Enter: F

- -«- All dots "on" in left block of row 1.

SHORTHAND7D

Try different combinations of the shorthand codes. See if you can generate any interesting
characters. Now let's revise the program again to printmore than just one of our redefined
characters. Enter these lines:

40 FOR I = 1 TO 4
50 CALL VCHAR (12,1+13, 33,4)
60 NEXT I

70 GO TO 15

Now list the program to see the changes:

LIST

10 REM**CHAR TEST**

15 INPUT "SHORTHAND?": A$
20 CALL CLEAR

30 CALL CHAR (33, A$)
40 FOR I = 1 TO 4
50 CALL VCHAR (12, 1+13,33,4)
60 NEXT I

70 GO TO 15

When you run this program and enter a shorthand code for a new character, that character
is displayed 16 times in the center of the screen. The 16 characters appear in a square
four characters wide by four characters high. Try the following:

Enter: FF

Solid lines

SHORTHAND?•

216 Introduction to TIBASIC

A single print of the character with the shorthand code FF puts something like a long
dash on the screen. Printing four of these characters side by side draws a line on the
screen! To get dashes across the screen you must leave a space by setting two dots in
each block "off." To do this, the code is 33.

Enter: 33
8 dashes per line

SHORTHAND? D

Notice that, when you stop the program, the center of the screenfills with 16 exclamation
points(!).

Now enter some other codes and experiment with the program until you feel comfortable
with the shorthand codes. To help vou work out the codes, draw up several 8-by8 grids
and mark off your "dots-on, dots-off" desing. Then figure out the code you need for each
block of the grid.

A Block Figure with CALL CHAR

Now that you've had some experience with definingyour own characters, let's see if
we can create a small "human" figure by turning dots on and off.

To begin, you need to create the figure on a character grid worksheet like the one below.
(Later, when you are creating your own characters, you may want to make copies of
the worksheet, not only to design your symbols but also to use in translating the symbol
into the shorthand code of the CALL CHAR statement.)

LEFT

BLOCK

CHAR Worksheet

RIGHT

BLOCK CODE

SHORT

HAND
CODE

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

DOT*

ROW1 0000

ROW 2 0001

ROW 3
0010

0011

0100ROW 4

ROW 5 0101

ROW 6 0110

ROW 7 0111

1000

1001

1010

1011

1100

1101

1110

1111

ROW 8

INPUT TO CHAR:

Color, Graphics, Sound, and Animation 217

Using the worksheet, we'll mark ones (1 's) in the positions where the dots will be turned
on:

CHAR Worksheet

ROW1

ROW 2

ROW 3

ROW 4

ROW 5

ROW 6

ROW 7

ROW 8

INPUT TO CHAR:

LEFT

BLOCK

RIGHT

BLOCK

1 1

1 1

CODE

SHORT

HAND

CODE

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

DOTS

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Now, let's look at the same figure with the "on" dots shaded in, and let's fill in the
shorthand codes for developing the character. This form of the worksheet shows you
what the character will look like on the screen.

CHAR Worksheet

ROW1

ROW 2

ROW 3

ROW 4

ROW 5

ROW 6

ROW 7

ROW 8

LEFT

BLOCK

RIGHT

BLOCK CODE

99

5A

3C

3C

3C

3C

24

24

INPUT TO CHAR: 995A3C3C3C2424

SHORT
HAND

CODE

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

DOTS

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

218 Introduction to TI BASIC

By filling in the worksheet for both the character and the shorthand codes, we know
that one line of our program will be:

LET A$ = "995A3C3C3C2424"

But before we actually start our program, we need to discuss a bit further the process
of defining a character. In our previous examples we redefined an already existing
character, the exclamation point (character code 33). There are other character codes,
however, that are undefined by the computer. These are available for you to use in
building a customized character set in your graphics programs. The undefined character
codes are grouped into the following sets (for color graphics):

Set #9 Set #10 Set #11 Set #12

96 104 112 120

97 105 113 121

98 106 114 122

99 107 115 123

100 108 116 124

101 109 117 125

102 110 118 126

103 111 119 127

Set #13 Set #14 Set #15 Set* 16

128 136 144 152

129 137 145 153

130 138 146 154

131 139 147 155

132 140 148 156

133 141 149 157

134 142 150 158

135 143 151 159

These codes and their corresponding set numbers are used in the CALL CHAR, CALL
HCHAR, CALL VCHAR, and CALL COLOR statements exactly as we used the defined
character codes and their set numbers. Let's use code 96 in our sample program.

OK, we're ready to begin our program. Enter these lines:

,The shorthand code
NEW / for our"figure"
10 REM**LITTLE PERSON**
20 CALL CLEAR ^ _ fi , + , _.
30 LET A$ ="995A3C3C3C2424"^ Defme character code 96
40CALL CHAR (96, A$) -« ^..
50 CALL COLOR (9,2,16) ^ wmie

T i ^ ' ' Black
60 CALL VCHAR (12,16,96)
70 GO TO 70 I I

J Set number
Display character

Color, Graphics, Sound, and Animation 219

Now run the program and observe the small "person" on the screen. Remember, the
figure is only one character in size, so look closely. When you're ready to stop the
program, press SHIFT C.

Would it be possible to animate our little figure? Yes, it would! By changing our program
and incorporating one of the techniques we covered under Animation, we can turn our
character into Mr. Bojangles, the dancing man!

As it's presently written, our program defines only one character. To make Mr. Bojangles
appear to move, we'll need to define two characters that are alternately displayed in the
same position. So we'll go to our CHAR Worksheets to design our two new characters.

CHAR Worksheet— First Figure

ROW1

ROW 2

ROW 3

ROW 4

ROW 5

ROW 6

ROW 7

ROW 8

LEFT

BLOCK

RIGHT

BLOCK

1 1 1

1 1 1

1 1

1 1

1 1

1 1

1

1

INPUT TO CHAR: "995A3C3C3C34484'

CODE

99

5A

3C

3C

3C

3C

44

84

SHORT

HAND

CODE

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

CHAR Worksheet—Second Figure

ROW1

ROW 2

ROW 3

ROW 4

ROW 5

ROW 6

ROW 7

ROW 8

LEFT

BLOCK

RIGHT

BLOCK

1 1

1 1 1 1 1

1

1

1

1

1

INPUT TO CHAR: "1899FF3C3C3C2221'

CODE

18

99

FF

3C

3C

3C

22

21

SHORT

HAND

CODE

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

DOTS

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

DOTS

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

220 Introduction to TIBASIC

Now we're ready to edit the program. Enter these lines:

30 A$ = "995A3C3C3C3C4484
35 B$ = "1899FF3C3C3C2221"
45 CALL CHAR (97, B$)
70 FOR DELAY = 1 TO 100 \

80 NEXT DELAY *

90 CALL VCHAR (12,16,97) \
100 FOR DELAY r
110 GO TO 60

Return and display
first character, repeating

the whole procedure

First character

Second character

Define character
code 97 as B$

•Display first figure

Display second figure

Clear the screen and list the changed program so that you can see how it fits together:

LIST
10 REM**LITTLE PERSON**
20 CALL CLEAR
30 A$ = "995A3C3C3C3C4484"
35 B$= "1899FF3C3C3C2221"

40 CALL CHAR (96, A$)
50 CALL COLOR (9,2,16)
60 CALL VCHAR (12,16,96)
70 FOR DELAY = 1 TO 100
80 NEXT DELAY

90 CALL VCHAR (12,16,97)
100 FOR DELAY = 1 TO 100
110 NEXT DELAY

120 GO TO 60

Now run the program and watch Mr. Bojangles dance! (To stop the program, press
SHIFT C).

After running the program a few times, you might like to add a FOR-NEXT loop to
make Mr. Bojangles dance across the screen. Also, try creating other pairs of characters
and placing their shorthand codes in lines 30 and 35. Can you turn Mr. Bojangles into
an acrobat who flips from his hands to his feet and back again?

As we've mentioned, Mr. Bojangles is pretty small —only one character in size. Not all
the designs you can create are limited to this small size. You can combine several small
characters to construct bigger graphics that cover more of the screen. Our next program
shows how to design a larger graphic using one small color character as our "building
block."

Color, Graphics, Sound, and Animation 221

The Giant

If you define one special character where all the dots are "on," you can then use it to
paint in the rest of a large figure. The following program takes the small character just
mentioned and creates a "giant" figure similar to the Mr. Bojangles character. Enter the
program and see what it does:

NEW

10 REM**THE GIANT**
20 CALL CLEAR

30 A$ ="FFFFFFFFFFFFFFFF'
40 CALL CHAR (96, A$)
50 CALL COLOR (9,5, 5)
60 CALL VCHAR (7, 15, 96, 8)\
70 CALL VCHAR (7,16, 96, 8)(
80 CALL VCHAR (9,14, 96, 10)
90 CALL VCHAR (9,17, 96,10)
100 CALL VCHAR (7,12,96, 3)\
110 CALLVCHAR (9,13, 96) f
120 CALL VCHAR (9,19, 86, 3)
130 CALL VCHAR (9,18,96)
140 GO TO 140

\

,Shorthand code to
turn on all the dots
in the character

Right arm

Hold graphic on screen

Set character color —
'dark blue(foreground

and background)

'Build" head and
center of torso.

Left arm
Right torso and leg.

When you run the program, you'll see a larger version of Mr. Bojangles:

GIANT

222 Introduction to TI BASIC

Our dark-blue "giant" is rather angular and blocky, since it's created from a single
angular character. You might like to rework the program, adding extra defined characters
that allow you to soften the edges of the figure.

Experiment with someother block designs using your "all-dots-on" character. Then try
defining other characters to include in your graphics programs. The examplesshown
below will help to get you started:

CHAR Worksheet

LEFT

BLOCK

RIGHT

BLOCK

ROW1

ROW 2

ROW 3

ROW 4 1

ROW 5 1 1

ROW 6 1 1 1

ROW 7 1 1 1 1

ROW 8 1 1 1 1 1

CODE

01

03

07

OF

1F

3F

7F

FF

ROW1

ROW 2

ROW 3

ROW 4

ROW 5

ROW 6

ROW 7

ROW 8

CHAR Worksheet

LEFT

BLOCK

RIGHT

BLOCK

1

1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1

1

CODE

18

3C

7E

FF

FF

7E

3C

18

INPUT TO CHAR: "0103070F1F3F7FFF' INPUT TO CHAR: "183C7EFFFF7E3C18'

ROW1

ROW 2

ROW 3

ROW 4

ROW 5

ROW 6

ROW 7

ROW 8

CHAR Worksheet

LEFT

BLOCK

RIGHT
BLOCK

1 1 1 1 1 1

1 1 1 1

1 1

1 1

1 1 1 1

1 1 1 1 1 1

CODE

FF

7E

3C

FF

FF

3C

7E

FF

INPUT TO CHAR: "FF7E3C18183C7EFF'

Color, Graphics, Sound, and Animation 223

Summary of Chapter Eleven

This chapter covered a lot of material on the use of color, sound, and graphics. Yet you
were introduced to just three new TI BASIC features:

• CALL SCREEN - Changes the color of the screen.
• CALL CHAR —Creates new graphics characters
• CALL KEY —Inputs character codes from the keyboard.

However, you were shown many important techniques for handling and creating exciting
visual and auditory accents for programs.

You may find that you will often refer back to the information in this chapter asyou
begin to create your own programs. Some of the principal differences between older
computers and machines such as the TI Home Computer are in the expanded use of
color graphics and sounds. Even beginning programmers can now use these features.

Go back and spend some more time in this chapter, if you like. Change the programs,
as suggested, or make up your own experiments. The mastery of the color, sound, and
graphics of the TI Home Computermay well be one of the more rewarding experiences
you have had in computing.

When you are ready, proceed onward to the exercises on this material. Enjoy!

224 Introduction to TI BASIC

Chapter Eleven Exercises

(1) The color codes for black and dark red are four (4) and seven (7) respectively.
What happens when the following statements are executed within a program?

(a) CALL SCREEN (7)

(b) CALL SCREEN (4).

(2) Describe what the two parameters in CALL CHAR are used for?

CALL CHAR (C, A$)

(a)

(3) Assume that A$ contains a string of characters that will cause CALL CHAR
to redefine the asterisk to be the symbol:

Draw a picture of the block of characters that appear near the center of the
screen when the following lines of a program are executed:

100 CALL CHAR (42, A$)
110FORCOUNT=1TO5
120 CALL VCHAR (12+COUNT, 16,42, COUNT)
130 NEXT COUNT

(4) Draw a picture of the pattern that appears on the screen when the following
program is executed. (Again, assume A$ contains a string that will produce the
symbol Ik when used with CALL CHAR.)

100 CALL CHAR (42, A$)
110FORROW=1TO5
120 FOR COL = 1 TO ROW
130 PRINT"*";
140 NEXT COL
150 PRINT
160 NEXT ROW

(5) You guessed it! This exercise asks you to define the string of characters that go
into A$ that produces the symbol k., used in the last two exercises.

A$ = " "

Color, Graphics, Sound, and Animation

(6) Draw the picture for the symbol that is produce by the following:

10 A$= "7EA5819981BD817E"
20 CALL CHAR (42, A$)
30 CALL VCHAR (12,16,42)

ROW1

ROW 2

ROW 3

ROW 4

ROW 5

ROW 6

ROW 7

ROW 8

LEFT

BLOCK

RIGHT

BLOCK

(7) The CALL KEY function has three parameters. The first is a zero. Describe
the second and third parameters:

(a).

CALL KEY (0, KEYCODE, STATUS)

(b)_

225

(8) Create a program that does the following:
(a) Redefines the asterisk to be the symbol • (a solid block).
(b) Puts the symbol on the left edge of the screen, and then causes it to

"move" across the screen to the right side.
(c) Keeps repeating (b).

(9) Add a CALL SOUND to the program in Exercise 8 that causes a sound or noise
to be made when the symbol hits the right side of the screen.

(10) Change the program in Exercise 8 so that a sound or noise is made each time
the symbol "moves." Have the sound increase in frequency with each "move."

226 Introduction to TI BASIC

Answers to Chapter Eleven Exercises

(1) (a) The background screen color turns dark red.
(b) The background screen color turns black. Since the message and characters

during Run Mode are black, they will disappear.

(2) (a) The first parameter is the character code for the character that is being
redefined,

(b) The second parameter , a string variable, contains the code for the new symbol
that is replacing the character being redefined.

(3)

(4) The picure looks the same as that in exercise 3.

(5) A$="80C0E0F0F8CFEFF"

(6)

(7) (a) The second parameter will contain the character code of the key that is
depressed on the keyboard. If an asterisk key is depressed, KEYCODE would
contain 42.

(b) The third parameter is the status indicator. STATUS is zero if no key is
depressed; one if a new key was pressed since the last time CALL KEY was
executed; minus one (-1) if the same key as last time was depressed.

(8) Here is a program for Exercise 8. Your program may be different!

10 REM**MOVING SYMBOL PROGRAM**

20 A$ = "FFFFFFFFFFFFFFFF
30 CALL CHAR (42, A$)
40 FOR COL = 2 TO 28

50 CALL VCHAR (12, COL-1,32)-*
60 CALL VCHAR (12, COL, 42)
70 NEXT COL

80 CALL VCHAR (12, 28, 32) -«
90 GO TO 40-« • Repeat it all

Redefine **as I

Begin loop over columns

Blank last space to left

Put symbol on screen

— Blank last position

Color, Graphics, Sound, and Animation 227

(9) Add the following lines to make a sound at the end of the line each time. (Your
line numbers and sound parameters may be different.)

75 CALL SOUND (100, 220, 2)

(10) To make a sound each time the symbol "moves," and have the sound increase
in frequency each time, make the following changesto the program in Exercise 8.
(You may have different changes.)

35 NOTE = 220

65 CALL SOUND (100, NOTE, 2)
67 NOTE = NOTE + 20

90 GO TO 35

Chapter Twelve
More Strings

You have used programs that contained strings in previous chapters. They were used
in INPUT, PRINT, DATA, assignment, and comparison statements. Typical examples
are:

INPUT "COLOR 1?": X

PRINT "X = ";X

A$ = "CHARACTER"

DATA "CHECK", "DEPOSIT"

IF A$= "YES" THEN 600

In this chapter, you will learn to use new statements that allow you to search existing
strings. You will learn to:

• Find the length (the number of characters) of a string.

• Extract a substring from a string.

• Find the ASCII numeric value of a character contained in a string.

• Print an ASCII character corresponding to a numeric value.

• Find the position of a given character in a string.

• Convert a numeric expression or constant to a string.

• Convert a string to a numeric expression or constant.

• Concatenate strings.

The Length of a String

The length of a string may be found by using the statement:

LEN(A$)

/ \
Length of string A$

More Strings 229

Example:

A$ = 'THIS STRING HAS 30 CHARACTERS."

t t t t ft
5 10 15 20 25 30

All characters and spaces within the quotation marks are counted. Punctuation marks
within the quotation marks are counted. The quotation marks at the beginning and
end of the string are not counted.

Enter and run the following program.

100 CALL CLEAR

110 A$ = 'THIS STRING HAS 30 CHARACTERS."
120 PRINT A$
130 PRINT LEN(A$)

When the run has been completed, you will see:

THIS STRING HAS 30 CHARACTERS.-*— A$
30 •* LEN(A$)

DONE

The LEN statement may also be used to compare the length of two strings. The following
program compares the length of A$ and B$. It then prints the results.

100 CALL CLEAR

110 REM**HERE ARE TWO STRINGS**
120 A$ = 'THIS STRING HAS 30 CHARACTERS.
130 B$ = 'THIS ONE HAS 27 CHARACTERS."

140 REM**COMPARE THEIR LENGTHS**
150 IF LEN(A$)>LEN(B$) THEN 190

160 REM**PRINT RESULTS**

170 PRINT "B$ IS LONGER THAN A$."
180 GO TO 200

190 PRINT "A$ IS LONGER THAN B$."

Of course A$ is longer than B$ in the program above. The printed message will always
be the same.

230 Introduction to TI BASIC

Now it's your turn to input two strings. The computer will tell you which is longer. It
then goes back to the beginning of the program to let you input two more strings.

100 CALL CLEAR

110 REM**INPUT FIRST STRING**
120 PRINT 'TYPE THE FIRST STRING."
130 INPUT A$

140 REM**INPUT SECOND STRING**
150 PRINT 'TYPE THE SECOND STRING."
160 INPUT B$

170 REM**COMPARE LENGTHS**
180 IF LEN(A$)>LEN(B$) THEN 230
190 IF LEN(A$) = LEN(B$jTHEN 250

200 REM**PRINT RESULTS**
210 PRINT "SECOND STRING IS LONGER."
220 GO TO 110
230 PRINT "FIRST STRING IS LONGER."
240 GO TO 110
250 PRINT 'THE STRINGS ARE EQUAL."
260 GO TO 110

When you run the program, you will find out which string is longer than the other.
But, you won't find out how much longer it is. Let's change lines 210 and 230 to
provide this information.

Change:

210 PRINT 'THE SECOND IS ";LEN(B$)-LEN(A$),"LONGER
THAN THE FIRST."

230 PRINT 'THE FIRST IS ";LEN(A$)-LEN(B$),"LONGER
THAN THE SECOND."

When you change these two lines and run the program again, the computer asks for
the first input.

TYPE THE FIRST STRING.

?•

Type in whatever you want. We typed:

THIS IS OUR FIRST STRING.

More Strings

The computer then asks for the second string.

TYPE THE FIRST STRING.
? THIS IS OUR FIRST STRING.
TYPE THE SECOND STRING.

?•

Now you type in a second message. We typed:

THIS IS OUR SECOND STRING.

231

and then pressed ENTER. The computer then compares the lengths of the messages
and prints the results. This is our result.

TYPE THE FIRST STRING.
? THIS IS OUR FIRST STRING.
TYPE THE SECOND STRING.

? THIS IS OUR SECOND STRING
SECOND STRING IS 1
LONGER THAN THE FIRST

TYPE THE FIRST STRING

?•-«•
r-> Result

Asks for another

The computer is now ready to accept the next pair of strings for comparison. Experiment
with several pairs of strings to assure yourself that each of the three responses will be
printed correctly.

Selecting a Substring of a String

Suppose that you have a string consisting of:

A$ = "ONE TWO THREE FOUR FIVE"

You want to pick out one of the words (a substring) from the string. To do this you can
use the statement:

SEG$(A$,X,Y)

AS is the name of the original string. X is the numeric value of the position (numbered
from left to right) of the first character of the substring that you wish to pick out. Y
is the number of characters in the desired substring.

232 Introduction to TI BASIC

If you wanted to print the first word in the string, you would use the statement:

PRINT SEG$(A$f1,3)

t*I Print three characters

Start from 1st position

This would print the word: ONE

If you wanted to print the second word in the string, you would use the statement:

PRINT SEG$(A$,5,3)

H
| Print three characters
Start from 5th position

This would print the word: TWO

If you wanted to print the last word in the string, you would use the statement:

PRINT SEG$(A$,20,4)

t *| Print four characters
Start from 20th position

This would print the word: FIVE

Using the SEGS statement, you can actually pick out one letter of the string at a time.
Enter and run the following program. It will pick out and print each letter from the
original string. Try it.

100 CALL CLEAR

110 REM**ASSIGN AND PRINT STRING**
120 A$ = "ONE TWO THREE FOUR FIVE"
130 PRINT A$

140 REM**PRINT EACH CHARACTER**
150 FOR X = 1 TO 23

160 PRINT SEG$(A$,X,1)
170NEXT X 1 |
180 GO TO 180 I Print only one character

Start with character number X

More Strings

The run will print this:

ONE TWO THREE FOUR FIVE
O

N

E

Some of this will scroll off the top of the screen

233

Notice that the spaces between words were also shown. These count as characters in
the SEGS statement.

234 Introduction to TI BASIC

Here is a program that combines LEN and SEG statements. Substrings are picked out,
and their lengths are compared.

100 CALL CLEAR

110 REM**ASSIGN STRING**

115 PRINT "HERE IS THE STRING."
120 A$ = "ONE TWO THREE FOUR FIVE"
125 PRINT A$

130 REM**CHOOSE FIRST SUBSTRING"
140 INPUT "FIRST WORD (1-5)? " : B

150 REM**CHECK FIRST SUBSTRING**
160 ON B GOSUB 500,520,540,560,580

170 REM**CHOOSE SECOND SUBSTRING**
180 INPUT "SECOND WORD (1-5)? " : C

190 REM**CHECK SECOND SUBSTRING**
200 ON C GOSUB 600,620,640,660,680

210 REM**COMPARE SUBSTRINGS**

220 IF LEN(B$)>LEN(C$) THEN 270
230 IF LEN(B$)=LEN(C$) THEN 290

240 REM**PRINT RESULTS**
250 PRINT C$;" IS LONGER THAN " ; B$
260 GO TO 300

270 PRINT B$," IS LONGER THAN " ; C$
280 GO TO 300

290 PRINT "LENGTHS OF ";B$ " AND ";C$; " ARE EQUAL'

300 END

500 REM**LABEL THE SUBSTRINGS**
505B$ = SEG$(A$,1,3)
510 RETURN

520 B$ = SEG$(A$,5,3)
530 RETURN

540 B$ = SEG$(A$,9,5)
550 RETURN

560B$ =SEG$(A$,15,4)
570 RETURN

580 B$ = SEG$(A$,20,4)
590 RETURN

600C$ = SEG$(A$,1,3)
610 RETURN

620 C$ = SEG$(A$,5,3)
630 RETURN

640 C$ = SEG$(A$,9,5)
650 RETURN

660 C$ = SEG$(A$,15,4)
670 RETURN

680 C$ = SEG$(A$,20,4)
690 RETURN

More Strings

How to Use the Program

The computer first prints the string:

ONE TWO THREE FOUR FIVE

It then asks you to select the first word by inputing the number of the word.

1 for the word ONE

2 for the word TWO

3 for the word THREE

4 for the word FOUR

5 for the word FIVE

or

or

or

or

235

It then asks for the second word. Once again type in one of the numbers 1,2,3,4, or 5.
The computer then compares the lengths of the two words. It prints each word and
tells which is the larger.

Examples:

HERE IS THE STRING.
ONE TWO THREE FOUR FIVE

FIRST WORD (1-5)? 4
SECOND WORD (1-5)? 5
LENGTHS OF FOUR AND FIVE
ARE EQUAL

••DONE**

>•

HERE IS THE STRING.

ONE TWO THREE FOUR FIVE
FIRST WORD (1-5)? 1
SECOND WORD (1-5)? 3
THREE IS LONGER THAN ONE

DONE

>•

HERE IS THE STRING.
ONE TWO THREE FOUR FIVE

FIRST WORD (1-5)? 5
SECOND WORD (1-5)? 2
FIVE IS LONGER THAN TWO

••DONE**

>•

236 Introduction to TI BASIC

Concatenating Strings

Now that you know how to take a string apart, let's investigate methods to rearrange
the parts to make a new string. The joining together of two or more strings is called
concatenation. Consider the two strings:

A$ = "TEXAS " -* Note the spaceafter TEXAS
B$ = "INSTRUMENTS"

To join the two together to make "TEXAS INSTRUMENTS", we use the ampersand
sign (&). A short program to do this could be:

100 CALL CLEAR

110 A$='TEXAS "
120 B$ = "INSTRUMENTS"

130 PRINT A$&B$ -*—Join A$ and B$

The display when run:

TEXAS INSTRUMENTS

••DONE**

>•

String variables can also be used to concatenate strings. Let's start withthe string:

Z$= "HAVE FUN WITH STRINGS" -« Original string
1 23456789012345678901

t \
ten twenty

PRINT A$ & B$ -« Print the joined segments

Now, if we put these statements in a program and run it, what would we see?

100 CALL CLEAR

110 REM**DEFINE THE STRING**

120 Z$ = "HAVE FUN WITH STRINGS"

130 REM**PICK SUBSTRINGS**
140 A$ = SEG$(Z$,15,6)
150B$ = SEG$(Z$,5,4)

160 REM**PRINT RESULTS**

170 PRINT A$&B$

Here's the result.

STRING FUN

••DONE**

>•

More Strings 237

Let's play some more. Change lines 140 and 150 to:

140 A$ = SEG$(A$,15,7) & " "
150 B$ =SEG$(Z$,1,8) *Blank space

Note in line 140: Quoted strings may be concatenated with substrings. The run shows:

STRINGS HAVE FUN

••DONE**

>D

See if you can figure out what the display will show if lines 140 and 150 are changed
as shown below. Then make the changes and rerun the program.

140A$ = SEG$(A$,1,14)

150 B$ = SEG$(Z$#11,2)

The run:

HAVE FUN WITH IT

••DONE**

>•

The next one is a little more difficult. Change the lines to:

140 A$ = SEG$(Z$,17,4) &SEG$(Z$,18,3)
150B$ = SEG$(Z$,14,8)

238 Introduction to TI BASIC

The run:

RINGING STRINGS

••DONE**

>•

One last change:

140 A$ = SEG$(Z$,11,2) & " "& SEG$(Z$,1,2) & SEG$(Z$,15,1)
150 B$ =SEG$(Z$,5,2) & SEG$(Z$,11,2) 8i SEG$(Z$,15,1)

The run:

IT HAS FITS

••DONE**

>•

Here is a program that will let you input your own string, pick out three substrings, and
concatenate the substrings into a new string. If you have only two substrings, input
any positive number for E (the starting character of the third substring) and input 0
(zero) for F. This will return a null string (nothing) for the third string.

PLAYING ON THE STRINGS

100 CALL CLEAR

110 REM**INPUT THE STRING**
120 PRINT "WHAT IS YOUR STRING"
130 INPUT Z$

140 REM**CHOOSE SUBSTRINGS**

150 PRINT "STARTING CHARACTER'V'FIRST SUBSTRING"
160 INPUT A

170 PRINT "NUMBER OF CHARACTERS"
180 INPUT B

190 PRINT "STARTING CHARACTER","SECOND SUBSTRING'
200 INPUT C

210 PRINT "NUMBER OF CHARACTERS"
220 INPUT D

230 PRINT "STARTING CHARACTER","THIRD SUBSTRING"
240 INPUT E

250 PRINT "NUMBER OF CHARACTERS"
260 INPUT F

270 REM**FIND SUBSTRINGS**

280 A$ = SEG$(Z$,A,B)
290B$ = SEG$(Z$,C,D)
300 C$ = SEG$(Z$,E,F)

310 REM**PRINT NEW STRING**
320 CALL CLEAR
330 PRINT A$&B$&C$
340 PRINT

350 GO TO 110

More Strings

Sample run —first input the data:

WHAT IS YOUR STRING
? SLOWLY SLIPPING STRINGS
STARTING CHARACTER

FIRST SUBSTRING
?12

NUMBER OF CHARACTERS
?4

STARTING CHARACTER
SECOND SUBSTRING
?13

NUMBER OF CHARACTERS
?3

STARTING CHARACTER

THIRD SUBSTRING
?16

NUMBER OF CHARACTERS
?8

The screen is then cleared to print the results.

PINGING STRINGS •*-

WHAT IS YOUR STRING-*-

—Rearranged string

—Ready for a new string

Experiment with this program until you have a good feel for manipulating strings.
When you have finished, we'll look at some more string statements.

239

ASCII Codes

The computer uses ASCII codes to convert numbers to a form that will produce alpha
numeric characters on the screen. BASIC has a statement that will display the ASCII
code for any alphanumeric and other characters.

For example:

PRINT ASCC'A")

would display:

65 -* The ASCII code for A

240 Introduction to TI BASIC

The statement ASC(A$)

will return the numeric value of the first character of the string, A$. If

A$ = "HAVE FUN WITH STRINGS'

the statement: PRINT ASC(A$) would display: 72-« The ASCII code for H

The ASC statement can also be used with the SEGS statement to pick any desired
character out of a string. The following program illustrates this use.

100 CALL CLEAR

110 Z$ = "HAVE FUN WITH STRINGS"
120 PRINT Z$
130 INPUT "WHICH CHARACTER?":A
140B$ = SEG$(Z$,A,1)
150 PRINT ASC(B$)

The program:

(1) Prints : HAVE FUN WITH STRINGS

(2) Asks: WHICH CHARACTER?

(3) You then respond with any integer from 1 through 21.

(4) The computer responds with the ASCII code for your selected number.

Here are some examples:

HAVE FUN WITH STRINGS -*•
WHICH CHARACTER? 6 -+—

70 -*—

•DONE'

>•

HAVE FUN WITH STRINGS

WHICH CHARACTER? 10 -
87 -+

DONE

>•

HAVE FUN WITH STRINGS

WHICH CHARACTER? 15 -*
83 -«

DONE

>•

The string
•6th character is F
ASCII code for F

•10th character is W
•ASCII code for W

•15th character is S
ASCII code for S

More Strings 2U

We can print a table for the ASCII codes for the complete alphabet with the following
program.

ASCII-ALPHABET PROGRAM

100 CALL CLEAR
110 REM**PRINT ASCII CODES FOR A-Z**
120 Z$ = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"-« The string
130 FOR W = 1 TO 26
140 A$ = SEG$(Z$,W,1)-* Pick one character startingat position W
150 PRINT A$;ASC(A$),
160 NEXT W

170 END

The RUN displays:

A 65 B 66

C 67 D 68

E 69 F 70

G 71 H 72

I 73 J 74

K 75 L 76

M 77 N 78

O 79 P 80

Q 81 R 82

S 83 T 84

U 85 V 86

W 87 X 88

Y 89 Z 90

•DONE1

>•

Numerals are also assigned ASCII codes (a complete table of ASCII codes is given in
the Appendix). If we modify lines 120 and 130 of the previous program, we can display
the ASCII codes of the numerals 0 through 9. Each digit has a separate code.

120 Z$= "0123456789"

130 FOR W = 1 TO 10

The run displays the numerals and their ASCII codes.

0 48 1 49

2 50 3 51

4 52 5 53

6 54 7 55

8 56 9 57

DONE

•

242 Introduction to TI BASIC

Remember, ASC(A$) returns the ASCII code for only thefirst character of the string,
A$. Therefore, we used the SEG$ statementto move from character to character
within the string, Z$.

Finding a Character from its ASCII Code

You can also reverse the procedure of the ASC statement. To print an alphanumeric
character from its code, you use:

PRINT CHR$(XX)

Examples:

Where XX is the ASCII code for the desired character

PRINT CHR$(55)

would print: 7 - •The character whose ASCII code is 55

PRINT CHR$(65)

would print: A -* The characterwhose ASCII code is 65

PRINT CHR$(87)

would print: W -*— The character whose ASCII code is 87

PRINT CHR$(32)

would print: blank-*—The character whoseASCII code is 32

A message can be printed by using CHR$ to print characters from their ASCII codes.
Here is a program that prints such a message.

CHR$ PRINTING PROGRAM

100 CALL CLEAR
110 PRINT CHR$(84),-CHR$(72),-CHR(69) Prints: THE

120 PRINT CHR$(65),-CHR$(83),-CHR$(67);CHR$(73)f-CHR$(73)-*—Prints: ASCII
130 PRINTCHR$(67);CHR$(79);CHR$(68);CHR$(69)-« Prints: CODE
140 PRINTCHR$(70);CHR$(79),-CHR$(82) ~* Prints: FOR
150 PRINT CHR$(55),-CHR$(32),-CHR$(73),-CHR$(83)-* Prints: 7 IS
160 PRINTCHR$(53);CHR$(53)-« Prints: 55
170 END

The run:

THE

ASCII

CODE

FOR
7 IS

55

DONE

V°

More Strings 2^3

Searching a String

Your computer also has the ability to "look" through a given string in search of an
entire second string. Suppose that you have two strings, A$ and B$. You can start a
search of A$ at any position within A$ for the first occurrence of the string B$. The
format for the statement is:

POS(A$,B$,X)-« where X is an integer

This statement would find the first occurrence of the B$ in A$. It would start looking
from the Xth position in A$. For example, if A$ = "THIS IS A STRING TO BE
SEARCHED" and B$ = "IS", then

(1) POS(A$,B$,D = 3

/ \
Look Start at ^ Found at
for B$ 1st position position 3

ofA$

B$ was found at the 3rd position of A$ for a search that started at position 1

(2) POS(A$,B$,4)=6.

Start at Found at

4th position position 6
this time

If we start the search at position 4, B$ is found in position 6.

Ordering Words

You now have the tools necessary for ordering words according to their alphabetic
position. Consider the words:

MONKEY

ZEBRA

BEAR

The words asshown arenot in alphabetical order. Alphabetically arranged, their
order would be:

BEAR B comes before M and Z
MONKEY M comes after B but before Z
ZEBRA Z comes last

2U Introduction to TI BASIC

If the nameswere assigned to string variables, we coulduse the ASC statement to find
the ASCII numeric value for the first character of each string.

Example:

A$ ="MONKEY

B$ = "ZEBRA"

C$ = "BEAR"

A = ASC(A$)-« (77)
B = ASC(B$) -« (90)
C = ASC{C$) -« (66)

It now becomes easy to put the values of the variables A, B, and C in numerical order.
Thus, we have a way to order the words MONKEY, ZEBRA, and BEAR. The program
that follows will let you input three strings. It tests only for the first character in each
string. If two strings start with the same character, their order will not be switched.
Therefore, the inputs should all start with a different letter.

ORDERING PROGRAM

100 CALL CLEAR

110 REM**INPUT 3 STRINGS**

120 PRINT "FIRST STRING";
130 INPUT A$
140 PRINT "SECOND STRING";
150 INPUT B$
160 PRINT 'THIRD STRING";
170 INPUT C$

200 REM**TEST STRINGS AND PRINT**

210 IF ASC(A$) >ASC(B$) THEN 300
220 IF ASC(A$)>ASC(C$) THEN 400
230 PRINT A$
240 IF ASC(B$) >ASC(C$) THEN 500
250 PRINT B$
260 PRINT C$
270 END

300 REM**SWITCH STRINGS 1 AND 2
310 Z$ = B$
320 B$ = A$
330 A$ = Z$
340 GO TO 220

400 REM**SWITCH STRINGS 1 AND 3**
410Z$ = C$
420 C$ = A$
430 A$ = Z$
440 GO TO 230

500 REM**SWITCH STRINGS 2 AND 3**
510 Z$ = C$
520 C$ = B$
530 B$ = Z$
540 GO TO 250

More Strings

Sample runs:

FIRST STRING? MONKEY
SECOND STRING? ZEBRA

THIRD STRING? BEAR

BEAR

MONKEY

ZEBRA

•DONE1

>•

FIRST STRING? QUEEN
SECOND STRING? JACK
THIRD STRING? KING
JACK
KING

QUEEN

DONE

>•

245

Comparing Two Strings

Let's now look more closely at string comparisons. We can compare more than just
the beginning character of two strings by utilizing the SEG$ statement. Suppose that
we want to compare the two words DODGER and DODGEM. Each word has six
letters, and the two words can be compared one letter at a time. A search to produce
the ASCII codes for a six letter word could be performed by this loop.

100 CALL CLEAR
110 A$ = "DODGER"
120 FOR X = 1 TO 6

130 PRINT ASC(SEG$(A$,X,1))
140 NEXT X

This loop would print:

68

79

68

71

69

82

**DONE*<

>•

246 Introduction to TIBASIC

Now we expand that loop to compare the two words DODGER and DODGEM.
100 CALL CLEAR

110 A$= "DODGER"
120 B$= "DODGEM"
130 FOR X = 1 TO 6
140 A = ASC(SEG$(A$,X,1))
150 B = ASC(SEG$(B$,Xf1))
160IFA< >
170 NEXT X

180 PRINT 'THE WORDS ARE EQUAL"
190 GO TO 240

200 IF A>B THEN 230

210 PRINT A$;" COMES BEFORE ";B$
220 GO TO 240

230 PRINT B$;" COMES BEFORE ";A$
240 END

Here is a trace of the program showing the order in which the lines are executed and
the value X, A, and B when they are changed.

Line Executed X A B Remarks
100 -

110 - -

120 -

130 1

140 68 -

150 68

160 D = D
170 2 NEXTX

140 79
150 79
160 0 = 0
170 3 NEXT X

140 68

150 68
160 D = D
170 4 NEXT X

140 71

150 71
160 G = G
170 5 NEXT X

140 69
150 69
160 E = E
170 6 NEXT X

140 82
150 83
160 R< >M

GO TO 200

200 R< M

210 prints: DODGER COMES BEFORE DODGEM

More Strings

If you want to input your own strings, change lines 110 and 120 to:

110 INPUT "FIRST WORD?" : A$

120 INPUT "SECOND WORD?" : B$

Sample runs produced by this modification:

FIRST WORD? JUMPS
SECOND WORD? JUMPED
JUMPED COMES BEFORE JUMPS-+-

•DONE1

>•

FIRST WORD? SEVEN

SECOND WORD? SEVEN

THE WORDS ARE EQUAL-«-

'DONE1

>•

Since 69< 83 (E)<(S)

•Since all letters are the same

247

FIRST WORD? FELL
SECOND WORD? FELLED
FELL COMES BEFORE FELLED

DONE

>•

The first four letters are equal. When the fifth
letter of FELL is not found, SEG$(A$,5,1) is
assigned a null whose ASCII code is 0. Since
0<69, FELL comes before FELLED.

Numbers to Strings and Strings to Numbers

It is sometimes convenient to use a numeric value as a string. Since computers handle
the two types separately, it becomes necessary to convert from one type to the tother.
To change a numeric expression (X) to a string, you would use the statement:

A$ = STR$(X)

The number would then be treated as a string.

If X = 17.3. then STR$(X) equals the string " 17.3".

While arithmetic operations may be performed on the value of X, 17.3, only string
operations and functions may be performed on the string " 17.3".

If X = 29.3 and Y = -17.5, then STR$(X+Y) equals the string " 11.8'

248 Introduction to TIBASIC

Sample program:

100 CALL CLEAR

110 X = 29.3

120 Y =-17.5

130 PRINT "X= ";X
140 PRINT "Y= ";Y
150 PRINT STR$(X)
160 PRINT STR$(Y)
170 PRINT STR$(X + Y)
180 PRINT STR$(X) & STR$(Y)

The run:

X= 29.3

Y= -17.5

29.3 -*-

-17.5 -*-

11.8 -*—

•STR$(X)
•STR$(Y)
STR$(X+Y)

Arithmetic operation on numeric values
String operation on strings

29.3-17.5-«-STR$(X) & STR$(Y)

DONE
>D

The VAL(A$) function performs the inverse of the STR$(X) function. It changes the
string A$ to a numeric constant (provided A$ is a valid representation of a numeric
constant). For example:

If A$ = "100", then VAL(A$) equals the numeric value 100.
If A$ = "100", and B$ = "5", then VAL(A$ & " . " & B$) equals the numeric value 100.5.

Sample program:

100 CALL CLEAR

110A$ = "100"
120B$="5"
130 PRINT A$
140 PRINT B$
150 PRINT A$&B$
160 PRINT VAL(A$)
170 PRINT VAL(B$)
180 PRINT VAL(A$& &B$)
190 PRINT VAL{A$) + VAL(B$)

The run:

String operations on strings
Arithmetic operation on numeric constants

100 -

5 •*-

1005

100

5-«-

100.5

105 -*•

•A$
•B$
A$ & B$
VAL(A$)
VAL(B$)
VAL(A$&"."&B$)
VAL(A$) + VAL(B$)

DONE

More Strings 249

Summary of Chapter Twelve

This chapter has been devoted entirely to strings. You have learned to:

Find the length of a string.

Compare the lengths of two strings.

Select a substring from a string.

Concatenate substrings of a string.

Find the ASCII code of a character.

Find the character of a valid ASCII code.

Find the relative position of a character within a string.

Arrange words in alphabetical order.

Change strings to numeric constant format.

Change numeric expressions to string format.

250 Introduction to TIBASIC

Chapter Twelve Exercises

(1) If A$ = "A STRING", what would be the value of LEN(A$)?.

(2) Complete the following program to compare the lengths of two strings. Choose
your answers from the expressions:

LONGER THAN, SHORTER THAN, or EQUAL TO

100 INPUT A$
110 INPUT B$
120 IF LEN(A$)<LEN(B$) GO TO 160
130 IF LEN(A$) = LEN(B$) GO TO 180

140 PRINT "A$ IS B$"
150 GO TO 110

160 PRINT "A$ IS B$"
170 GO TO 110

180 PRINT "A$ IS B$"
190 GO TO 110

(3) IF A$ = "WHO'S FIRST" and B$ = "WHO'S SECOND", what is the value of
LEN(B$) - LEN(A$)?

(4) IF A$ = "I HOPE YOU GET THIS RIGHT.", what is SEG$(A$,21,6)?

(5) What would this program display when run?

100 CALL CLEAR

110 A$ = "PICK A WORD FROM ME."
120 B$ = "THIS STRING IS LONGER."
130 PRINT SEG$(A$,1,7);SEG$(B$,6,6);SEG$(B$,22,1)
140 END

(6) Show what would be on the display afterthis program in run.

100 CALL CLEAR
110 Z$ = "SCRAMBLE THE WORDS"
120 PRINTSEG$(Z$,10,4) & SEG$(Z$,3,6)
130 END

More Strings 251

(7) What values would be printed by this program?

100 CALL CLEAR

110A$ = "ABC"
120 FORX = 1T03

130 PRINT ASC(SEG$(A$,X,D)
140 NEXT X

150 END

Printed values =

(8) Give the characters for each of these ASCII codes.

CHR$(82) =

CHR$(50) =

CHR$(68) =

CHR$(84) =

CHR$(87) =

CHR$(79) =

(9) IF AS = "225" and B$ = "16",

(a) VAL(A$ & "." & B$) = _

(b) VAL(A$) + VAL(B$) = _

(10) IfX = 43andY=-22,

(a) STR$(X + Y) = '

(b) STR$(X) & STR$(Y) = "

(c) VAL(STR$(X)) + VAL(STR$(Y)) =

252 Introduction to TIBASIC

Answers to Chapter Twelve Exercises

(1) 8

(2) 140 A$ IS LONGER THAN B$
160 A$ IS SHORTER THAN B$
180 A$ IS EQUAL TO B$

(3) 1 (12-11 = 1)

(4) RIGHT.

(5)

PICK A STRING.

DONE

(6)

THE RAMBLE

DONE**

(7) 65
66

67

(8) R
2

D

T

W

0

(9) (a) 225.16 (b) 241

(10) (a)
(b)
(c)

"21"

"43 - 22"

21

(a string)
(a string)
(a number)

Chapter Thirteen
Editing

You know how to correct a program line which has not been completely entered by:

(1) Using the SHIFT S or the SHI FT D keys, or by

(2) Retyping the whole line

TI BASIC also has useful tools, called EDIT commands, for correcting lines that have
been entered. Characters may be deleted from, or inserted into, existing program lines.
Let's begin by looking at how you edit a single program Une.

One Line Editing

Suppose you have already entered this program.

10 LET A = 10

20 FOR I = 1 TO 12

30 PRINT A

40 A = A*10

50 NEXT I

Now, you decide to change the upper limit of the FOR-NEXT loop from 12 to 10.
Instead of retyping line 20, you can correct it with the following steps.

(1) Type: EDIT 20

> EDIT 20
20BOR I =1 TO 12-«—Line 20 appears!

Cursor blinks here

254 Introduction to TI BASIC

(2) Move the cursor to the right by holding down the SHI FT key and pressing
the D key.

EDIT 20

20 F0R 1 = 1 TO 12

Cursor moves one place to the right

(3) Continue holding down the SHIFT key and press the D key several more
times until the cursor is blinking over the 2.

20FOB]l=1TO12

20 FORO=1 TO 12
20FORUj = 1TO12

20 FOR l@ 1 TO 12

20 FOR l=[TJTO 12

20 FOR I=1DT0 12

20 FOR 1=1 UJO 12
20 FOR 1=1 TS3 12

20 FOR 1=1 TOD12

20 FOR 1=1 TODD 2

Finally, with the last key press:

20 FOR 1=1 TO 11

As you continue the operation,
cursor moves to the right, one
step at a time

•Cursor moves to here

Note: If you move too far to the right, you can back up by holding dow the SHI FT
key and pressing the S key until the cursor is over the 2.

(4) Delete the numeral 2 by pressing the zero key.

20 FOR 1=1 TO 10D -«- Cursor moves to next position in case
you want to add more characters

(5) If this is all the editing necessary, you leave the EDIT move by pressing
the ENTER key.

Editing 255

To make sure that your edited program is correct, type CALL CLEAR and LIST. You
will see the corrected result.

>LIST
10LETA=10
20 FOR 1=1 TO 10 -« The edited line has been corrected
30 PRINT A

40LETA=A*10

50 NEXT I

>•

Let's try another one line correction. Suppose on looking over the listing, you would
like to change line 40 to:

40 LET A=A*20

Once again, enter the EDIT mode by typing: EDIT 40. Line 40 appears with the cursor
positioned over the L.

40 EETA=A*10

The cursor is always placed over the first character to the right of the line number when
you enter the EDIT mode. You can then edit any part of the line from this first character
to the end of the line.

If you hold down the SHIFT key and press the D key eight times, this sequence of cursor
shifts will result.

40 L ETA=A*10

40 LE (H A=A*10
40 LETOA=A*10

40 LET EI =A*10

40 LET A El A*10
40LETA= Q *10
4OLETA=A0 10
40 LET A=A* [I 0

Since you would like to change the 1 to a 2, press the numeral two on the keyboard.

40 LET A=A*2QH The cursor is now over the zero

Since that is the only change desired, the ENTER key is pressed and you leave the
EDIT mode.

256 Introduction to TI BASIC

Editing More Than One Line

While in the editing mode, you may change several program lines. When making several
changes, be careful not to press the ENTER key after correcting the first line. That
action takes you out o/the editing mode, and you still have edit changes to make.

Enter this program after typing NEW.

10 CALL CLEAR

20 INPUT "FOREGROUND COLOR":F

30 INPUT "BACKGROUND COLOR:^ B ^Colon intentionaUy left out
40 CALL COLOR(2,F,B)
50 CALL HCHAR{12,3,42,28)
60 GO TO 55 -* Intentional error - GO TO a non-existent line

"t>-(

When the program is run, it asks for the foreground color. The number 5 is input and
the ENTER key is pressed. The computer then detects the error in line 30.

FORGROUND COLOR 5

> "INCORRECT STATEMENT
IN 30

>•

The procedure is similar to editing one line. You enter the EDIT mode.

(1) Type: EDIT 30 and this is what you see on the screen.

FOREGROUND COLOR 5 -«-

♦INCORRECT STATEMENT
IN 30

> EDIT 30

>30H NPUT "BACKGROUND COLOR:" B

V /'Cursor

First try

,Line 30 is printed so that you can
look for the error

Here is the error — no colon

(2) Hold down the SHI FT key and press D 25 times (or until the cursor is
over the B).

30 INPUT "BACKGROUND COLOR:"fl2

We are now going to insert the colon. The B will not be removed. When
the colon is inserted the B is automatically shifted to the right one place
to make room for the colon.

Editing 257

(3) Hold down the SHI FT key and press G.

(4) Type in the missing colon.
Colon is inserted and B shifted to the

30 INPUT "BACKGROUND COLOR:" (B^ right to make room. Cursor is still
over the B

At this point, you decide to correct the other error in line 60 while you
are still in the EDIT mode. You do not press ENTER. Instead, you press
SHIFT and the X key to move the line following Une 30 into the edit
position.

(5) Hold down the SHIFT key and press the X key. The next line is displayed.

30 INPUT "BACKGROUND COLOR:":B Corrected line

40 El ALLCOLOR(2,F,B) -« Ready for editing

Since line 40 does not need changing, you can move on to the next Une
as in step 5.

(6) While holding down the SHI FT key, press the X key again. The next
Une rolls into place.

30 INPUT "BACKGROUND COLOR:":B

40 CALL COLOR(2,F,B)
50E3ALL HCHAR(12,3,42,28) -« This line is now ready for editing

Line 50 is OK also —so you move again.

(7) Once more, hold down the SHI FT key and press the Xkey. The next
line roUs into place.

30 INPUT "BACKGROUND COLOR:":B

40CALLCOLOR(2,F,B)
50 CALL HCHAR(12,3,42,28)
60E2O TO 55 -^ This is the line youwant to edit

258 Introduction to TI BASIC

(8) Hold SHIFT and press D six times to get the cursor over the first digit in
the number 55.

60 GO TO® 5

(9) Hold SHIFT and press F.

60 GO TO EH Theleft 5 disappears. The right5 shifts left one
place and is now under the cursor

(10) Hold SHIFT and press F again.

60 GO TO• -« Both 5's are gone

(11) Type: 60 The Une now shows:

60 GO TO 60 D

At this point, hitting ENTER records all the edit changes and gets you out
of the EDIT mode. But hold it!!

You look back at Une 20 and decide that the Une would look better if you added a colon
after the word COLOR. Using the SHIFT key with the E key, you can move from one
line to the preceding Une. Since you are on line 60, you hold down the SHIFT key and press
the E key three times.

60 GO TO 60

50S3 ALL HCHAR(12,3,42,28) -«-

60 GO TO 60

50 CALL HCHAR(12,3,42,28)
40K2 ALL COLOR(2,F,B) -*-

60 GO TO 60

50 CALL HCHAR(12,3,42,28)
40 CALL COLOR(2,F,B)
30DDNPUT "BACKGROUND COLOR:":B -<-

Once

Twice

Three times is the charm!

Editing 259

You are almost to Une 20. But now it's your turn! You tell us how to get to Une 20
and put the colon after the word COLOR.

(1) Hold down the SHIFT and press the key.

(2) Hold down SHIFT and press 23 times to get the cursor over
the quote mark after the word COLOR.

(3) Hold down SH IFT and press .

(4) Type in the .

(5) The cursor will now be over the old .

(Answers at the beginning of the Answers to Exercises for this chapter.)

Since you are now through EDITING, you can press ENTER. Remember, when you are
in the EDIT mode, press ENTER only after you have completed all editing. This action
takes you out of the EDIT mode, and you're ready to do other things. Right now you can
check the program for the results of the editing changes.

Type CALL CLEAR and then type LIST. Now you see the program with all the corrections.

>LIST
10 CALL CLEAR

20 INPUT "FOREGROUND COLOR:":F
30 INPUT "BACKGROUND COLOR:":B
40 CALL COLOR(2,F;B)
50 CALL HCHAR(12,3,42,28)
60 GO TO 60

>•

Deleting a Whole Line

Another editing command, the SHIFTed T key, saves both time and work. It deletes all
the characters on a line except the line number. Suppose you are editing a line and you
decide to start the whole line over again.

30 CALL COLOR(8, E ,B) You are in the midst of editing line 30. The cursor
is over the F of the color parameters

260 Introduction to TI BASIC

Hold down the SHIFT key and press T.

30 • ~* • .Tne whole line is erased, but the linenumber is left.
The computer isready for you to type in a newline 30

Try this editing command on several lines of the current program. Then press ENTER
and LIST the results.

Ignoring All Changes

Sometimes we humans have trouble making upour minds - or we change our minds in
the middle of some activity. Suppose youare in the middle of editing aline and having
made some changes, you decide that you didn't want to make those changes afteraU.
TI BASIC has an editing command just for this situation. The SHIFTed C key signals the
computer to quit editing and ignore all the changes that have been made in the Une being
worked on.

For example, consider a program that contains the Une:

50 Y = (A-B)/(C-E)

While in the EDIT mode, you change this line to read:

50 Y = (B-A)/(E-C CD

Notice that the cursor is still on Une 50 and you have not left the EDIT mode. You
reaUze, in reviewing the changes, that Une 50 was originally correct. Rather than retype
the whole Une or re-edit it, you can:

Hold down the SHI FT key and press C. Line 50 willnow be backin its original form.

50 Y = (A-B)/(C-E)

This key only works onthe line that you are presently editing. Once you leave that Une,
you have to re-edit it if you want it changed.

Editing 261

Automatic Line Numbering

Closely associated with editing programs is the numbering of program Unes. You can
save some workby using the automatic linenumbering feature, NUM, of your TI Home
Computer. All you have to do is state your first line number and the interval you want
between lines. The computer then automatically provides the number for each line. Ifyou
enter just the command NUM, the computerassumes you wish to start with line 100
and use intervals of 10.

For example:

NUM

provides 100 as the first Une number for your program. After Une 100 has been entered,
your second line is automatically numbered 110. Eachsucceeding line is numbered in
increments of 10.

Type: NUM

NUM

100 D

Type in line 100:

Cursor positioned for line 100

NUM

100 LET A = 10
110 D -« Cursor ready for line 110

Type in Une 110:

NUM

100 LET A = 10
110LETB = A+5
120 •

262 Introduction to TI BASIC

Type in Une 120:

NUM

100 LET A = 10

110LETB = A+5
120 INPUT "C=":C

130 D

This process continues until your complete program is entered. If you hit ENTER as
the first keystroke after a line number, the automatic Une numbering stops.

If you wish to enter Unes beginning witha line number other than 100, type NUM followed
by the starting line number value. For example,

NUM 10

prompts you with a series of line numbers beginning at 10 with intervals of 10 between
each line. The line numbers for this case would be 10, 20, 30 and so forth.

Typing the foUowing command

NUM 10,2

would generate Une numbers starting at 10with intervals of 2 (10, 12, 14, and so forth).

The RESequence Command

The resequence command, RES, works exactly like NUM except that it takes an existing
program and completely resequences the Une numbers. This operation is handy when
several Unes have been inserted into a program and the line numbering is becoming disorderly.

The RES command format is:

RES starting line number, interval

Just Uke NUM, if no starting line number and interval are specified, RES assumes you
wish to start at 100 with intervals of 10.

Let's try RES on a sample program.

10 CALL CLEAR

20 PRINT "HELLO PEOPLE"

30 GO TO 20
RES-< •Command to resequence the line numbers

Editing

If we now LIST the program, the screen shows:

>LIST

100 CALL CLEAR
110 PRINT "HELLO PEOPLE'
120 GO TO 110

>•

What's that! Line 120of the newly numbered program now reads

120 GO TO 110

Before using RES, it read

30 GO TO 20

263

Isn't that clever! The RES command is smart enough to look through a program and
change the line number references that are in GO TO statements. In fact, RES will
change all the Une number references in GO TO, IF and any other BASIC statements
automatically. RES is a powerful command.

This section completes the chapter on editing. Time to move on to the chapter summary
and a set of editing exercises.

2 64 Introduction to TI BASIC

Summary of Edit Commands

The SH IFT key is used with all of the EDIT keys.

Move to Une preceding the present line.

Move to line following the present line.

Move left one position.

Move right one position.

DEL

F
Delete the character under the cursor. All characters to the right of the cursor
will move one place to the left.

r^jn Insert a numberof characters. As characters are inserted, all those to the right of
I G I the cursor wUl move one place to theright for each new character inserted. The

cursor and the character under it also move right one place.

I T I Deletes all the characters on the current Une except for the line number.

I c I Break - quit editing. The changes in the Une being edited are ignored.

ENTER Quit editing and accept all changes as permanent.

You also covered the Une numbering commands NUM and RES. NUM generates line
numbers and line number intervals for you. This command reduces your typing efforts.
RES will resequence an entire program's line numbering, including any references to line
numbers in GO TO and IF statements. Both commands have the same format:

NUM starting line number, interval

RES starting line number, interval

If no starting line number and interval is specified, both commands start with line
number 100 and use intervals of 10. If only the starting line number is given, the
interval is assumed to be 10.

Editing 265

Chapter Exercises

(1) When editing a line, which key (with SHI FT held down)

(a) Moves the cursor to the right?

(b) Moves the cursor to the left?

(2) If the SHI FT key is held down and the D key is pressed five times and the S key
twice, where would the cursor be in Une 50?

50 PRINT "ANI HAL CRACKERS'

(3) You enter this program.

100 CALL CLEAR

110LETA = 1

120 PRINT "A = "A
130 A = A+1

140 GO TO 120

You then type CALL CLEAR, followed by EDIT 110. Then press X twice while
holding down the SHIFT key. Show what is now on the screen.

(4) Complete the blanks below. Tell how to edit line 130 in exercise 3 so that the
program prints only odd integers (1,3,4, etc.).

SHIFT Q times
Then type:

ENTER Q
(5) You are editing line 60 below.

60 PRINT "ICE C (H EAM CONES"

You hold down SHIFT and press T. Describe the results:

266 Introduction to TI BASIC

(6) You wish to edit line 110 of the program below. You are already in the EDIT
mode with the cursor on line 120 as shown.

100 CALL CLEAR

110 PRINT "ICE CRAEM"
120 PRINT "IS COOL"

120 PRINT "IS8300L"

What is the quickest way to get to line 110 for editing?

(7) You are now at line 110 of the exercise 6 program and want to spell ICE CREAM
correctly. FiU in the blanks below to make the correction.

SHIFT I | times Type: | | | | and press: | |
(8) Now that the program has been corrected in exercise 7, how do you get out of

EDIT mode?

(9) What line numbers would be automatically provided for a five-line program by:

NUM200,5 , , , , and

Editing 267

Answers to Questions on Page 259

(1) E (2) D (3) E (4) : (5) "

Answers to Exercises

(1) (a) D (b) S

(2) Over the blank between the words ANIMAL and CRACKERS.

(3) 110LETA = 1
120 PRINT "A = "A
130 El =A+1

(4) D 4 times

Then type: 2 ENTER

(5) Line 60 is erased except for the line number. Just the cursor appears to the right
of the line number.

60 D

(6) Hold down SH IFT and press E.

(7) D 13 times
E

A

ENTER

(8) Press ENTER

(9) 200, 205, 210, 215 and 220

Chapter Fourteen
Subroutines and Your Personal Library

You are now in the last chapter of this book. You have covered a lot of information on
your TI Home Computer and its BASIC language. You have tried many small programs
and sets of statements on the machine. You have learned how to do some fundamental
programming activities.

What is next? Well, it's time for you to start thinking of the uses and recreations that
you might create for yourself. What might those be? They could be anything - anything
you would Uke to have your Home Computer do for you. The selection ranges from
games and simulations to programs that would be useful in helping you manage and run
your home.

A logical place to start building programs for yourself is in those areas that hold an
interest for you. If you are interested in games, then you might begin there. If your
interests are in using the computer for record keeping, then begin in that area. But
wherever you choose to begin, you will find that there are certain routines and procedures
that you will need over and over again. That set of routines is what this chapter is about.

In this chapter, we will develop a set of subroutines that you may find useful to have in
your personal software library. Some procedures you have seen before in the early
chapters of this book. Those routines will be repeated here, but with changes.

We wiU, in this chapter, adopt some conventions for specifying subroutines so that the
variables in the main program and those in the subroutine do not conflict.

In addition, we'll include some new procedures that have not been discussed in the book.
Taken together, these old and new routines will form the basis for your personal software
Ubrary.

Let's start with a familiar subroutine, the delay operation.

Subroutines and Your Personal Library 269

The Delay Subroutine

Earlier in this book, you learned to use a FOR-NEXT loop to delay actions on the screen.
Let's now formaUze this fundamental operation as a subroutine that could be used in any
program. We begin with the delay subroutine because you are familiar with how it works,
and it provides an uncompUcated example of how we wish to set up variable name
conventions.

For variables that are used only within a subroutine, we will adopt the convention that
they are named as follows:

Numeric variables: SUBn

String variables: SUBn$

where the n in the name is a number. Thus, SUB1, SUB2, and so forth are subroutine
numeric variable names. SUB1 $, SUB2$, and so on are subroutine string variable names.

Forvariables that are used in both themain program and the subroutine, we will attempt
to use namesthat are meaningful to whatever action is being performed. For example,
in the delay subroutine and main program, we might have cause to use a variable called
DELAY.

Why are we taking such pains to set up formal variable name conventions? We want to
minimize the chances for variable name conflicts between the main program and the
subroutines. Such conflicts can cause subtleand difficult-to-find errors in your programs.

The delay routine that you have been usinglooks something like this:

1000 REM**DELAY SUBROUTINE**

1010 FOR SUB1 = 1 TO 200-* Delay count
1020 NEXT SUB1 -* We are using our variable naming convention
1030 RETURN

For this routine to be as general as possible, the delay count needs to be specified asa
parameter that is passed into the subroutine. In that way, the procedure can be used
from within many parts of the main program and other subroutines. If we change the
routine, making the delay count a parameter, the subroutine becomes:

1000 REM**GENERAL DELAY SUBROUTINE**
1010 FOR SUB1 =1 TO DELAY-* Delay count isnow a parameter
1020 NEXT SUB1 F
1030 RETURN

The calUng sequence for thissubroutine might be:

100DELAY = 200 -* Set thedelay count
110GOSUB 1000-* Call thedelay routine

270 Introduction to TI BASIC

Do you see how we are constructing our library of routines? Again, the key elements of
what we are doing are:

(1) The use of SUB as the first three letters of the variable names that are used
exclusively within the subroutines. The three letters are followed by a
number, SUB1, SUB2, and so forth, to distinguish between various individual
variable names.

(2) In the main program, we use a name that is as meaningful as possible, for
parameters that are being passed to and from the subroutine. For the first
routine discussed, a delay operation, we used the parameter named DELAY.

Are there any variations of this subroutine that may be useful to have in your library?
What about a version that performs a delay and then clears the screen?

Delay and Clear Subroutine

In several programs that we have constructed, we had a need to implement a delay to
hold some piece of information temporarily on the screen. Then we cleared the screen.
You might find it handy to have this combined operation represented as a single
subroutine.

1100 REM**DELAY AND CLEAR SUBROUTINE**
1110 FOR SUB1 = 1 TO DELAY
1120 NEXT SUB1

1130 CALL CLEAR -« Add the screen clear command
1140 RETURN

This routine can be used as part of programs that "flash" characters or information on
the screen, and that do graphical "animation" of characters.

The calling sequence for this routine looks just like that for the regular delay operation:

100 DELAY = 300

110 GOSUB 1100 -« Call delay and clear routine

Let's construct an example using the last two subroutines. Below is the calUng sequence
that "flashes" the character (*) near the middle of the screen.

100 CALL CLEAR

110 CALL VCHAR{12,16,42)-« Put asterisk on screen
120 DELAY = 300•< Set delay parameter

Set 130GOSUB 1100 -^»^_^_Hold thecharacter on thescreen for a count
para- .^-140 DE LAY = 200 of 300, and then clear the screen
meter 150 GOSUB 1000-*^_
to new 160 GO TO 110 ^ "— Leave the screenblank for a count of 200
value

Return to line 110, and redisplay asterisk

Subroutines and Your Personal Library 271

Now that we have set the groundwork concerning naming conventions, let's move on to
more interesting subroutines. We have much to choose from given the color, sound, and
graphical capabilities of the TI Home Computer. Also, the string handling functions
provide us with other opportunities to construct hbrary routines for you. We begin with
some graphical routines.

Putting a Border Around the Screen

A useful routine, which can be called upon several times according to what is occurring
in the main program, is one that draws or redraws a border at the edge of the screen.
The use of a border to highlight what is on the screen is mainly cosmetic, but it does
lend a nice visual emphasis to whatever you place within its boundaries.

The subroutine that draws this border is given below:

1200 REM**SCREEN BORDER ROUTINE**

1210 CALL CLEAR

1220 CALL CHAR(96,"FFFFFFFFFFFFFFF")-«-
1230 CALL HCHAR(1,3,96,26) I
1240CALL HCHAR(24,3,96,26) \~*
1250 CALL VCHAR(2,3,96,22) >
1260 CALL VCHAR(2,28,96,22) f"*
1270 RETURN

•Redefine character 96 to be

•Draw top and bottom lines

Draw sides of border

The calling sequence for this routine is quite simple:

100 GOSUB 1200

You might enter this routine into your computer and give it a try. Add the following
line to hold the border on the screen so that you can view what the drawing looks like:

110 GO TO 110

The screen will show:

212 Introduction to TI BASIC

The use of CALL CHAR in the last routine suggests a couple of other subroutines. Let's
examine one such procedure.

Redefining a Block of Characters

There may be occasions when you will need to redefine a block of graphics characters
with the CALL CHAR routine. If the string values for the characters are read from
DATA statements into a string array, and the number of characters to be redefined is
known, then a single subroutine can handle the redefinition.

We will assume that the string values are in an array CHARCODE$, and that NUMCHARS
contains the value for the number of characters to be redefined. The variable,
STARTCHAR, tells the routine where to begin the block of new characters. The calling
sequence might be:

100 NUMCHARS = 10 •< Number of characters being redefined
110 STARTCHAR = 96-* Begin with character code 96
120 GOSUB 1300-« Redefine block of characters

The subroutine is given below:

1300 REM**BLOCK OF CHARACTERS - REDEFINITION**
1310 FOR SUB1 = 0 TO NUMCHARS - 1
1320 CALL CHAR(STARTCHAR + SUB1, CHARCODES$(SUB1+1))
1330 NEXT SUB1

1340 RETURN /
Character code Stringof data representing

the new character

For the example, a block of ten characters is redefined by the subroutine. The new
charactersare those with character codes 96 through 105. The string values that are
used to describe the new codes are taken from the array CHARCODES. The single
loop within the subroutine accomplishes the entire redefinition.

You might like to experiment with this subroutine. Set up a DATA statement block
that contains the string values for the new characters. Read the data into the
CHARCODES array. Call the subroutine to redefine the characters. Then display the
characters using the VCHAR and HCHAR routines.

Using VCHAR/HCHAR to Reward a Successful Guess

In learning programs or games that have a correct answer, the use of a subroutine to
perform a graphical "fireworks" display when a correct guess is made adds interest to
the program. The subroutine shown below clears the display, and randomly places
100 asterisks all about the screen. A message is printed at the bottom of the screen
that indicates the number of guesses that were made. The program then uses the

Subroutines and Your Personal Library 273

CALL KEY routine to hold the information on the screen while waiting for the user
to signal that the program can continue. The parameter GUESS is assumed to have
been set in the main program and to contain the number of guesses the player has
made. The calling sequence is therefore quite simple:

100 GOSUB 1400

The subroutine follows:

1400 REM**ROUTINE TO REWARD A GUESS**

1410 CALL CLEAR

1420 FOR SUB1 = 1 TO 100

1430 SUB2 = INT(24*RDN)+1-« Pick a row
1440 SUB3 = INT(32*RND)+1-« Pick a column
1450 CALL VCHAR (SUB2,SUB3,42H Put an asterisk at the random location
1460 NEXT SUB1

RewardJ1470 PRINT "CONGRATULATIONS!!"
message|1480 PRINT "YOU GOT IT IN ";GUESS;" GUESSES!!"

1490 PRINT "PRESS ANY KEY TO CONTINUE:";
1500 CALL KEY(0,SUB1,SUB2)\ Wait for key tobe pressed. SUB1 will contain
1510 IF SUB2 =0THEN 1500 f "* character code ofkey. SUB2 is status indicator.
1520 RETURN If no key is pressed it is zero

The routine just shown should work with any form of guessing game. You might
consider a couple of other routines that use the sound and color capabilities of the
Home Computer.

A Sound and Color Subroutine

For example, here is a sound and color subroutine that can be called upon as a reward
for a correct answer, as a signal that something in the main program is about to happen,
or as a warning signal to the user that the last move they made put them in danger. The
routine uses the CALL SCREEN operation to "flash" the background colors on the
monitor. As the colors flash, a tone is produced that oscillates up and down, over a
range of frequencies. For the routine shown, no messages are printed. You can add
whatever messages you might need to the routine, according to how it is being used by
the main program.

The calling sequence is:

100 GOSUB 1600

21U Introduction to TIBASIC

The subroutine that is based on color and sound is given below:

1600REM

1600 REM**COLOR AND SOUND WARNING/REWARD ROUTINE**
/1610 CALL CLEAR

1620 FOR SUB1 = 1 TO 5

1630 SUB2 = 100 -« Duration parameter
1640 FOR SUB3=220 TO 440 STEP 40-«—Notes going up
1650CALLSCREEN(INT(16*RND)+1H Random color change
1660 CALL SOUND(SUB2,SUB3,2H Play note
1670 SUB2 = SUB2 + 50-* Extend duration
1680 NEXT SUB3

1690 FOR SUB3 =440 TO 220 STEP -40-#-Notes going down
1700 CALL SCREEN(INT(16*RND)+1H Random colorchange '
1720 CALL SOUND(SUB2,SUB3,2)-« Play note
1730 SUB2 = SUB2 - 50 -* -Decrease duration
1740 NEXT SUB3

VJ750 NEXT SUB1
1760 RETURN

The loop (lines 1620 to 1750) that controls how many times the sets of notes are played and
color changes are made.

There are at least two variations of this last routine that you may want to construct
for yourself:

(1) Color only —a subroutine that does nothing but flash the background
colors randomly. This procedure could be used, for example, as a signal
to the user that an incorrect entry was made.

(2) Sound only —a routine that "echoes" a sound when keys are pressed on
the keyboard or that initiates a sequence of random tones when an in
correct key is pressed.

Routines like these enliven your programming efforts. They are also handy to use in
programs that are designed for small children who cannot read yet. The children quickly
learn to respond to visual and aural signals from the computer.

You may also want to experiment with the last subroutine dealing with both color and
sound. How would you change the sound portions of the program so that the notes
ululate (oscillate rapidly up and down on each successive note to produce a wailing or
siren-like sound)? Is it possible to make a sound that resembles a space drive engine or
a laser gun? You could build yourself a library of sound routines that you could use
to enhance your programs. How does that sound to you?

Removing Spaces in a String
In many applications involving stringsof data, you may want to eliminate all the spaces
in a string before you use it. The next routine does just that —removes the spaces from
a string of characters. The string variable from the main program is assumed to be named
STRINGS.

/

Subroutines and Your Personal Library 275

The calling sequence might appear as follows:

100 STRINGS = 'THIS LINE Wl LL HAVE NO SPACES"
110 GOSUB 2000
120 PRINT STRINGS

The PRINT statement is included so that you can verify that the spaces have been
removed. You may not want to include line 120 in your regular programs that use
this routine.

The subroutine that is used to squeeze the spaces from the line of data looks at each
character in STRINGS. If it is a space, the routine skips over the character. If the
character is not a space, it is concatenated (attached) to the other nonblank characters
that have been found. The space-less resultant string is placed back into STRINGS.
Note: This operation destroys the original string.

The string squeeze routine is given below:

2000 REM**SPACE REMOVAL SUBROUTINE**
2010 SUB1 = LEN(STRING$) -« Get length of STRINGS
2020 IF SUB1 = 0 THEN 2110-« Check for an empty string
2030 SUB2$ = "" -* • Set to empty string

Loop f2040 FOR SUB3 =1 TO SUB1
over 2050 SUB4$ = SEG$(STRING$,SUB3,1)-« Extract a character
all —•• 2060 IF SUB4S = " " THEN 2080-4 Check for space
char- 2070 SUB2$= SUB2$& SUB4$-« Concatenate nonblank character
acters [2080 NEXT SUB3

2090STRINGS = SUB2$-« Put squeezed string backinto STRINGS
2100 SUB2$ = ""-« Set back to empty string
2110 RETURN

Ifyou enter and RUN this routine, including the calling sequence, the following line of
data should appear on the screen:

THISLINEWILLHAVENOSPACES

There are several modifications of this subroutine that might be of use to you. You
can have the routine drop any character from a line of data by altering line 2060. In
fact, if you made line 2060 a function of a parameter that is passed from the main
program, then the routine would search out and drop any characters you wished. Try
the modification yourself and see what occurs.

Also, instead of dropping characters, you could make the routine add or change char
acters. That routine might be handy at times. If you had a function that would change
any character to any other character or set of characters, you would have one part of
a text editing system.

But how about another routine that removes all characters that are not part of the
uppercase alphabet?

276 Introduction to TIBASIC

Removing Sets of Characters from a String

This subroutine can be used to "clean up" a string of "dirty" data caused by poor
typing or errors from a cassette tape device. The procedure is similarto that of re
moving blanks. The difference between the two routines is the use of the ASC
function in this program to exclude all non-uppercase letters.

The calling sequence is:

100 STRING$ = "DR%$OPTHE!@1FU=-NNYST*&UUF"
110 GOSUB 2200
120 PRINT STRINGS

Note once again, the variable STRINGS is altered by the subroutine. The original
content of STRINGS is lost when the program is executed.

Here is the subroutine for removing all non-uppercase letters:

2200 REM**REMOVE ALL NON-UPPERCASE LETTERS ROUTINE**
2210 SUB1 = LEN(STRING$)
2220 IF SUB1 = 0 THEN 2320

2230 SUB2$ = ""
2240 FOR SUB3 = 1 TO SUB1

2250 SUB4$ = SEG$(STRING$,SUB3,1)
J2260 IF ASC(SUB4$)<65 THEN 2290) Check for non-upper
12270 IF ASC(SUB4$)>90 THEN 2290 \ case characters

2280 SUB2$ = SUB2$ & SUB4$
2290 NEXT SUB3
2300 STRINGS = SUB2$
2310SUB2$=""
2320 RETURN

Except for lines2260 and 2270, this routine is similar to Space Removal subroutine.

If you enter and RUN this program, the display will show:

DROPTHEFUNNYSTUFF

That's right! The subroutine has dropped thefunny stuff from the original line of data.
What else could you do with this routine? Yes, as in the Space Removal Subroutine, you
could change this one to add or alter characters. You could also change lines 2260 and
2270 so that only numbers would be kept - or numbers and some letters - or even have
it exclude letters but keep numbers and special characters.

But, enough on strings! Let's move on to other subroutines.

Subroutines and Your Personal Library 277

Rolling Dice

If there are any fantasy gaming people reading this book, here is a subroutine for you.
The routine simulates the rolling of a set of dice. You can roll up to ten dice at a
time. Each die can have any number of faces. The routine returns to your main program
with the values for the individual die, and a total for all dice rolled.

The calling sequence sets up NUMDICE and FACES. NUMDICE is the number of dice
to be rolled. FACES tells the routine how many faces there are on each die. The return
parameters are DICE, an array of values for the dice rolled, and TOTAL, the sum of all
the rolls. The calling sequence for a roll of five eight-sided dice is:

100 NUMDICE = 5-« Set number of dice
110 FACES = 8-* Specify faces on each die
120 GOSUB 2400

The RND function is used to select at random the values for each roll. The subroutine

looks like this:

2400 REM**DICE ROLLING ROUTINE**
2410 SUB1 = 0 •* Total of all rolls goes in SUB1
2420 FOR SUB2 = 1 TO NUMDICE
2430 SUB3 = INT(FACES*RND)+1-< Roll one die
2440 SUB1 = SUB1 + SUB3-* Accumulate total
2450 DICE(SUB2) = SUB3-* Put roll in array
2460 NEXT SUB2

2470 TOTAL= SUB1 -+ Put total in main programvariable
2480 RETURN

What would the calling sequence look like for one roll of a 100 sided die?

100 NUMDICE = 1-« One die
110 FACES = 100 -« 100 sided
120 GOSUB 2400

This subroutine will give the same values for a sequence of rolls unless the RANDOMIZE
statement is used. You can put RANDOMIZE in the calling sequence if you want each
set of rolls to be completely different.

If some of you are wondering what fantasy gaming is, just ask the next child you see to
tell you. Fantasy gaming and fantasy role playing (FRP) games are quite popular
throughout the country. There are thousands of people (adults and kids) who regularly
play Dungeons &Dragons (D&D). There are clubs, magazines (fanzines), special props,
and many other activities and specialized materials for the game. Check with your local
hobby store for details.

Let's end our hbrary tour of subroutines with some music.

278 Introduction to TIBASIC

A Music Maker Subroutine

The music features of your Home Computerare quite unique. Music adds to the
entertainment value of your machine. You can also use sound and music to make pro
grams more interesting.

It is possible to write one subroutine that will play nearly any of your "compositions."
Using arrays to hold the data needed by the SOUND routine, you can use a single sub
routine as the heart of your music making.

Recall the SOUND routine? It can play from one to three notes. It looks like this:

CALL SOi)ND(duration,note 1, loudness 1, note 2, loudness 2, note 3, loudness 3)

If we used several arrays to hold a set of durations, notes, and loudness values, we could
play all those notes using just three calls on the SOUND routine. The data for the
"melody" could be stored in DATA statements and READ into the arrays. "Tunes"
and "songs" could then be selected, read into the arrays, and played by the single sub
routine. Sounds nice, doesn't it? Let's see how we could do it.

The reason it would take three calls on SOUND isthat SOUND can play either one,
two, or three notes at a time. Thus, part of our data would have to contain the infor
mation on how many notes were to be played simultaneously.

For arrays, we would therefore need:

NUMNOTES An array of values that tell how many notes are to be played
for each call on SOUND.

DURATION An array of duration values for each call on SOUND.

NOTE1 An array of frequency values for the first note to be played.
LOUD1 A loudness value for the notes in NOTE1.

NOTE2 A second set of notes.

LOUD2 Loudness values for NOTE 2 notes.

NOTE3 A third array of notes.

LOUD3 Loudness values for NOTE3 notes.

We assume that an appropriate set of data statements has been used to fill the arrays. A
typical set of data might look like the following:

/NOTE2
500 DATA 1,200,440,2 /
510 DATA 2,500,220,4,440,5-* LOUD2
520 DATA 3,400,110,2,220,4,440,6

/ / t \ t \
NUMNOTES DURATION LOUD1 LOUD3

NOTE1 NOTE3

Subroutines and Your Personal Library 279

Only one other parameter is needed for the subroutine —the number of times CALL
SOUND is to be activated. We will use the variable NOTECOUNT for this parameter.
It will contain the number of rows of DATA statements that we used to set up the
arrays. In this case, NOTECOUNT will be set to three.

The calling sequence is:

100 NOTECOUNT = 3
110 GOSUB 2600

If needed, the main program is assumed to contain a DIM statement for declaring all
the arrays that are used in this example.

Let's look at the subroutine:

One
note

Two
notes

Three
notes

2600 REM**MUSIC MAKER SUBROUTINE**
2610 FOR SUB1 = 1 TO NOTECOUNT
2620 IF NUMNOTES(SUB1)>1 THEN 2650
2630 CALL SOUND(DURATION(SUB1),NOTE1(SUB1),LOUD1(SUB1))
2640 GO TO 2700

2650 IF NUMNOTES(SUB1)>2 THEN 2680
2660 CALL SOUND(DURATION(SUB1),NOTE1(SUB1),LOUD1(SUB1),
NOTE2(SUB1),LOUD2(SUBD)
2670 GO TO 2700

2680 IF NUMNOTES(SUB1k>3 THEN 2700
2690 CALL SOUND(DURATION(SUB1),NOTE1(SUB1),LOUD1(SUB1),
NOTE2(SUB1),LOUD2(SUB1),NOTE3(SUB1),LOUD3(SUBD)
2700 NEXT SUB1

2710 RETURN

Given a set of data in the arrays, this subroutine will play them all. The routine will
work for any set of notes and sound parameters. Why don't you compose a tune, enter
it in DATA statements, READ the data into the arrays, and have the Music Maker
Subroutine play for you? Have fun!!

280 Introduction to TI BASIC

What's Next in Adventureland?

Many pages ago, you entered the gateway to this adventureland with your Home
Computer. You have traveled widely in this land, visited places, and accumulated many
experiences about computing and computers.

Now, it's the beginning of the real adventures. We have enjoyed our brief stint serving
as your guide through the BASIC language, the TI computer's capabilities, and some
fundamental programming hints. But it's your turn. You have been shown enough so
that you can begin to experiment with the computer on your own. It's time for you
to create adventures for yourself.

Oh, yes! We forgot to mention something when we entered the gateway back at the
beginning of the book. Once you have entered the adventureland of Home Computing,
There is no simple way out. If you have worked your way through this book, picking
up the techniques for using your Home Computer as you did so, you will probably
never want to return to the starting point again. Most likely, you will want to continue
to explore and investigate more of this land. Who knows —you may even discover some
parts of this adventureland that no one has ever seen.

Enjoy your explorations. Perhaps we will bump into each other again as you pursue
your adventures.

Subroutines and Your Personal Library 281

Chapter Summary

In this chapter, the last chapter in the book, you havestarted the processof building
your personal software library. You have looked at a variety of subroutines that might
possible be included in the library of programs. You have looked at the following
procedures:

Delay Subroutine

Delay and Clear Screen Subroutine

Putting a Border on the Screen

Redefining a Block of Characters

Rewarding a Successful Guess with Asterisks

Rewarding a Guess with Sound and Color

Space Removal Subroutine

Removing Sets of Characters from a String

Dice Roll Subroutine

Music Maker Subroutine

In addition, you were given hints on how to change the current set of subroutines into
several other procedures that you might find useful.

You probably feel as if you have covered quite a lot of material in just this chapter alone.
Your are right! You have. This chapter brought together many of the BASIC language
features that were discussed throughout the rest of the book. So you had to work hard
to make it through these last few pages.

The authors are aware of this fact and have prepared a surprise for you. There is no
set of exercises at the end of this chapter. You have graduated. Good luck and goodbye!

Appendix A
Musical Notes and Frequencies

The tones produced by the Texas Instruments Home Computer are generated by the
CALL SOUND statement. (See Chapter 1 for an explanation of the CALL SOUND
statement).

The frequency designated in the CALL SOUND statement determines the tone that is
produced. The acceptable value range for frequencies is from 110to 44.733 Hertz (cycles
per second). Noninteger entries within this range are acceptable as inputs in the CALL
SOUND statement, but they are rounded to nearest integers by the computer before
execution.

The following table gives frequency values (rounded to integers) for four octaves in the
tempered scale (one half-step between notes). While these values do not, of course,
represent the entire range of tones — or even of musical tones — they can give you a basis
for musical programs. (See Appendix D for a frequency-generating program.)

Frequency Note Frequency Note

110 A 440 A (above middle C)
117 A#.B 466 A#.B

123 B 494 B

131 C (low C) 523 C (high C)
139 C#.D 554 C#.D

147 D 587 D

156 D#.E 622 D#.E

165 E 659 E

175 F 698 F

185 F#.G 740 F#.G

196 G 784 G

208 G#.B 831 G#.A

220 A (below middle C) 880 A (above high C)

220 A (below middle C) 880 A (above high C)
233 A#.B 932 A#.B

247 B 988 B

262 C (middle C) 1047 C

277 C#.D 1109 C#.D

294 D 1175 D

311 D#.E 1245 D#.E

330 E 1319 E

349 F 1397 F

370 F#.G 1480 F#.G

392 G 1568 G

415 G#.A 1661 G#.A

440 A (above middle C) 1760 A

282

Appendix B
Character Codes

All characters that print on the screen (letters, numbers, and symbols) are identified by
numeric character codes.The standard characters are represented by character codes 32
through 95. These 64 codes are grouped into eight character sets for color graphic
purposes.

Standard Character Codes

Set #3 Set #4

ode# Character Code# Character Code# Character Code# Character

32 (space) 40 (48 0 56 8

33 ! 41) 49 1 57 9

34 42
*

50 2 58 :

35 # 43 + 51 3 59 !

36 $ 44 . 52 4 60 <

37 % 45 - 53 5 61 =

38 & 46
*

54 6 62 >

39 47 / 557 63 ?

Set #5 Set #6 Set #7 iSet #8

ode# Character Code# Character Code# Character Code# Character

64 @ 72 H 80 P 88 X

65 A 73 1 81 Q 89 Y

66 B 74 J 82 R 90 Z

67 C 75 K 83 S 91 [
68 D 76 L 84 T 92 /

69 E 77 M 85 U 93]
70 F 78 N 86 V 94 A

71 G 79 0 87 w 95 —

There are 64 additional character codes (96-159) available for use in defining special
characters for graphics programs. (See Chapter 5 for a discussion of character definition.)
Again, these codes are grouped into eight sets for color graphics.

Special Character Codes
et#9 Set #10 Set #11 Set #12 Set #13 Set #14 Set #15 Set #16

96 104 112 120 128 136 144 152

97 105 113 121 129 137 145 153

98 106 114 122 130 138 146 154

99 107 115 123 131 139 147 155

100 108 116 124 132 140 148 156

101 109 117 125 133 141 149 157

102 110 118 126 134 142 150 158

103 111 119 127 135 143 151 159

Appendix C
Color Codes

Sixteen colors are available for color graphics programs in TI BASIC. These colors are
designated by numeric codes in the CALL COLOR and CALL SCREEN statements. (See
Chapter 2 for a discussion of CALL COLOR and Chapter 5 for an explanation of CALL
SCREEN.)

Color Codes

Color Code# Color Code

Transparent 1 Medium Red 9

Black 2 Light Red 10

Medium Green 3 Dark Yellow 11

Light Green 4 Light Yellow 12

Dark Blue 5 Dark Green 13

Light Blue 6 Magenta 14

Dark Red 7 Gray 15

Cyan 8 White 16

Appendix D
Mathematical Operations

If your computer is to be a useful tool, you'll need to know about some of its
computational powers. This appendix first discusses the ways your computer handles and
displays numbers and then shows you how to perform exponentiation (powers and roots
of numbers). Next is a section on the order in which mathematical operations are
performed. Finally, certain other mathematical functions are listed for you. You'll find
that your computer can eliminate much of the drudgery of computation leaving you with
more time to explore the theory and fun of mathematics.

Decimal Notation

The Texas Instruments Home Computer accepts and displays numbers, within certain
limits, in the traditional decimal form.

In Chapter 3, we mentioned briefly that numbers are displayed with a leading space and a
trailing space. The leading space is reserved for the sign (positive or negative) of the
number. If the number is positive, this space will be blank. If the number is negative, this
space will show a minus sign. Here's an example of both situations:

>PRINT 1

1

>PRINT -1

-1

>D

The trailing space is there is there to make sure that two numbers on the same line of the
screen will always have at least one space between them, even if you use a semicolon as a
PRINT separator. (The semicolon instructs the computer to leave no spaces between
PRINT items.) Try this Immediate Mode example to see the effect of the trailing space:

>PRINT 1;-1
1 -1

>D

Without this trailing space the two numbers would appear like this:

l-l

285

286 Introduction to TI BASIC

The screen shows a maximum of ten digits for any number. If an integer (whole number)
consists of ten digits or less, the computer shows the number without a decimal point to
the right:

>PRINT 1;12345;1234567890
1 12345 1234567890

X3

If the number is a decimal fraction with ten digits or less, the computer automatically
places the decimal point in the correct position:

>PRINT 1/8;7.525/5;159.1395/5
.125 1.505 31.8279

Notice the first example above, 1/8=. 125. If a number is less than +1 and greater than -1, so
that digit to the left of the decimal point would be zero, the zero is not displayed.

Most of the time, the numbers you see and work with will be shown in this normal display
format. But what about numbers that consist of more than ten digits, such as

723,895,274,
0.00000000014896

The computer can also handle numbers like these, but it must use a special display format
to do so.

Floating Point Form or Scientific Notation

To display numbers with more than ten digits, your computer uses a special kind of
notation. You'll see several names in computer books referring to this type of notation:
two of the more common names arefloating pointform and scientific notation. Here well
refer to the special display format as scientific notation.

Before we discuss scientific notation, let's try a program to see how whole numbers
(integers) look in this display format. Enter these lines:

NEW

10 LET A=10

20 FOR 1=1 TO 12

30 PRINT A

40 LET A=A*10

50 NEXT I

60 END

Appendix D 287

Now clear the screen and run the program. You'll see these results:

10

100

1000

10000

100000

1000000

10000000

100000000

1000000000

1.E+10 -^ Scientific notation starts here

1.E+11

1.E+12

As soon as the value of A becomes an integer with more than ten digits, the computer
switches over to the special display format. Here's what this format represents:

l.E+10 means IxlO10 or 10,000,000,000
l.E+11 means lxll" or 100,000,000,000
l.E+12 means IxlO12 or 1,000,000,000,000

Numbers that are printed in scientific notation will always have this form:

base number E exponent

The base number {mantissa) is always displayed with one digit (1 through 9) to the left of
the decimal point. There can be a maximum of six digits in the mantissa (one to the left of
the decimal point, up to five to the right of the decimal). "E" stands for "x (times) 10raised
to some power," and the exponent (power) is always displayed with a plus or minus sign (+
or -) followed by a one- or two-digit number (1 through 99).

The two asterisks indicate that the number is within the valid computing range of the
computer, but the exponent is too large to be displayed in the allotted space. (For a
discussion of the computational ranges, see the BASIC Reference section of the User's
Reference Guide.)

Here are several examples of integers that are displayed by the computer in scientific
notation:

>PRINT 1234512345123

1.23451E+12

>PRINT 45678900000000

4.56789E+13

>PRINT 98765432100

9.87654E+10

>•

288 Introduction to TI BASIC

Notice that the sign of the exponent tells us how to convert scientific notation back into
standard decimal form. If the sign is a +,we move the decimal point to the right. If the sign
is a -, we move the decimal point to the left. The exponent tells us how many places to
move the decimal point:

1.11111E+10 means 1111100000

We have moved the decimal ten places to the right:

1111100000.

Integers with more than ten digits, then, are always displayed in scientific
notation. Now let's see how the computer handles noninteger numbers (numbers with
fractional parts). Consider the number 0.000000000000123. Since it will not fit into the
ten-digit display, the computer shows it in scientific notation. Try this:

>PRINT 0.000000000000123

1.23E-13 « Tells how many placesto move
the decimal to the left

The following program generates some very small noninteger numbers:

NEW

10 LET A=10

20 FOR 1=1 TO 14

30 PRINT A

40 LET A=A/10

50 NEXT I

60 END

Clear the screen and run the program. The results are:

10

1

.1

.01

.001

.0001

.00001

.000001

.0000001

.00000001

.000000001

.0000000001

1.E-11

1.E-12

Appendix D 289

This program and the previous examples we've seen might lead us to think that
nonintegers with more than ten digits are always displayed in scientific notation, just as
integers are. This is not always true, however. Noninteger numbers with more than ten
digits are printed in scientific notation only if they can be presented more accurately in
scientific notation than in the normal form.

This point is very important. Consider an example that we've tried before:

>PRINT 1/3

.3333333333

We know that .3333333333... is a repeating decimal that goes on infinitely. Why, then,
display show the result in normal form? The answer is that .3333333333 is more accurate
than 3.33333E-1; that is, more significant digits (digits that reflect the actual mathematical
value of the number) can be shown in normal form than in scientific notation.

Scientific notation is just a "shorthand"method for writing long number, whether they are
very large or very small quantities. It allows the computer to handle, in the most accurate
form possible, numbers that otherwise could not be adequately displayed in the ten-digit
form.

Entering Numbers in Scientific Notation

Up to this point, we've entered numbers only in the normal decimal form. It is also
possible, however, to enter numbers in scientific notation. Try this example:

>PRINT 1.23456E10

1.23456E=10

Notice that, unless you enter a minus sign before the mantissa and/or theexponent, these
are assumed to be positive.

>PRINT 2.574E13
2.574E+13

>

PRINT -5.5E-11
-5.5E

>•

290 Introduction to TI BASIC

If you enter a number in scientific notation, but the computer can show it in normal form,
it will do so. Try this:

>PRINT 5.555E3
5555

Whenever you are using extremely large or small numbers in a computation, entering the
numbers in scientific notation can be very handy.

Exponentiation

In the previous section we talked about exponents and powers of 10. Now we need to
discuss some of the "higher math" capabilities of your computer, specifically, powers and
roots.

Powers

Quite often in mathematical calculations, we must raise some number to a. power, such as

83 (or 8x8x8)
252 (or 25x25)

To perform exponentiation (raising a number to a power) on the computer, we do this:

>PRINT A3
512

>PRINT 25A2
625

>•

The exponentiation symbol (A) tells the computer that the number that follows is a power.

Let's say that we have this mathematical expression to evaluate:

y+x3

We want to find all the values for y where x equals 1 through 10. So we enter this short
program:

NEW

10 CALL CLEAR

20 FOR X=11 TO 10

30 Y=XA3

40 PRINT "Y="; Y
50 NEXT X

60 END

Appendix D 291

When we run the program, well see the following values for y:

Y= 1

Y= 8

Y= 27

Y= 64

Y= 125

Y= 216

Y= 343

Y= 512

Y= 729

Y= 1000

The computer completes the program for us very quickly! We have the values we need and
can go on to other computations.

Roots

Finding a root of a number is another very common mathematical problem. The square
root is one we've all heard of — and probably used — at some point in our educations.
Since many, many calculations call for square roots, this function is built into the
computer:

>LET A=SQR (4)

>PRINT A

2

>PRINT SQR (16)
4

The letters SQR stand for "square root of" and instruct the computer to find the square
root of the number or expression contained within the parentheses.

Other roots must be computed by using a form of exponentiation. Computing a root of a
number is the same function as raising the number to a power which is the reciprocal of the
root: that is,

3 125 is the same as 125(13)

Try this example:

>PRINT 125A

5.

>•

292 Introduction to TI BASIC

Notice that we had to use parentheses around the exponent 1/3. The parentheses notify
the computer that the whole expression makes up the exponent. (You'll see why this is
necessary when we discuss Orders of Operations.)

Here's a program that helps you to compute any root of any number (within the
computer's limits and the bounds of mathematical rules, of course).

NEW

10 CALL CLEAR

20 INPUT "NUMBER? ":N

30 INPUT "ROOT?":R

40 CALL CLEAR

50 PRINT N;R, NA(1/R)
60 END f \

Semicolon Comma

When you run the program, you'll first be asked to input the numberfor which you want
to find the root. Let's enter27 for our example. Next you're asked for the root youwantto
find. Let's say we want the cube root, so we type 3 and press ENTER.

27 3 3. -+— The cube root
of 27 is 3

** DONE **

Run the program again, and this time enter 2401 for the number and 4 for the root. Did
you answer 7?

Ofcourse, notallnumbers work outto results that arenice, neat integers. Try the program
again, entering 25 for the number and 3for the root. You" get 2.924017738 as your answer.
Now check the answer in the Immediate Mode by raising 2.924017738 to the power of 3:

>PRINT 2.924017738A3
24.99999999

>•

You don't quite get back to your original 25. That's because 2.924017738 is not the
"exact"cube root of 25; it's an "approximate" root, rounded to tendigits so that it can be
displayed.

All computing devices must "round off" calculated results at some point. Where a
computer rounds a result depends on the computational and display limits of the
machine. To make surethat theaccuracy of the lastdisplayed digit iswithin certainlimits,
most computers and many calculators actually perform computations internally with
more digits than they can display. These extra or "guard" digits are retained in the
computer's internal registers, but they can't be shown on the screen because of space
limitations.

Appendix D 293

We can, however, demonstrate the presence of these internal "computational" digits. Let's
use the same problem we performed earlier.

>LET A=25A(1/3)

>PRINT A

2.924017738

>PRINT AA3

25.

The "memory box" labled A retains all the internal digits as well as the rounded result
shown on the screen. Therefore, with the greater accuracy provided by the internal digits,
we get back our orginal 25 when we raise A to the power of 3.

One special note of caution: Your computer will give you an error message if you try to
raise a negative number to a fractional power; therefore, you cannot use the exponentiation
routine to find roots of a negative number without taking other steps. See the Sign (SGN)
and Absolute Value (ABS) functions in the BASIC Reference section of the User's
Reference Guide.

Order of Operations

In Chapter 3 we discussed the order the computer follows to complete problesm involving
multiplication, division, addition, and subtraction. We also demonstrated that an
expression within parentheses is evaluated before the rest of the problem is solved. The
order of operations, then, was listed as:

(1) Complete everything inside parentheses.
(2) Complete multiplication and division.
(3) Complete addition and subtraction.

Now we need to add another level to this order. Exponentiation (raising a number to a
power or finding a root of a number) is performed before any other mathematical
operation. So our new order becomes:

(1) Complete parenthetical expressions.
(2) Complete exponentiation.
(3) Complete multiplication and division.
(4) Complete addition and subtraction.

Let's try some examples that help to demonstrate these concepts.

First, well define some variable names for the quantities well be using in our calculations.
Enter these lines:

LET A=5

LET B=2

LET C=10

LET D=4

291 Introduction to TI BASIC

Now we're ready for the calculations:

>PRINT B*CAB

200

>PRINT A+B*CAB

205

>PRINT ((A+B)*C)AB/D
1225

>PRINT

Here's the order the computer followed in each of these examples:

First problem 102=100
2x100 =200

Second Problem 102=100
2x100=200

5+200=205

Third problem 5*2=7
7x10=70

702=4900

4900-^4=1225

Notice that this last problem utilized two sets of parentheses, one within the other. In this
situation the computer evaluates the innermost set of parentheses first.

As you saw when we discussed the roots of numbers, the exponent of a number can also
be a numeric expresion enclosed in parenthese. Let's try a few more examples, using the
values already stored in the computer's memory.

>PRINT ((A+B)*(A+B))A(B/D)
7.

>PRINT BA(D/B)+A*C
54.

The first problem essentially squared the number 7 and then took the square root of the
result:

(A+B)=5+2=7
(A+B)*(A+B)=7x7=49
B/D=2-^=.5
49.5= 49=7

Appendix D 295

The second problem is solved like this:

D/B=4^-21=4
A*C=5xl0=50

4+50=54

The following program not only demonstrates the computational power of your computer,
but also plays a scale for you! The relationship between the frequencies of notes in the
tempered scale can be algebraically expressed as

y=xkn
where x=the frequency of the first note of the scale,

k=a constant, n 2,
n=the number of half-steps between note x and note y
y=the frequency of the next note you want to play

There are twelve notes in the tempered scale, and between each note and the next is one
half-step. The following program, starting with a frequency of 440 (A above middle C on
a piano keyboard), calculates and plays each note in the scale:

20 X=440

30 K=2A(1/12)
40 CALL SOUND 9200, X, 2)
50 FOR N=1 TO 12

60 Y=K*KAN

70 CALL SOUND (200, Y, 2)
890 NEXT N

90 END

Run the program and listen to the music!

Other Mathematical Functions

Several other mathematical functions, in addition to those we've already covered, are
available in TI BASIC. We won't discuss these in detail, but we want to list some of them
for you, because they can be a great help in performing mathematics with your computer.

Trigonometic Functions

These trigonometric functions are available:

SIN () Finds the sine of the number of numeric expression enclosed in parentheses.

A number or numeric

expression goes here

COS () Finds the cosine of the number or numeric expression enclosed in parentheses.

TAN () Finds the tangent of the number or numeric expression enclosed in parentheses.

ATN () Finds the arctangent of the number or numeric expression enclosed in
parentheses.

Note: All trigonometric functions are performed by the computer in radians, rather than
degrees. Therefore, if your data is measured in degrees, you'll need to convert the
measurement to radians before using it with the functin. (To convert an angle from
degrees to radians, multiply by ir.)

i in

>

296 Introduction to TI BASIC

Logarithms

The computer calculates the natural log and natural antilog(based on e=2.718281828) of a
number:

A number or numeric

y expression goes here
LOG () Computes the natural logarithm of the number or numeric expression

enclosed in parentheses.

EXP () Computes the natural antilogarithm of the number or numeric expression
enclosed in parentheses.

To convert the natural logarithm of a number to the common log of the number, simply
divide natural log by the natural log of 10. For example, if you want to find the common
log of 3, you would use this procedure:

>A=LOG (3) /LOG(10)

>PRINT A

.4771212547 ^- Common log of 3

Absolute Value

Calculations often require the use of the absolutevalue ofa number. This has the effectof
making the number positive, regardless of its sign. Here's how to instruct the computer to
find and utilize the absolute value of a number:

A number or numeric

/ expression goes here

ABS () Finds the absolute value of the number or numeric expression in parentheses.
There are other mathematical functions available, and you'll find them listed and
discussed under Functions in the BASIC Reference section of the User's Reference Guide.
The functions we've illustrated here, however, should help you discover many ways to use
your computer as a computational tool.

Appendix E
I. Errors Found When Entering a Line

BAD LINE NUMBER

1. Line number or line number referenced equals 0 or is greater than 32767
2. RESEQUENCE specifications generate a line number greater than 32767

BAD NAME

1. The variable name has more than 15 characters

CANT CONTINUE

1. CONTINUE was entered with no previous breakpoint or program was edited
since a breakpoint was taken.

CANT DO THAT

1. Attempting to use the following program statements as commands: DATA,
DEF, FOR, GOTO, GOSUB, IF, INPUT, NEXT, ON, OPTION, RETURN

2. Attempting to use the following commands as program statements (entered with
a line number): BYE, CONTINUE, EDIT, LIST, NEW, NUMBER, OLD,
RUN, SAVE

3. Entering LIST, RUN, or SAVE with no program

INCORRECT STATEMENT

1. Two variable names in a row with no valid separator between them (ABC A or
ASA)

2. A numeric constant immediately follows a variable with no valid separator
between them (N 257)

3. A quoted string has no closing quote mark
4. Invalid print separator between numbers in the LIST, NUMBER, or CONTINUE,

LIST, NUMBER, RESEQUENCE, or RUN commands
6. Command keyword is not the first word in a line
7. Colon does not follow the device name in a LIST command

LINE TOO LONG

1. The input line is too long for the input buffer

MEMORY FULL

1. Entering an edit line which exceeds available memory
2. Adding a line to a program causes the program to exceed available memory

II. Errors Found When Symbol Table is Generated

When RUN is entered but before any program lines are performed, the computer scans
the program in order to establish a symbol table. A symbol table is an area of memory
where the variables, arrays, functions, etc., for a program are stored. During this scanning
process, the computer recognizes certain errors in the program, as listed below. The

298 Introduction to TI BASIC

number of the line containing the error is printed as part of the message (for example:
BAD VALUE IN 100). Errors in this section are distinguished from those in section III, in
that the screen color remains cyan until the symbol table is generated. Since no program
lines have been performed at this point, all the values in the symbol table will be zero (for
numbers) and null (for strings).

BAD VALUE

1. A dimension for an array is greater than 32767
2. A dimension for an array is zero when OPTION BASE =1

CANT DO THAT

1. More than one OPTION BASE statement in your program
2. The OPTION BASE statement has a higher line number than anarray definition

FOR NEXT ERROR

1. Mis-matched number of FOR and NEXT statements

INCORRECT STATMENT

DEF

1. No closing")" after a parameter in a DEF statement
2. Equals sign (=) missing in DEF statement
2. Parameter in DEF statement is not a valid variable name

DIM

4. DIM statement has no dimensions or more than three dimensions
5. A dimension is a DIM statement is not a number
6. A dimension in a DIM statement is not followed by a comma or a closing ")"
7. The array name in a DIM statement is not a valid variable name
8. The closing ")" is missing for array subscripts

OPTION BASE

9. OPTION not followed by BASE
10. OPTION BASE not followed by 0 or 1

MEMORY FULL

1. Array size too large
2. Not enough memory to allocate a variable or function

NAME CONFLICT

1. Assigning the same name to more than one array (DIM A(5), A(2,7)
2. Assigning the same name to an array and a simple variable
3. Assigning the same name to a variable and a function
4. References to an array have a different number of dimensions for the array

(B=A(2.7) +, PRINT A(5)

Appendix E 299

III. Errors Found When a Program is Running

When a program is running, the computer may encounter statements that it cannot
perform. An error message will be printed, and unless the error is only a warning, the
program will end. At that point, all variables in the program will have the values assigned
when the error occurred. The number of the line containing the error will be printed as
partof the message (for example: CANT DO THAT IN 210).

BAD ARGUMENT

1. A built-in function has a bad argument
2. The string expression for the built-in functions ASC or VAL has a zero length

(null string)
3. In the VAL function, the string expression is not a valid representation of a

numeric constant

BAD LINE NUMBER

1. Specified number does not exist in ON, GOTO, or GOSUB statement
2. Specified line number in BREAK or UNBREAK does not exist (warning only)

BAD NAME

1. Subprogram name in a CALL statement is invalid

BAD SUBSCRIPT

1. Subscript is not an integer
2. Subscript has a value greater than the specified or allowed dimensions of an

array

3. Subscript 0 used when OPTION BASE 1 specified

BAD VALUE

CHAR
1. Character code out of range in CHAR statement
2. Invalid character in pattern indentifier in CHAR statement

CHR$
3. Argument negative or larger than 32767 in CHR$

COLOR
4. Character set number out of range in COLOR statement
5. Foreground or background color code out of range in COLOR statement

EXPONENTIATION (A)
6. Attempting to raise a negative number to a fractional power

FOR
1. Step increment is zero in FOR-TO-STEP statement

HCHAR, VCHAR, GCHAR
8. Row or column-number out of range in HCHAR, VCHAR, or GCHAR

JOYST, KEY
9. Key-unit out of range in JOYST or KEY statement

ON
10. Numeric expression indexing line-number is out of range

300 Introduction to TI BASIC

OPEN, CLOSE, INPUT, PRINT, RESTORE
11. File-number negative or greater than 255
12. Number-of-records in the SEQUENTIAL option of the OPEN statement is non-

numeric or greater than 32767
13. Record-length in the FIXED option of the OPEN statement is greater than

32767

POS

14. The numeric-expression in the POS statement is negative, zero, or larger than
32767

SCREEN

15. Screen color-code out of range

SEG$

16. The value of numeric-expression1 (character position) or numeric-expression2
(length of substring) is negative or large than 32767

SOUND

17. Duration, frequency, volume or noise specification out of range

TAB

18. The value of the character position is greater than 32767 in the TAB function
specification

CANT DO THAT

1. RETURN with no previous GOSUB statement
2. NEXT with no previous matching FOR statement
3. The control-variable in the NEXT statement does not match the control-variable

in the previous FOR statement
4. BREAK command with no line number

DATA ERROR

1. No comma between items in DATA statement
2. Variable-list in READ statement not filled but no more DATA statements are

available

3. READ statement with no DATA statement remaining
4. Assigning a string value to a numeric variable in a READ statement
5. Line-number in RESTORE statement is greater than the highest line number in

the program

FILE ERROR

1. Attempting to CLOSE, INPUT, PRINT, or RESTORE a file not currently open
2. Attempting to INPUT records from a file opened as OUTPUT or APPEND
3. Attempting to PRINT records on a file opened as INPUT
4. Attempting to OPEN a file which is already open

INCORRECT STATEMENT

General

1. Opening "('\ closing")", or both missing
2. Comma missing
3. No line number where expected in a BREAK, UNBREAK, or RESTORE

Appendix E 301

4. "+" or "-" not followed by a numeric expression
5. Expressions used with arithmetic operators are not numeric
6. Expressions used with relational operators are not the same type
6. Attempting to use a string expression as a subscript
8. Attempting to assign a value to a function
9. Reserved word out of order

10. Unexpected arithmetic or relational operator is present
11. Expected arithmetic or relational operator missing

Built-in Subprograms
12. In JOYST, the x-return and y-return are not numeric variables
13. In KEY, the key-status is not a numeric variable
14. In GCHAR, the third specification must be a numeric variable
15. More than three tone specifications or more than one noise specification in

SOUND

16. CALL is not followed by a subprogram name

File Processing-InputIOutput Statements
17. Number sign (#) or colon (:) in file-number specification for OPEN, CLOSE,

INPUT, PRINT, or RESTORE is missing
18. File-name in OPEN or DELETE must be a string expression
19. A keyword in the OPEN statement is invalid or appears more than once
20. The number of records in SEQUENTIAL option is less than zero in the OPEN

statement

21. The record length in the FIXED option in the OPEN statement is less than zero
or greater than 255

22. A colon (:) in the CLOSE statement is not followed by the keyword DELETE
23. Print-separator (comma, colon, semicolon) missing in the PRINT statement

where required
24. Input-prompt is not a string expression in INPUT statement
25. File-name is not a valid string expression in SAVE, LOAD, or OLD command

General Program Statements

FOR

26. The keyword FOR is not followed by a numeric variable
27. In the FOR statement, the control-variable is not followed by an equals sign (=)
28. The keyword TO is missing in the FOR statement
29. In the FOR statement, the limit is not followed by the end of lineor the keyword

STEP

IF

30. The keyword THEN is missing or not followed by a line number
LET

31. Equals sign (=) missing in LET statement

NEXT

32. The keyword NEXT is not followed by control-variable
ON-GOTO, ON-GOSUB
33. ON is not followed by a valid numeric expression

RETURN

34. Unexpected word or character following the word RETURN

302 Introduction to TI BASIC

INPUT ERROR

1. Input data is too long for Input/Output buffer (if data entered from keyboard,
this is only a warning —data can be reentered.

2. Number of variables in the variable-list does not match number of data items
input from keyboard or data file (warning only if from keyboard)

3. Non-numeric data INPUT for a numeric variable. This condition could be
caused by reading padding characters on a file record. (Warning only if from the
keyboard)

4. Numeric INPUT data produces an overflow (warning only if from keyboard)

I/O ERROR — This condition generates an accompanying error code as follows:

When a I/O error occurs, a two-digit error code (XY) is displayed with the message:

• I/O ERROR XY IN line-number

The first digit (X) indicates which I/O operation caused the error.

X Value Operation
0 OPEN

1 CLOSE

2 INPUT

3 PRINT

4 RESTORE

5 OLD

6 SAVE

7 DELETE

The second digit (Y) indicates what kind of error occurred.

Y Value Error Type
0 Device name not found

3 Illegal operation
6 Device error

1. Invalid device or file name in DELETE, LIST, OLD, or SAVE command
2. Not enough memoery to allocate an Input-Output buffer
3. This error can occur during file processing if an accessory device is accidentally

disconnected while the program is running

MEMORY FULL

1. Not enough memory to allocate the specified character in CHAR statement
2. GOSUB statement branches to its own line-number
3. Program contains too many pending subroutine branches with no RETURN

performed
4. Program contains too many user-defined functions which refer to other user-

defined functions

5. Relational, string, or numeric expression too long
6. User-defined function references itself

Appendix E 303

NUMBER TOO BIG (warning given — value replaced by computer limit as shown below)
1. A numeric operation produces an overflow (value greater than 9.9999999999999E127

or less than -9.9999999999999E127
2. READing from DATA statement results in an overflow assignment to a numeric

variable
3. INPUT results in an overflow assignment to a numeric variable

STRING-NUMBER MISMATCH

1. A non-numeric argument specified for a built-in function, tab-function, or
exponentiation operation

2. A non-numeric value found in a specification requiring a numeric value
3. A non-string value found in a specification requiring a string value
4. Function argument and parameter disagree in type, or function type and

expression type disagree for a user-defined function
5. File-number not numeric in OPEN, CLOSE, INPUT, PRINT, RESTORE

6. Attempting to assign a string to a numeric variable
7. Attempting to assign a number to a string variable

Index
Addition, 15
Animation, 89,209

flashing letters, 90
flashing color squares, 91
moving color squares, 92
using CALL CHAR, 209
using CALL SOUND, 209

Arrays, 162,170,180
labelling elements, 181
multi-dimensioned variables, 183
one-dimensional, 164
string arrays, 188
three-dimensional, 189
two-dimensional, 180,184
using DATA statements, 182

ASCII codes, 239
finding a character, 242
table, 241

ASC statement, 240
ordering words, 244

BASIC, 1

Calculating commissions, 172
program, 173
running the program, 175

CALL CHAR statement, 202,211
block figure, 216
shorthand codes, 214
undefined codes, 218
with color, 203

CALL CLEAR, 5,48
CALL COLOR statement, 68

background color, 70
character set codes, 69
color combinations, 72
foreground color, 70
using INPUT, 71

CALL HCHAR, 25,70,272
horizontal positioning, 31
with CALL COLOR, 70,72

CALL KEY, 210
CALL SCREEN, 201
CALL SOUND statement, 20,60, 66,127,278

duration, 21,61
frequency, 21, 61
format, 21
loudness, 21,61
noise, 24
two tones, 22

CALL VCHAR statement, 25,272
positioning a character, 27
vertical positioning, 29

Character pattern program, 154,157
flow chart, 156

Color bar program, 126
Color organ, 166,168,183,186

Command, 39
Computer music, 129
Correcting mistakes, 8
Counting, 64
Cursor, 4

DATA statement, 138
error message, 139
more than one, 140
strings, 144
using IF-THEN, 139
using ON-GO TO, 142

Delay subroutine, 269
Dice simulation, 111, 277
DIM statement, 163
Division, 15
Display, 2

Editing, 253
deleting a line, 259
ignoring changes, 260
more than one line, 256
one line, 255
summary of commands, 264

END statement, 39
ENTER key, 5, 8,37
Errors, 40

typing, 40
Error messages, 8,73

conditions, 74
Expression, 15

Flow chart, 60,62, 87
FOR-NEXT statement, 80,206

delay loop, 83
error conditions, 93
general form, 81
"nested" loops, 84
trace, 82
with CALL HCHAR, 83
with CALL VCHAR, 85

GIANT program, 221
GO TO statement, 58,63

musical scale, 66
with CALL COLOR, 68
with CALL SOUND, 60

GOSUB statement, 86
time delay, 91

Graphics, 25
Greatest integer function, 102

Hertz, 20

IF-THEN statement, 119,130
comparison with IF-THEN-ELSE, 131

IF-THEN (continued)
error conditions, 131
general form, 119,130
relationships, 121
trace, 121

Immediate mode, 6,25,30,36,153
INPUT statement, 45,206

assigning string variables, 51
strings, 47, 51

INT function, 99
general form, 100
using negative numbers, 101

Keyboard, 2

LEN statement, 228,234
comparing two strings, 229

LET statement, 11, 53
string assignment statement, 53

Line number, 38,42,261
LIST command, 41,44,74

by line number, 44
Loops, 58, 62,80

counter, 85
IF-THEN, 120
IF-THEN-ELSE, 130

Memory, 2
Multiplication, 15
Musical interlude, 129,210
Music Subroutine, 278

Nested FOR-NEXT, 88
NEW command, 39
NUM command, 261
Number Guessing program, 123

variation, 132
withON-GOTO,136

Numeric variables, 50

ON-GOSUB statement, 133
ON-GO TO statement, 131
Ordering words, 243

POS statement, 243
PRINT statement, 6,12

colon spacing, 149,150
comma spacing, 15,145,150
"empty" line, 61
patterns, 154,205,208
quotation marks, 7
semicolon spacing, 13,16,146,150
standard positions, 147
strings, 13,49
string variables, 148

Program, 36
Prompt, 4,42

Index

Random notes, 127
RANDOMIZE, 106,124,125

examples, 109
READ statement, 138

list, 143
using ON-GO TO, 142
using string DATA, 144

REMARK statement, 98
RES command, 262
RESTORE statement, 143
RETURN statement, 86
RND function, 103,107

error conditions, 114
examples, 109
used with VCHAR, 112

RUN command, 39,42

Screen coordinates, 26
SEG statement, 231,234

with PRINT, 232
SHIFT key, 9, 59
Simulations, 103

two dice, 111
Statement, 5,39
String, 7,11,49

comparing, 245
concatenating, 236
finding length, 228
removing sets of characters, 276
removing spaces, 274
searching, 243
selecting substrings, 231
using numeric values, 247

String variables, 49
assignment statement, 53
definition, 50

Subroutines, 86
delay, 269
music maker, 278
redefining characters, 272
sound and color, 273
using borders, 271
using VCHAR/HCHAR, 272

Subscripted variables, 162
Subtraction, 15

TAB function, 150
Tone guessing program, 125,165
Trace, 63, 82,121

Undefined character codes, 218
User's Reference Guide, 3

Variable, 11
numeric, 11

305

	front-cover
	content01
	content02
	content03
	content04
	content05
	content06
	content07
	content08
	content09
	content10
	content11
	back-cover

