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Machine language of computers is nothing more than a series
of numbers. Those numbers are what make the computer do
what you want it to do. Because it’s the language of pref-
erence of your TI-99/4A, programs written in it run far faster
than those written in BASIC. And because you can talk to the
computer directly, without going through a translator like
BASIC, you can create more powerful programs than you can
with BASIC.

You write machine language (ML) programs with an
assembler. The instructions you give to it are assembled (hence
the term assembly language) and thus produce an ML pro-
gram. But writing programs in assembly language can be diffi-
cult for the beginner. Instructions, operands, and directives can
be confusing, even intimidating.

That’s why you'll find COMPUTE!’s Beginner’s Guide to TI
Assembly Language such a valuable book. It’s not a complete
reference guide—though it includes dozens of insights, hints,
and techniques on assembly language programming—but then
it’s not meant to be. Instead, this book takes you step by step
through the process of creating and writing your own assem-
bly language programs. Starting with a clear and easy-to-
follow explanation of just how the Line-by-Line Assembler op-
erates, working through such things as programming sound,
sprites, and redefined characters, and ending with a complete
high-resolution drawing program, you'll learn as you program.
It's a hands-on approach, one that will surely take you from
novice to intermediate assembly language programmer quickly
and painlessly.

When you've finished the book, you'll have dozens of
assembly language routines in your software library. With mi-
nor modification (and most of those modifications are out-
lined), you'll be able to use those same routines in your own
programs. There are even several complete programs here for
you to type in and run. From artist’s high-resolution sketch
pads to automatically moving sprites, these programs show
you how powerful and fast assembly language really is.

You’ll also learn how to link assembly language programs
with BASIC programs, how to display register values on the
screen, and how to save memory. The techniques and tricks of
assembly language programming are fully covered.



Other than COMPUTE!’s Beginner’s Guide to TI Assembly
Language, all you need to begin programming in assembly lan-
guage is the Mini Memory cartridge, and the Line-by-Line
Assembler that comes with it. This package is still available in
stores. If you want to learn assembly language programming
on your TI-99/4A, it’s an excellent investment.

With clear explanations and example after example for
you to try out, COMPUTE!’s Beginner’s Guide to TI Assembly
Language helps you access the power of your computer’s na-
tive tongue.

vi
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A General Overview

When the Editor/Assembler package appeared on the market
for the Texas Instruments 99/4A Home Computer, eager users
were able to write their own assembly language programs.
Assembly language is the preferred computer language of
many programmers, for it allows extraordinary speed and ef-
ficiency. That's because assembly language programs create
machine language code, which works directly with both the
TMS9900 microprocessor, the heart and brain of the TI, and
the TMS9918 Video Display Processor. Unfortunately, not all
TI users could take advantage of this package. People owning
the basic configuration of the computer could not use the
Editor/Assembler, which needed the 32K memory expansion
and a disk drive.

Soon after the Editor/Assembler was released, the Mini
Memory cartridge became available, with all its fantastic
possibilities. It allows you to read and store values in CPU
and VDP memory from BASIC programs, link to assembly
language programs or subroutines (optionally passing string,
numeric, and array variables between the linked programs),
and came with the Line-by-Line Assembler. The Assembler gave
you the tool you need to create your own assembly language
programs. Also included were a debugger, to help troubleshoot
your programs, and a built-in battery. This battery made it
possible for the cartridge to retain BASIC programs, BASIC
files, or assembly language programs, even with the comput-
er’'s power switched off and the module removed from the
console. ,

With this Mini Memory cartridge, and a cassette recorder
and connecting cable, the beginning assembly language pro-
gramer was ready to write programs.

But both these packages lacked information you needed to
learn how to program. The Editor /Assembler came with a thick
manual, far too technical for the beginner to understand, and
the Mini Memory cartridge came with two thin manuals, in
which the most frequent comment told you to look up the
information in the Editor/Assembler manual.



The beginning assembly language programmer needed a
step-by-step guide to assembly language programming on the
TI-99/4A. But there was no such book.

COMPUTE!s Beginner's Guide to TI Assembly Language was
written exactly for that reason, to help the beginner with
assembly language programming. All examples and programs
in the book have been carefully chosen and written for the
Line-by-Line Assembler, but the basic ideas can be applied to
the Editor /Assembler and even other assemblers. On most
occasions, unless it’s absolutely necessary, long and technical
explanations are avoided.

Even more importantly, numerous example programs are
provided, fully explained and documented. The best way to
learn assembly language programming is to sit down at your
computer and try everything yourself. That's what the ex-
ample programs let you do.

If you have no idea whatsoever of machine language and
assembly language (both are essentially the same thing—the
terms are often used synonymously), make sure you read this
introduction and the next four chapters carefully before going
on. Then, according to what interests you most, you can turn
to the appropriate chapter. These later chapters have been di-
vided into different sections, each concentrating on one topic,
such as creating sprites, generating sounds, or defining charac-
ters. They'll show you how to create programs in those areas.

I'm sure this book will be as useful to you as it was to me
as I wrote it. You'll soon be creating exciting assembly lan-
guage programs yourself.

All About Assembly Language
Writing a program in assembly language is like writing a pro-
gram in the computer’s mother tongue. When an assembly
language program is run, the computer doesn’t waste time
translating each instruction into its own code first and then
executing it (like it does when it runs BASIC programs). It
means, of course, that you have to learn a new language, but
the results are certainly worth it. You can see this just by
comparing any BASIC program with an assembly language
program. The speed and power of assembly language pro-
grams are impressive, to say the least.

Your computer works with numbers. Assembly language
programs on the TI consist of a list of hexadecimal numbers
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(numbers in base 16), and each number, or group of numbers,
means something. (Although the listings you can see when
working on a program are in hexadecimal, the computer is
really working in binary, or base two.) For example, the
following numbers perform the assembly language equivalent
of a BASIC CALL CLEAR:

04C0

0201

2000

0420

6024

0580

0280

0300

16FA

Don't let this list of strange numbers scare you. You won't
need to write your programs like this, thanks to something
called an assembler. An assembler is a program (written in
BASIC or assembly language) which understands a list of
instructions and translates each of these instructions into its
equivalent hexadecimal number. In other words, instead of
04C0 you would enter CLR RO.

Once you learn to use this list of instructions, writing a
program in assembly language is similar to writing it in
BASIC. You get an idea for a program, then sit down and
write it.

There are many kinds of assemblers. The Editor/
Assembler, for instance, waits until you're finished writing your
symbolic program and then translates it to numbers (assem-
bles it) at your command. This allows you to keep a copy of
the original program you wrote for corrections. After all, it’s
much easier to understand Al R3,2 than 0223 and 0002.

The Line-by-Line Assembler included with the Mini Mem-
ory cartridge works in a different way. When you press EN-
TER after typing a statement, the translation to hexadecimal is
performed immediately. You can actually see this taking place.
In other words, the statements are assembled one at a time,
line by line, unlike the Editor/Assembler, which assembles the
whole program at one time. Syntax errors are reported im-
mediately and rejected by the Line-by-Line Assembler.

This immediate assembly is useful; you can actually see
what the computer is doing with your work. However, it in-
cludes a major disadvantage. You can’t save the original listing

ix



infroduction

(often called the source code) for corrections and documenta-
tion. All you have left is the assembled program. Inserting
program lines is practically impossible, and corrections are
difficult to make. Thus, with this Line-by-Line Assembler, the
best policy is to write programs on paper first, then try them
on the computer. Another good idea is to divide your program
into sections or blocks, each of which does one thing. For in-
stance, a program could be divided into blocks which:

1. Clear the screen
2. Color screen black
3. Define characters

And so on.
Then, write each routine and test it until you're sure it works
correctly. Finally, put them together to form a complete pro-
gram. If you don't do this, you might face a 20-page program
that has an error and not have the least idea where that error
might be. (We'll look into debugging and programming hints
in a later chapter.)

Command and Control

Writing programs in assembly language gives you complete
control over most of the components of the computer, includ-
ing the CPU (Central Processing Unit) RAM (Random Access
Memory) and the VDP (Video Display Processor) RAM.
Routines stored in ROM (Read Only Memory) and GROM
(Graphics Read Only Memory) can also be accessed and used.
You can modify and use values in CPU RAM directly, but to
access VDP RAM you use utilities (similar to BASIC sub-
routines) that allow you to read from and write to VDP mem-
ory, which includes the screen information, the color tables,
sprite tables, character tables, and so on.

Assembly language doesn’t limit you; there is always
some way to achieve the desired results. Many times there are
several ways to get the same result.

With COMPUTE!'s Beginner’s Guide to TI Assembly Lan-
guage, you'll quickly be up and running with fast and power-
ful assembly language programs. All you have to do is turn
the page.
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The First Step
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Loading the Assembler

The Mini Memory module allows you to load and run assem-
bly language programs. You can even have several programs,
as many as the module’s memory will allow, loaded simulta-
neously. In fact, three programs are loaded when you load the
Line-by-Line Assembler: the OLD option of the Assembler, the
NEW option of the Assembler, and the demonstration program
LINES. These three programs fit in the module’s approximate
4K of memory.

To load these programs, more specifically the Assembler,
first insert the Mini Memory cartridge in the computer and se-
lect option (2) EASY BUG from the main menu. When the title
screen appears, press any key and type L. This indicates you
want to load a program from tape into the Mini Memory mod-
ule. Load the programs (NEW, OLD, and LINES) as you
would normally do in BASIC. When the loading process is
complete, press the FCTN and equals (=) keys at the same
time. This executes the TI's QUIT command. The programs
won'’t be erased, thanks to the module’s special RAM memory.
Return to the selection list and choose (3) MINI MEMORY.
When the Mini Memory option list appears, choose (2) RUN.
You'll be asked for the program name. Typing LINES and
pressing ENTER execute the graphics demonstration program.
For the Line-by-Line Assembler, choose NEW (or OLD if you
are continuing a previously started program). Pressing ENTER
starts the execution of the Assembler program. The computer
enters the 40-column text display and you're ready to begin.

Understanding the Assembler

When you run the Line-by-Line Assembler, you'll see the pro-
gram name and copyright on the center of the screen, and be-
low that the following:

7D00 045B W

The two hexadecimal numbers preceding the cursor tell you
two things: the position in memory and the contents of that
position. The first number, 7D00, is the memory location or
address you're presently at. This is the default starting address
for the Assembler. Most of the memory before location 7D00 is

3
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used by the Assembler (from approximately 71A6 onwards).
That’s why, though the Mini Memory has around 4K bytes of
memory, you can only use approximately 770 bytes for your
programs. The remaining memory is used for the Assembler
itself.

The value 045B is what’s currently stored in memory
location 7D00, and represents an assembly language instruc-
tion. Actually, 045B is an instruction of the program LINES,
loaded together with the Assembler. The program LINES starts
at location 7CD6 and runs to location 7FB2. When writing
your own programs, you'll write over the LINES program. If
you type in a new instruction, the 045B will be replaced by
the hexadecimal translation of the new instruction, and you'll
be immediately ready to enter the new line. You can imagine
the memory locations to be like BASIC line numbers.

Let’s try something. Press the space bar once and then type:

CLR R5

Leave a space between CLR and R5. Note that the value
045B changes as soon as you press ENTER. The screen should
now look like this:

7D00 04C5 CLR R5
7D02 C101 B

The value 04C5 in location 7D00 is the hexadecimal
translation of the instruction CLR R5. The counter has ad-
vanced to 7D02, waiting for your next instruction. The value
C101 is also a machine language instruction from the program
LINES which will be overwritten as you go along.

Why did you have to press the space bar before typing
CLR R5? Each assembly language statement must be entered a
certain way. Each line is divided into four sections, called
fields. In each field, the computer expects to find specific infor-
mation. Some fields are optional—it may not be necessary to
write any information into it—others must be used. To exit
one field and enter the next, press the space bar once. If
you're not going to write anything in a field, hitting the space
bar moves the cursor to the next field.

The four fields are:

® The label field

® The instruction (opcode) field
® The operand field

® The comment field

4
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Here’s a short explanation of what each field is used for,
what it can contain, and whether it’s optional or required.

The label field. Labels are used in assembly language to
identify a certain memory location. If you wanted, for ex-
ample, to jump to memory location 7F30, you could put a la-
bel in 7F30 and then jump to that label. Labels can be one or
two characters long when you're using the Line-by-Line Assem-
bler. They should be used as little as possible, since each label
eats up four bytes of memory. Some label examples might be
G, LB, H1, and so on. If one-character labels are used, the
character must be alphabetic. Two-character labels must have
an alphabetical first character and an alphanumeric second
character. Labels should be used only in certain memory loca-
tions, those that need some sort of identification. Thus, the la-
bel field is certainly optional.

If you want to include a label, type it and press the space
bar.

7D02 C101 AQ & (AQ is the label)

The cursor enters the next field. If no label is to be used,
just hit the space bar and the cursor moves three spaces, to
the second field, the instruction (opcode) field.

The instruction (opcode) field. The instruction (often
called the opcode) field is where the actual instruction (or
directive—see Chapter 2) is typed in. This instruction is called
the opcode and has one to four characters. The opcode you en-
ter is a mnemonic which represents the operation you want the
computer to perform. For instance, A represents Add. Obvi-
ously this field must be included, since some instruction has to
be given. Type in the instruction and press the space bar to
enter the third field, the operand field. For example, you could
enter:

7D02 C101 AQ LI Wm (LI is the instruction, or
opcode)

The operand field. In this third field, you enter the val-
ues the opcode has to work with, which are called operands.
This field is optional, since some instructions do not require
operands. When more than one operand is used, they're sepa-
rated by a comma.

Pressing the space bar moves the cursor to the comment
field. If no operands are used, either press the space bar to en-
ter the comment field or press ENTER to assemble that line.
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You could type:
7D02 C101 AQ LIR5,2 (R5 and 2 are the operands)

The comment field. The comment field works in a way
similar to the tailing REMark in Extended BASIC. It’s ignored
by the Assembler and is really only your guide as you write
your programs. The comments are not included when the pro-
gram is translated to assembly language. This field is optional.
Pressing ENTER ends the line. An example might be:

7D02 C101 AQ LIRS52 THIS IS AN EXAMPLE

In the above, AQ is the label, LI the opcode, R5,2 the
operands, and THIS IS AN EXAMPLE the comment. Another
example of a completed line could be something like:

7D06 E101 SWPB R1

At location 7D06, which had value E101 originally, no la-
bel was used, the opcode is SWPB, and only one operand (R1)
is included. No comment was added.

Correcting Errors
If an error occurs while you're entering a line, one of the
following two messages appears:

*ERROR*
or
*R-ERROR*

The *ERROR* message indicates a syntax error, such as writ-
ing a nonexisting instruction in the opcode field or forgetting
required spaces. When this message appears, pressing FCTN-3
(ERASE) will erase the entire line so that you can start over.

If you type in a label and make a mistake, RH instead of
RN, for instance, you can either erase the whole line (with
FCTN-3) or type the correct label immediately after the wrong
one. The Assembler considers the correct label as the last two
characters entered in the field. For example, in

7D00 045B AWNPG1 R

the Assembler considers the correct label to be G1.

The same method can be used when typing in a hexadeci-
mal (base 16) number. If you make a mistake, just type the
right number after the wrong one. This time, the Assembler
considers the last four digits as the correct number. In

7D00 045B DF AORG  >7EF87FF0

6
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Chapter 1

the Assembler considers >7FFQ as the correct number. The
greater than symbol (>) indicates a hexadecimal number.
Numbers without the > symbol are considered decimal num-
bers. Since the memory location and its contents are always in
hexadecimal, the > symbol is not included before either of
those numbers.

For all other error conditions, it’s best to clear the whole
line and type it over again.

The *R-ERROR* appears when you're trying to jump to a
place in memory too far away. This message indicates an out
of range error. We’ll examine this error, its causes and correc-
tions, a bit later.

Words and Bytes
Before we continue, you should understand the difference be-
tween a memory word and a memory byte.

A memory word is a four-digit hexadecimal number. An
example would be the hexadecimal translation of an instruc-
tion, such as 045B.

A word is formed by two bytes, the left or most significant
byte and the right or least significant byte. If the memory word
is 045B, the most significant byte is 04 and the least significant
byte is 5B (remember, we’re always talking about hexadecimal
numbers). Many assembly language instructions use the left
byte, others the right byte.

A convenient instruction lets you switch bytes in a word.
This instruction is SWPB (SWaP Bytes). If a word is 5C97 and
you use the SWPB instruction to change its bytes, the word
would become 975C. You'll see how useful this instruction
can be in many of the example programs.

Many instructions in assembly language work with words,
and they are called word instructions; others work with bytes,
and are called, oddly enough, byte instructions. You'll choose
the appropriate instruction based on what you need.

Finally, note that the maximum value that can be repre-
sented by a byte is 255 (decimal), which is >FF in hexadeci-
mal, and that the maximum value that can be represented by
a word is >FFFF (65535 decimal).

Using Registers
Instead of using variables to store values, as in BASIC, in
assembly language you use 16 workspace registers. In each of
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these registers you can store a one-word value. Register con-
tents can be manipulated, just like variables. For example, the
following line loads register number 7 (R7) with the decimal
value of 300:

7D00 045B LI R7,300

The LI instruction means Load Immediate and tells the
computer to load the value of 300 into register 7. When you
press ENTER, you’ll see the following:

7D00 0207 LI R7,300
7D02 012C
7D04 0A54 H

LI was translated by the Assembler as 0207; and the value of
300, to be loaded into R7, was translated as >012C (which is
300 decimal written in hexadecimal).

In other words, you can see that the instruction LI R7,300
was translated by the Assembler to 0207 and 012C, two words
or four bytes. You'll find that, in general, most assembly lan-
guage instructions occupy two or four bytes when translated
into machine language and that the 770 bytes you have to
work with are really more than they might seem.

Values in registers can be added, subtracted, multiplied,
and divided, just like variables can be manipulated in BASIC.
You'll see how this works when we begin to examine some
program examples.

Just one more word must be said before going on. The
values in each of the 16 registers must be stored somewhere in
memory. The usual place to store them is from memory loca-
tion >70B8 to memory location >70D7, though you can
choose some other area.

There’s an instruction which loads the memory area
where the registers store their values, called LWPI (Load
Workspace Pointer Immediate). All you have to do is enter
LWPI in the opcode field and the memory location where the
registers will begin storing their values. This location should
be somewhere in the beginning of your program. The LWPI
instruction isn’t always needed, but it’s safest to include it.

For example, to tell the computer to store the values in
the workspace registers from >70B8 onwards, you’d enter:

7D00 02E0 LWPI >70B8
7D02 70B8
7D04 0A54 H

8
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Though you can use other memory areas to store the reg-
ister values, be careful your program doesn’t overwrite these
locations, or their values will be forgotten by the computer.
It's best to use the usual area of >70B8 onwards and avoid
putting any part of your program in those addresses.

Instructions and Directives

In the opcode field of a line, you can either write an instruc-
tion or a directive. Assembly language instructions perform
only one operation, like LI (Load Immediate), which loads a
value into a register, or SWPB (SWaP Bytes), which exchanges
the bytes in a word. The instructions for both the

Editor /Assembler and the Line-by-Line Assembler are practically
the same, and a list of them can be found in Appendix B.

Assembly language directives are similar to BASIC sub-
routines in that they perform an entire set of predetermined
instructions. When the Assembler encounters a directive, it per-
forms this set of preprogrammed instructions. The
Editor/Assembler has 28 directives to work with, while the
Line-by-Line Assembler has only 7.

Let’s take a look at those seven directives of the assembler
found in the Mini Memory module. They’re very important to
assembly language programming, and it’s vital you know how
each works.
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As mentioned in Chapter 1, the Line-by-Line Assembler has
seven directives which you can use. They are: AORG, END,
SYM, EQU, DATA, BSS, and TEXT. Each is explained in detail
below.

The AORG Directive

The AORG (Absolute ORiGin) directive helps you move from
one meniory location or address to another, a process which is
useful in correcting errors, adding information, and reviewing
data. For example, when you select the NEW option of the
Mini Memory module, you're placed at the default memory ad-
dress of >7D00. If you want to start your program at some
other memory location, such as >7E00, you could enter:

7D00 045B AORG >7E00

and press ENTER. You'll then be at the correct place in mem-
ory to continue with:

7E00 04C3 W

Remember that the directive must be typed in the opcode
field, so press the space bar twice before typing AORG and
again before typing the hexadecimal memory location (>7E00)
to leave the instruction field and enter the operand field.

The AORG directive lets you move freely around mem-
ory, but if the memory address specified with the directive is
an odd number, the location will be rounded down to the pre-
vious even number. This is because memory locations always
increase by twos. If you entered the following, for instance,
you could see this. Specifying >7D03 sends you to >7D02.

7D00 045B AORG >7D03
7D02 C101 W

In the examples which follow, you'll be entering
directives beginning at location >7D00. Use AORG to return
to this location when necessary.

END Directive

The END (end program) directive is used when you wish to
exit the Assembler. The directive has no effect on the program
itself and doesn’t stop program execution, as is the case in

13
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BASIC. All it does is to return to the Mini Memory title screen.
Just type END in the instruction field, as illustrated below:

7D00 045B END

When you press ENTER, the following message is
displayed:
0000 UNRESOLVED REFERENCES

This message indicates that all labels in the operand field have
actually appeared in the label field. That is, the program’s not
trying to jump to a nonexisting label or trying to use a value
stored at a label which does not exist. If you're told that there
are no unresolved references, press ENTER twice more and
you'll return to the Mini Memory menu.

If there are one or more unresolved references and you
exit the Assembler, the program will not work correctly. When
you see a message indicating unresolved references, press any
key except ENTER and you'll return to the Assembler. You'll be
returned to the location from where you typed END. Find the
unresolved references using the SYM directive (explained
shortly), correct the error, and END the program once again.
Continue the process if necessary until there are no un-
resolved references.

The SYM Directive
The SYM (Symbol Table Display) directive shows you a list of
resolved and unresolved labels used in your program. To use
this directive, type SYM in the instruction field and press
ENTER, as in:
7D00 045B SYM

If no labels have been used, nothing will happen. Now
enter the following line at >7D00:
SN JMP RQ
Then type:
7D02 C101 SYM
You should see:

RESOLVED REFERENCES

SN - 7D00

UNRESOLVED REFEERENCES (JUMP)

RQ - 7D00

This shows that there is one resolved reference (a label in the
label field), SN, in location >7D00. Any jump or reference to

14
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Chapter 2

that label will be valid, or considered a resolved reference.
However, there’s also an unresolved JUMP reference, because
in >7D00 the program is trying to JuMP to a nonexistent la-
bel, RQ. JMP is equivalent to the BASIC GOTO statement; it’s
an unconditional jump. Now add the following line to the
above program:

7D02 04C0 RQ CLR RO

You'll see:

7D00*1000

Type another SYM in the next line:
7D04 0A54 SYM

And you'll see this on the screen:

RESOLVED REFERENCES
RQ -7D02 SN - 7D00

Notice that since you added a line labeled RQ (address
>7D02), the reference is considered resolved. This is even
clearer when the Symbol Table is displayed.

In a program, you're allowed to reference an as yet un-
defined label. When you do this, an R appears between the
memory location and its contents. Later on, when you define
this label (add the label in the label field), an asterisk is
printed for each resolved reference, along with the
corresponding memory location.

Let’s try this out. Add the following line to the program:

7D04 0207 LI R7,TX
Pressing ENTER displays this on the screen:
7D06R0000

Notice the R character between the location and its contents.
Once again display the Symbol Table:

7D08 XXXX SYM (XXXX is any number at that

location)

RESOLVED REFERENCES

RQ - 7D02 SN - 7D00

UNRESOLVED REFERENCES (WORD)

TX - 7D06

Again, in >7D04 there’s a reference to a nonexistent label, TX,
though not in a JuMP instruction. That's why, this time, the
unresolved label is placed in the word references instead of
the jump references.

15
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When writing assembly language programs, it’s very com-
mon to reference a label and then forget to add that label to
the program. Ending a program like this would cause a pro-
gram bug, or mistake. The UNRESOLVED REFERENCES mes-
sage displayed upon exit from the Assembler reminds you if
there are still undefined labels in the program. And the SYM
directive helps you find those unresolved labels and correct
them.

One final note: If a label is referenced in more than one
location, a maximum of 32 references to that label are
displayed.

The EQU Directive

The EQU (Equate), or assembly-time constant definition, direc-
tive is similar in function to the equals sign (=) in BASIC. If
you want a label to be equal to a certain value, use the EQU
directive. For instance,

7D00 045B AB EQU >7FES8
makes label AB equal to >7FES8.

A value assigned to a label can be assigned to another la-
bel, as in:
7D00 045B NH EQU AB
The above line makes label NH have the same value as label
AB.

Once you've assigned a value to a label, there’s no direc-
tive available to change it. Enter these lines:

7D00 045B T7 EQU 118
7D00 045B T7 *ERROR*

When you press the space bar after typing T7 the second time,
the error message appears. T7 already has a value, and since it
can’t be changed, a new value cannot be assigned to it.
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The DATA Directive

The DATA, or word initialization, directive places values in

the memory locations you're currently at. These values might

be different data tables, character definitions, and so on. Some

examples might be:

7D00 0000 DATA 0 (Place a zero in location >7D00)

7D02 3589 DATA >3589 (Place value >3589 in location >7D02)

7D04 0100 DATA 259-3  (Place value 256 [>100] in location
>7D04)

7D06 XXXX DATA XN (If XN is defined, place the value of
the label in >7D06; otherwise, the
value is added when the label is
defined.)

7D08 0001 DATA 1,0,>34 (Place a 1in >7D08, a 0 in >7D0A,
and a >34 in >7D0C)

7D0A 0000

7D0C 0034

7DOE XXXX H

In other words, the DATA directive is used to initialize one or
more memory words to specific values. (In the example above,
the memory word in >7D00 was initialized to 0; location
>7D02 to >3589, and so forth.) Note that several memory
locations can be initialized to specific values simultaneously,
just by separating the values by commas (as shown for ad-
dress 7D08 above).

The DATA directive is mainly used to place tables of val-
ues into specified memory locations. These tables usually give
information about such things as sprites, colors, sounds, and
custom characters. The following BASIC statement, for
instance,

CALL CHAR (42,”FFA23491820100FF")

would be written in assembly language as:
7D00 FFA2 DATA >FFA2,>3491,>8201,>00FF

As soon as you enter the above line and press the ENTER key,
you'd see:
7D02 3491
7D04 8201

7D06 00FF
7D08 XXXX H

17
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Note that the character definition has been placed directly into
memory locations >7D00->7D07. You've only placed the
character definition in memory, however, not assigned it to
any character like you might have done in the BASIC line.

The tables or single numbers placed in memory by the
DATA directive must be in an area of memory where they will
not be executed by the program. If they are, the program will
probably not work correctly. Remember that if you place
something like a character definition in memory, you don't
want the computer to think it’s assembly language instruc-
tions. The best technique is to add all DATA directives after
the end of the program, where you're assured they won't be
executed. .

BSS Directive

The BSS (Block Starting with Symbol) directive is similar to
the DATA directive. It also reserves a certain area of memory
for the program to store information. BSS reserves a specified
number of bytes, without setting them to any value (unlike
DATA, which does initialize the locations). Try out the
following;:

7D00 045B BSS 32

7D20 XXXX

The 32 bytes from >7D00 to >7D1F have been reserved for
later use. Again, you must be careful that the reserved memory
will not be executed by the computer—make sure it’s placed
in an area of memory not used for the program’s instructions.

An example of the use of the BSS directive could be when
you perform the equivalent of a BASIC INPUT in assembly
language. Whatever the user types in must be stored some-
where in memory. Suppose you want to accept words up to
ten letters long. You could reserve a ten-byte area to store the
word (each character is represented by one byte). The begin-
ning of this block of memory is usually assigned a label, so
that the program can know where to find it in memory. Here’s
an example:

7D00 045B T3 BSS 10
7DOA XXXX H

In the above, you've just reserved a ten-byte block of memory,
from >7D00 to >7D09, and labeled the block T3.

18
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You might have already noticed that the memory loca-
tions where you type the instructions always increase by two
(one word, two-byte increments). This is why, if you specify
an odd number with the BSS directive, the number is rounded
down:

7D00 045B BSS 5
7D04 XXXX ®H

The line 7D00 above reserves only four bytes of memory.

The Assembler doesn’t accept negative values with the
BSS directive, and a 1 or a 0 returns you to the original loca-
tion without reserving any memory.

The DATA and BSS directives work in a similar way—
both set aside a memory area or block. The major difference is
that DATA assigns values to the memory reserved and BSS
does not.

The TEXT Directive

Completing the list of the seven Line-by-Line Assembler
directives is the TEXT, or string constant initialization, direc-
tive. As its name indicates, it's used to store a character string
in memory. For example, if you wanted to store the word
COMPUTER in memory, you would enter:

7D00 045B TEXT ‘COMPUTER’

and press ENTER. Note that the text to be displayed must be
enclosed in single quotes (the single quote is the only charac-
ter which cannot be displayed in a text). When you press EN-
TER after typing in the above example, you'll see:

7D00 434F TEXT ‘COMPUTER’
7D02 4D50

7D04 5554

7D06 4552

7D08 XXXX W

What's happened is that the Assembler has converted each
character to its hexadecimal ASCII code and stored that code
in memory. (For a list of hexadecimal ASCII codes, see
Appendix A.) In other words, the C has been represented by
value >43, the O by value >4F, and so forth.

Text, then, occupies as many memory bytes as it has
characters. Thus it’s best to keep text to a minimum, since it
uses up a lot of memory.
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If the number of characters in a string is odd, the Assem-
bler adds a null byte (byte >00) at the end of the text, so that
the next memory location is even:
7D00 4845 TEXT ‘HELLO’
7D02 4C4C
7D04 4F00
7D06 XXXX

After the >4F, the null byte (>00) was added.

The string placed in memory is not displayed on the
screen by using TEXT; a set of instructions must be used to do
so. Also, as with DATA and BSS, the code generated by a
TEXT directive is not assembly language instructions. Again,
make sure this code is left outside any program execution.

Accessing VDP Memory
Earlier it was mentioned that VDP memory (containing screen
information, tables, and so forth) could not be accessed di-
rectly from the assembly language program. To write or read
values from VDP RAM, you must use one of five system util-
ity routines, which require certain information loaded into spe-
cific registers. These routines are VSBW (VDP Single Byte
Write), VMBW (VDP Multiple Byte Write), VSBR (VDP Single
Byte Read), VMBR (VDP Multiple Byte Read), and VWTR
(VDP Write To Register).

The first four are detailed in this chapter.

Displaying a Single Character

To write one byte to VDP memory, you'll use the VSBW rou-
tine. Though in this example you'll write the byte on the
screen (which forms part of VDP RAM), keep in mind that the
byte can also be written to other areas of memory, such as
data tables. The VSBW routine requires certain values loaded
into specific registers (registers 0 and 1) before it can be
executed.

In register 0 (RO) you must load the memory address
where you want to write the byte. You'll want to write the
byte on the screen, which occupies memory locations 0-767
(decimal). (The screen has 32 columns and 24 rows, 32 X 24
= 768 positions.) To work out the byte’s screen location, us-
ing the BASIC row and column values as reference, do this:
Count the number of lines before the line where you want to
display the character—then multiply this number by 32. Add
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to this value the number of spaces on the next line to leave
blank before the printing position and you'll have the correct
memory location to load into RO.

For instance, to display a byte in screen position row 12
and column 7, you would multiply 11 (the line before line 12)
by 32, then add the number of blank spaces before the column
position. The total would be (11 X 32) + 6, which equals
358.

Once RO has been loaded with the screen printing po-
sition, you must load the hexadecimal ASCII code of the
character to be displayed into the left byte of register 1 using
the LI (Load Immediate) instruction. Then all you do is branch
to execute the VSBW routine to write the byte on the screen.
To branch to the VSBW routine, use the BLWP (Branch and
Load Workspace Pointer) instruction, which works in a similar
way to the GOSUB statement in BASIC. In the Line-by-Line
Assembler, you're not permitted to branch directly to a routine
by its name, like this:

BLWP @VSBW (The @ means at and must be included before the

routine name or position in memory)

as you can when using the Editor/Assembler, unless you
equate the label to the position in memory of the routine first,
with the EQU directive:

7D00 045B VS EQU >6024
7D00 045B BLWP @VS

To avoid having to use the EQU directive and unnecessary la-
bels, it’s best to branch directly to the memory location where
the subroutine is located. In other words,

BLWP @>6024

which means “branch to the routine stored at (@) hexadecimal
memory location >6024 and execute it.” When the routine has .
been executed, control returns to the next instruction after the
BLWP. In the Mini Memory manual, pages 35 and 36, you'll

see that the memory location of each routine has been in-
cluded. You'll also find the memory locations in the module’s
ROM memory map.

At this point in the program, the byte will already have
been printed on the screen. But before you end the program,
you have to stop its execution or the computer will continue
executing instructions in subsequent memory locations. You
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can create an endless loop condition by labeling a line and
continuously jumping to that label:

NQ JMP NQ

Let’s see how the program would look.

7D00 02E0 LWPI >70B8

7D02 70B8

7D04 0200 LI R0,367

7D06 016F

7D08 0201 LI R1,>2A00

7D0A 2A00

7D0C 0420 BLWP @>6024

7DOE 6024

7D10R10FF NQ JMP NQ (This line could also be B *R11.
Here, B is in the instruction
field, and not a label)

7D10*10FF

7D12 XXXX END

Explanation of the Program

First of all, the workspace area to be used by the registers,
>70B8, was loaded with LWPI (Load Workspace Pointer Im-
mediate) into memory location >7D00. Then, in memory loca-
tion >7D04, RO was loaded with the printing position. Note
that the character will appear in the center of the screen (row
12, column 16), calculated by ((12—1) X 32) + (16—1) =
367. Next, the left byte of R1 was loaded with the code of the
character to be displayed (an asterisk, ASCII code >2A), and a
0 was placed in the right byte.

All was ready to execute the VDP single-byte write rou-
tine in location >6024. In >7D0C, a branch to that routine
was executed. The only thing missing before ending the pro-
gram was to stop execution; this was done with the endless
loop in >7D10.

Executing the Program

When you've entered the program, END it and return to the
Mini Memory title screen. Press FUNCTION = (QUIT) and re-
turn to the title screen. Select (2) EASY BUG and press any
key to skip the instruction screen. When the question mark
appears, type E7D00. This is telling the computer to EXECUTE
the assembly language program which starts at location
>7D00. Press ENTER and the asterisk will be displayed im-
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mediately. Further on, you'll see how you can give your pro-
gram a name and execute it like the program LINES or from
BASIC. FCTN = (QUIT) will not return control to you. Switch
the computer off (the program will remain in memory), wait a
few seconds, and switch it back on, selecting the NEW option
of the Assembler. You'll be ready to continue.

If you substitute the line B *R11 for the endless JMP loop
(NQ JMP NQ), you can avoid the inconvenience of having to
turn the computer off to break out of the program. This
branching command, explained in greater detail in Chapter 4,
will, in this case, return you to EASY BUG.

Using the YMBW Utility

The VDP Multiple Byte Write routine is similar to the single-
byte write routine except that it writes multiple bytes to mem-
ory. A good example would be the values represented by text.
In the description of the TEXT directive, it was mentioned that
the text loaded into memory was not displayed on the screen
just by using the directive. You can use the VMBW routine to
display it on the screen.

The utility needs registers 0, 1, and 2 loaded with certain
values in order to work. In RO, place the memory location
where the bytes will start to be printed, just as in VSBW. In
R1 load the location in memory where the bytes to be dis-
played will be found (remember, these should not be within
execution of the program), and in R2 load the number of bytes
to be written. Then you can branch to the VMBW utility
stored starting at memory location >6028:

7D00 02E0 LWPI >70B8
7D02 70B8

7D04 0200 LI R0,67
7D06 0043

7D08 0201 LI R1,PQ
7D0ARO0000

7D0C 0202 LI R2,18
7DOE 0012

7D10 0420 BLWP @>6028
7D12 6028

7D14 045B B *R11

7D16 4153 PQ TEXT ‘ASSEMBLY LANGUAGE ’
7D0A*7D16
7D28 XXXX END
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Program Explanation
The memory area for the registers is loaded into location
>7D00. In RO, the initial printing position (67—row 3 and col-
umn 4) is loaded. R1 is loaded with the label where the text to
be displayed will be found (label is PQ). The text itself will be
added to the end of the program. The number of bytes to
write, 18 to match the length of the text, is loaded into R2. In
location >7D10, a branch executes the VMBW routine at
>6028, and in location >7D14 the program returns to EASY
BUG, just as in the previous example. Ending the program
here would leave one unresolved reference, PQ, so it’s added
in location >7D16. Then the program ends.

Run the program as you did in the previous example, by
selecting EASY BUG and typing E7D00, where the assembly
language program begins.

The VSBR and VMBR Utilities

These routines have the opposite effect of the two previous
ones. The VSBR (VDP Single Byte Read) routine reads one
byte from a specific memory address and the VMBR (VDP
Multiple Byte Read) routine reads a certain number of bytes,
starting at a determined address.

The VSBR utility only requires RO to be loaded with the
memory address from where to read the byte. When you
branch to the routine (found in location >602C), the value of
the byte in that location is placed in the left byte of R1. For
instance:

7D00 02E0 LWPI >70B8
7D02 70B8

7D04 0200 LI R0,300

7D06 012C

7D08 0420 BLWP @>602C

7DOA 602C

This program segment places the value of the byte found in
VDP memory location 300 into the left byte of R1.

The VMBR routine requires RO to be loaded with the VDP
RAM memory address from where to start reading the bytes,
R1 loaded with the place in memory where to put these bytes
(an area reserved with the BSS directive), and R2 with the
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number of bytes to be read. A branch to the VMBR routine in
location >6030 does the rest. Here’s a sample program seg-
ment to show you how it can be done.

7D00 02E0 LWPI >70B8
7D02 70B8

7D04 0200 LI RO,>0585
7D06 0585

7D08 0201 LI R1,BF
7DO0ARO0000

7D0C 0202 LI R2,10
7DOE 000A

7D10 0420 BLWP @>6030
7D12 6030

7D14 045B B *R11
7D16 XXXX  BF BSS 10
7D0A*7D16

7D20 XXXX END

This loads the memory area labeled BF with the ten bytes read
from VDP RAM locations >0585 on up. The memory area BF
has been added where it will not be executed as program
instructions (stored in memory address 7D16). As with the
two previous sample programs, this one returns you to EASY
BUG.

Since this segment does not write to any screen memory
addresses, nothing appears to happen when the program exe-
cutes. The next example, however, will visually demonstrate
the VMBR routine by writing what was read from the screen
back to the screen.

Using VMBW and VMBR

The last example in this chapter combines the VMBW (VDP
Multiple Byte Write) and VMBR (VDP Multiple Byte Read)
routines to place a message on the screen, read it, and print a
portion of it elsewhere. Type in the following program:

7D00 02E0 LWPI >70B8 (Load memory area for
registers)

7D02 70B8

7D04 0200 LI R0,67 (Memory location where bytes
will be written)

7D06 0043

7D08 0201 LI R1,PQ (Bytes to be written are stored

at PQ)
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7D0ARO000

7D0C 0202 LI R2,18 (Number of bytes to write)

7DOE 0012

7D10 0420 BLWP @>6028 (Execute the VMBW routine)

7D12 6028

7D14 0200 LI R0,67 (Memory location where bytes
will be read)

7D16 0043

7D18 0201 LI R1,BF (Read in bytes will be stored at
BF)

7D1AR0000

7D1C 0202 LI R2,18 (Number of bytes to be read in)

7D1E 0012

7D20 0420 BLWP @>6030 (Execute the VMBR routine)

7D22 6030

7D24 0200 LI R0,330 (Memory location where bytes
will be written)

7D26 014A

7D28 0201 LI R1,BF (Bytes to be written are stored
at BF)

7D2AR7D1A

7D2C 0202 LI R28 (Number of bytes to be written)

7D2E 0008

7D30 0420 BLWP @>6028 (Execute the VMBW routine)

7D32 6028

7D34 045B B *R11 (Return to EASY BUG)

7D36 5345 PQ TEXT ‘ASSEMBLY LANGUAGE ’

7D0A*7D36

7D48 10E2 BF BSS 18 (Set aside 18 bytes for storing
message)

7D2A*7D48

7D1A*7D48

7D5A XXXX END

When executed with EASY BUG (E7D00), the program will
write the message ASSEMBLY LANGUAGE on the top of the
screen, read the entire message from the screen, and then
print the first eight characters (bytes) at screen location 330.

Saving Your Program on Tape

Whenever you want to save your program on tape, select the
EASY BUG option from the master selection list, press any
key to skip the instructions, and type S. This command means
“save the contents from memory to tape.” The computer will
have to know from what memory location to start saving and
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up to where to continue the process. It's always best to save
the entire contents of the module’s 4K RAM to tape (from
>7000 to >7FFF), so when the question mark appears, type
S7000 and press ENTER. The compter will ask TO ?. Type
>7FFF and press ENTER.

It’s not necessary to include the greater than (>) symbol.
Now follow the usual process to save a program onto tape.

To load the program from tape, follow the same instruc-
tions as for loading the Assembler and LINES programs. If the
name of your program has been added, run the program like
the LINES demonstration program or by calling it from
BASIC. Otherwise, use the E (Execute) instruction of EASY
BUG as you've been doing already.

You're already using the Line-by-Line Assembler to do
complex things like read and write from your TI's screen
memory. Of course, there’s more to learn, more powerful
assembly language programming techniques. That’s what
Chapter 3 is all about.
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Instructions are kept very simple in assembly language—that’s
both an advantage and a disadvantage, for although the
instructions are easy to remember (for the most part), it does
make program listings quite long. Don’t be intimidated by an
assembly language program’s length. Just because it’s long
doesn’t mean it's complicated. To perform even a simple op-
eration, such as a machine language equivalent to BASIC's
CALL CLEAR, a whole set of instructions has to be written.

But assembly language programs are powerful. And in
this chapter, you'll see more detailed examples to help you so-
lidify your programming knowledge.

Note: From this point on, program listings will not in-
clude the contents of the locations. You'll see the memory ad-
dress, and the instruction to type in. Simply enter the
instructions as you’ve done in the first two chapters.

Increasing and Decreasing a Value
Though instructions are provided to add and subtract values
stored in memory locations and registers, four convenient
instructions exist which operate directly. They are: INC, INCT,
DEC, and DECT.

INC (INCrement) increases the value in a memory ad-
dress or register by one; adds one to the value there:
7D00 INC R3 (Adds one to the value stored in

R3)

DEC (DECrement) decreases the value in a register or

memory location by one; subtracts one from the value there:

7D02 DEC @>7F00 (Subtracts one from the value
stored at memory location >7F00)

(Remember that when you reference a hexadecimal or decimal
memory location directly, it must be preceded by the @ sym-
bol, except when using jump instructions.)

INCT (INCrement by Two) adds two to the value in a
register or memory address:

7D04 INCT @>7E18 (Adds two to the value stored in
location >7E18)

DECT (DECrement by Two) subtracts two from the
value in a register or memory location:

7D06 DECT R5 (Subtracts two from the value in
R5) 31
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Use these instructions whenever you need to add or subtract
one or two from a value, instead of using the addition and
subtraction instructions. The latter instructions use more bytes.

Adding and Subtracting

Al To add to or subtract from a value stored in a register,
you can use the Al (Add Immediate) instruction. This instruc-
tion is called an immediate instruction because the first op-
erand is a register and the second a number (decimal or
hexadecimal). See Appendix B for a list of the instructions.

If you want to add, say 32 to the value in R4, you would
enter:

7D08 Al R4,32 (The value in R4 is increased by
32)

To add >312 to the value in R12:

7D0C AI R12,>312 (The value in R12 is increased by
>312)

The same instruction can be used to subtract a value from the
contents in a register (nothing called subtract immediate exists).
Just add the negative value of the number you want to sub-
tract. For example, to subtract 712 from the value in R7, you
would type:

7D00 AI R7,—712 (Subtracts 712 from the value in
R7)

To subtract >24 from the value stored in R15:

7D04 AI R15,—>24 (Subtracts >24 from the value in
R15)

The result of addition or subtraction by the Al instruction is
placed in the same register where the initial value was stored.
In the previous example, for instance, the value after
subtracting >24 from the value in R15 is placed back in R15.

A and S. In many cases you might want to add or sub-
tract the values in two registers, two memory locations, or a
register and a memory location. Then the A’(Add words) and
S (Subtract words) instructions are useful. These are word
instructions, which means that they work with the complete
four-digit hexadecimal number in a register or memory
address.

The A (Add words) instruction adds the word value in the
first operand to the word value in the second operand. It then
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places the addition in the second operand. Assuming that R3
is loaded with >1201 and R1 with >1362, the following line:
7D00 A R1,R3

adds >1201 and >1362 (for a total of >2563), and places the
answer in R3. The first operand remains unchanged by the op-
eration. If you want the answer in R1, just invert the operands,
like so:

7D00 A R3,R1 (Adds the values and places the

addition in R1, leaving R3
unchanged)

Some more examples:

7D02 A R3,@>7FC0 (Adds the word value in R3 to the
value stored in location >7FC0O
and places the answer in >7FCO0)

7D06 A @>7FCO,R3 (Same as above, but answer is
placed in R3)
7D0A A @>7D04,@>7E12(Adds the value in >7D04 to the

value in >7E12, placing the an-
swer in >7E12)

The S (Subtract words) instruction works the same way,
only subtracting the word values of two registers, two memory
locations, or a register and a memory location. The value of
the first operand is subtracted from the value of the second
operand and the answer placed in the second. For example, if

R5 is loaded with 2 and R7 with 5, then

7D00 S R5,R7

subtracts the value in R5 (2) from the value in R7 (5) and

places the answer (3) in R7. The value of R5 remains un-

changed. Other examples are:

7D00 S @>7FC2,@>7100 (Subtracts the word value at loca-
tion >7FC2 from the word value
at >7100, storing the answer at
>7100)

7D00 S @>7F00,R14 (Subtracts the word value found
at memory location >7F00 from
the word value in R14, placing
the answer in R14)

AB and SB. Two instructions similar to A and S are AB
(Add Bytes) and SB (Subtract Bytes). Both do the same as
the word instructions, but operate only with the left (most
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significant) byte of the word, leaving the right (least signifi-
cant) byte unchanged. If R4 is loaded with >0492 and R5 with
>1067, the instruction '

7D00 AB R4,R5

adds the left byte of the word in R4 (>04) to the left byte of
the word in R5 (>10), placing the answer (>14) in the left
byte of R5. The right byte of R5 remains unchanged. The
value found in R5 now would be >1467. R4 remains
unchanged.

Here’s another example:

7D00 AB @>7BFE,@>7100

This adds the left byte of the word found at (@) >7BFE to the
left byte of the word at >7100. The answer is placed in the
left byte of the word at >7100, and the least significant byte
(>7101) remains unchanged.

SB (Subtract Bytes) works in the same way as S, but sub-
tracts the value found in the left byte of the word in the first
operand from the left byte of the word in the second operand.
The resulting answer is stored in the left byte of the word in
the second operand. If R2 is loaded with >0127 and R1 with
>0256, the instruction

7D00 SB R2,R1

subtracts >01, the left byte of R2, from >02, the left byte of
R1. R1 now contains >0156, while R2 remains unchanged.

Instruction Formats

Each instruction is classified into one of nine formats. For ex-
ample, all instructions which use two operands in the operand
field, separated by a comma, and where the operands are gen-
eral addresses (such as a memory address or a workspace reg-
ister) are considered Format I instructions. They're also called
“two general address instructions.”

7D00 A @>837C,R5 (>837C and R5 are two general
addresses separated by a comma,
so A is a Format I instruction)
Other formats which include instructions you’ll use are:
Format II. All the jump instructions, which transfer con-
trol to a memory location or a label representing a memory
location.

7D00 JMP LP
34
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Format III. Logical instructions, which contain a general
address as first operand, separated by a comma from the sec-
ond operand, which is a workspace register.

Format VI. Single address instructions, which require
only a general address. Examples include the INC, INCT,
DEC, and DECT instructions discussed earlier in this chapter.

Format VIII. Immediate instructions, which require a reg-
ister as the first operand, followed by a comma and a numeric
expression in the operand field. '

7D00 LI R5,3

Also included in this format are two instructions requiring
only a numeric expression in the operand field:

7D00 LWPI >70B8

and two instructions requiring only a register in the operand
field.

Format IX. Extended operation instructions. This format
includes the extended operation instructions and the mul-
tiplication and division instructions.

Don’t worry about understanding the formatting of
instructions yet. As you start to work on your own assembly
language programs, you'll get used to what instructions to use
where. Whenever you come across an instruction which gives
you some doubt about what kinds of operands it works with,
refer to Appendix C. The instructions are listed there, as well
as the operands each uses.

Comparing Values
If you want to compare the value in a register to a number,
you'll use one of the compare instructions. There are three
we’ll look at here.

CI (Compare Immediate) is a Format VIII immediate
instruction, and requires a register as the first operand and a
numeric expression as the second operand. For example, to
compare the value stored in R5 (register 5) to 118, you would
enter:

7D00 CI R5,118 (Compares the value stored in R5
to 118)
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To compare the words in two memory locations, two reg-
isters, or a memory location and a register, use the C (Com-
pare words) instruction. For instance:

7D00 C R3,R4 (Compares the word value in R3
to the value in R4)
7D02 C @>8374,R3 (Compares the word value stored

at >8374 to the word value in R3)

Finally, to compare the left bytes of two words, the CB
(Compare Bytes) instruction can be used, like this:

7D00 CB R3,R4 (Compares the left byte of R3 to
the left byte of R4. If the bytes are
the same, the registers are consid-
ered equal even if the least signifi-
cant [right] bytes are different.)

7D02 CB @>7500, @>7C00 (Compares the left bytes of the
words stored in memory locations
>7500 and >7C00)

Jumping According to a Result

After having made a comparison, you'll want to transfer pro-
gram control according to the result. You've already seen the
JMP (JuMP) instruction, similar to BASIC’s GOTO. But assem-
bly language has other kinds of jumps which can be used
according to the result of a comparison. They have the same
function as the IF-THEN in BASIC. Some of these instructions
are:

JEQ (Jump if EQual). If the compared values are equal,
this jump will be executed. Otherwise it’s ignored, and the
program continues with the next instruction after the jump.
7D00 C R1,R2 (Compares R1 and R2)

7D02 JEQLP (If they are equal, transfers control
to address labeled LP)

JGT (Jump if Greater Than). If the value of the first op-
erand is greater than the value of the second operand, execute
the jump. Otherwise not.

7D00 CI R3,300 (Compares the word value in R3
to the decimal number 300)
7D04 JGT NQ (If the value in R3 is greater than

300, control is transferred to
memory location with label NQ)
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JHE (Jump if High or Equal). If the value of the first op-
erand is greater than or equal to the value of the second op-
erand, the jump executes.

7D00 C R3,R4 (Compares the value in R3 to the
value in R4)
7D02 JHE P3 (If the word in R3 is greater than

or equal to the word in R4, con-
trol is transferred to the location
labeled P3)

JLE (Jump if Low or Equal). If the value of the first op-
erand is less than or equal to the value of the second operand,
this jump executes.

7D00 C R7, @>7F00 (Compares the word in R7 to the
word stored at memory location
>7F00)

7D04 JLE >7D08 (If the value in R7 is less than or

equal to the value found at
>7F00, control is transferred to
>7D08)

JLT (Jump if Less Than). If the value of the first operand
is less than the value of the second operand, the program exe-
cutes the jump.

7D00 C NM,R2 (Compares the value stored in
location labeled NM to the value
in R2)

7D04 JLT A5 (If the value in NM is less than

the value in R2, program execu-
tion continues in the memory ad-
dress labeled A5)

JNE (Jump if Not Equal). If the two values compared are
different, the jump is executed.
7D00 C R3,R4 (Compares R3 and R4)

7D02 JNE >7D50 (If the values are different, control
passes to location >7D50)

Other jump instructions exist, but the above are the most
frequently used. One thing to remember is that a jump
instruction cannot jump to a location more than >100 (256)
bytes away. If you try to do this, you'll get an *R-ERROR*
(out of range) message. To see this, try the following:

7D00 JMP >7F00
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As soon as you press ENTER, an *R-ERROR* message
will appear, because >7F00 is more than 256 bytes away from
>7D00. To avoid this error message, it’s best to use the B
(Branch) instruction, which allows you to branch to any mem-
ory address in the program:

7D00 B @NG (Branches to the location labeled
NG. Here you must include the at
[@] sign before the memory loca-
tion or label)

7D04 B @>7F00 (Branches to memory location
>7F00)

Branching After a Comparison

You don’t have all the different kinds of jump instructions
available with the branch instruction. What would happen if a
conditional jump caused an *R-ERROR* because of trying to
jump to a location more than 256 bytes away? For instance,
consider the following error:

7D00 CI R2,300
7D04 JLT NG *R-ERROR*

If the value in R2 is lower than 300, you want the program to
jump to the location labeled NG. But NG is too far away in
memory to be reached by a jump (in this case, JLT) instruc-
tion. How can this same routine be done using the B (Branch)
instruction?

It’s not hard. Just invert the problem. Instead of compar-
ing and looking for results less than, compare and look for re-
sults greater than. Glance at the following solution:

7D00 CI R2,300
7D04 JHE NQ
7D06 B @NG
7D0A NQ

(program continues)...

In the first example you told the computer to jump to NQ if
R2 was less than 300, but here you said that if R2 is equal to or
greater than 300, skip to NQ and continue the program. If not
equal to or greater than, it branches back to NG (>7D06).

Creating More Programs

All this theoretical background has shown you a whole new
set of instructions. Now we’ll write some example programs to
see how many of these instructions can be used.
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A Delay Loop

In most of your assembly language programs, you'll need to
use delay loops to slow down execution. Assembly language is
fast—often too fast. Many times you need to slow it down so
people can use the program.

A delay loop is simple to create; one way is to load a
value in a register and decrease it until it’s equal to zero. It's
similar to something like a FOR I = 1 TO 1000:NEXT I state-
ment in BASIC.

7D00 LI R7,5000
7D04 LP DECR7
7D06 CI R7,0
7D0A JNE LP

When you're comparing the first operand to zero (only),
as in the above, you don’t need to include the comparison.
The previous could thus be written as:

7D00 LI R7,5000
7D04 LP DECR?7
7D06 JNE LP

The jump (JNE) instruction automatically compares R7 (the
last register operated with before the jump instruction) to zero.
Remember that the maximum value you can load in a

register is 65535 (>FFFF), and in assembly language, a loop
with such a delay only causes the program to pause for
around a second. The following program waits with the maxi-
mum loop value and then prints the word FINISHED on the
screen.

Maximum Loop—FINISHED

7D00 LWPI >70B8 (Load the memory area for the
registers)

7D04 LI R9,>FFFF (Load delay value into R9)

7D08 LP DECR9 (Decrease value in R9 by one)

7D0A JNE LP (If not zero, return to loop LP)

7D0C LI R0,300 (Delay loop finished. Load screen

‘ printing position)

7D10 LI R1,TX (Load position of text in memory,
TX)

7D14 LIR28 (Load the length of the text)

7D18 BLWP @>6028 (VMBW routine to display the
message)
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7D1C B *R11 (Return to EASY BUG)
7DIE TX TEXT ‘FINISHED' (Text to be displayed)
7D26 END

When you run this program, the delay is only a moment long.
For longer delays, you'll need to use nested loops. For ex-
ample, to make the previous delay five times as long, load an-
other register with the value of five and each time a delay is
executed, decrease it. When the register is zero, continue. If it’s
still not zero, then return to the delay loop: :

Longer Delays

7D00 LWPI >70B8 (Load memory area for registers)

7D04 LI R12,5 fNumber of times to execute outer
0op)

7D08 L1 LI R5>FFFF fNumber of times to execute inner
oop)

7DOC L2 DECRS5 (Decrease value of inner loop)

7D0E JNE L2 (If not equal to zero, loop not
completed)

7D10 DEC R12 (Decrease value of outer loop)

7D12 JNE L1 (If not zero, return to repeat inner
loop)

7D14 LI R0,300 (Loops finished. Load screen dis-
play position)

7D18 LI R1,TX (Load position of text in memory)

7D1C LIR2,5 (Load length of text)

7D20 BLWP @>6028 (Branch to display text)

7D24 B *R11 (Return to EASY BUG)

7D26 TX TEXT ‘READY’ (Add text to program)
7D2C END

This program creates two nested loops. The inner loop is exe-
cuted five times (the value in the outer loop) before the pro-
gram continues. Run the program and you’ll see that the
computer waits a little longer than before.

Clearing the Screen
In this next example you'll create a routine to clear the screen,
located in VDP memory from locations 0 to 767.
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If you didn’t have the CALL CLEAR subroutine in BASIC,
how would you clear the screen? The easiest way would be to
print a blank character (a space) in each of the 768 screen po-
sitions. The same thing can be done in assembly language; us-
ing the VSBW (VDP Single Byte Write) routine, you can print
a blank on each of the 768 positions.

Clear Screen with Assembly Language

7D00 LWPI >70B8 (Load memory area for registers)
7D04 CLR RO (Load zero in register 0)
7D06 LI R1,>2000 (Load the ASCII code for the

space [>20] in the left byte of R1)
7DOA LP BLWP @>6024 (Print the blank)

7DOE INC RO (Increase the screen printing
position)
7D10 CI R0,768 (Compare it to the first position

beyond the screen. Screen goes to
location 767)

7D14 JLT LP (Screen position is still smaller, so
printing is not complete. Return to
loop LP)

7D16 B *R11 (Return to EASY BUG)

7D18 END

This program uses the same instructions as previous examples,
and the program explanation included beside each instruction
should help you follow its workings. The only new instruction
used is CLR (CLeaR) in location 7D04, which sets the word
value in a register or memory address to zero, as:

CLR @>8374 (Load >0000 into >8374)

It’s better to use CLR than to LI (Load Immediate) the value of
zero, because CLR uses only two bytes of memory with reg-
isters and also can be used to directly clear a memory location.

Run the screen-clearing routine once you’'ve entered it.
Keep an eye on the E7D00 message at the bottom of the
screen. Note how quickly it’s erased, indicating that the CALL
CLEAR routine was successful.

Crossing At
The next example program makes the @ symbol run along
the top of the screen, from left to right. This is another easy
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routine to program. You must create a loop to print the @
from positions 0 through 31, erasing it again after each print

by printing a blank over it.

Moving @

7D00

7D04

L1

LWPI >70B8

CLR RO

7D06 L2 LIR1,>4000

7D0A
7DOE

7D12
7D16
7D18

7D1C
7D1E

7D20

BLWP @>6024
LI R1,>2000

BLWP (@>6024
INC RO
CI Ro,31

JNE L2
JMP L1

END

(Load the memory area for the
registers)

(Load RO with zero, first screen
position)

(Load R1 with code for the @
symbol)

(Print symbol on the screen)
(Load code for blank to erase the
@ symbol)

(Print blank erasing the @ sign)
(Increase printing position by one)
(Is it the last position of the top
line?)

(No. Return to print a new @)

(Yes. Return to reset printing po-
sition and start over)

Run the program. Doesn’t the @ symbol move a little bit too
fast? To make the program run a bit slower, you'll have to add
a couple of delay loops. Adding one after the @ symbol is
printed, and another after the blank has been printed, should
be enough. The new listing would look like this (if you don’t
want the @ to blink so much, try leaving out the delay loop
after the blank is printed):

Slower @

7D00

7D04
7D06
7D0A
7DOE

7D12
7D14
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L1
L2

L3

LWPI >70B8

CLR RO

LI R1,>4000
BLWP @>6024
LI R7,2000

DEC R7
JNE L3

(Load memory area for the
registers)

(Initial screen printing position)
(Load the code for the @ symbol)
(Print the @)

(Load R7 with the value for the
delay loop)

(Decrease the loop value)

(If R7 equals zero, the program
continues; if not, control returns
to L3)
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7D16 LI R1,>2000 (Load code for the blank)

7D1A BLWP @>6024 (Print the blank, erasing the @
sign)

7D1E LI R7,2000 (Load R7 with the value for the
delay loop)

7D22 L4 DECR?7 (Decrease loop value)

7D24 JNE L4 (If R7 is not equal to zero, control
returns to L4)

7D26 INC RO (Screen printing position is

‘ increased)

7D28 CI RoO,31 (Is it the last position of the top
line?)

7D2C JNE L2 (No. Return to printing routine,
label L2)

7D2E JMP L1 (Yes. Restart complete routine, la-
bel L1)

7D30 END

Run this new program. If you want to change the printing
speed of the @ symbol, changing the values in the delay
loops, you don’t need to retype the program. Just return to the
module’s title screen, select (3) MINI MEMORY and (2) RUN.
Type OLD and press ENTER. Then use the AORG directive to
get to memory location >7DOE, where the value for the first
delay loop was loaded:

XXXX AORG >7DOE
7DOE H

Type the LI instruction once again, including the value you
want to use in R7:

7DOE LI R7, XXX (where XXX is the new delay
value)

Then use the AORG directive to get to the next delay loop:

7D12 AORG >7D1E

7D1E LI R7,YYY (where YYY is the new value for

the second delay)
7D22 END

End the program and run it again. One recommended
change is to leave the first loop with a 2000 delay and change
the second loop to contain a delay of only 2.
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Squaring the Screen

This program will make the @ sign flash in a square around
the screen. For the top of the screen, you'll do the same as for
the previous example program, increasing the screen position
with the INC instruction. Then the symbol is moved down
one line at a time. For the printing position to move exactly
one line down, you must add 32 characters to the current
screen printing position in RO. The instruction AI R0,32 will
move the @ sign down one line at a time.

To move the symbol from right to left, you decrease the
value in RO with the DEC instruction. Then, move the symbol
up again by subtracting 32 from its current position. In other
words, add —32 for each line up with AI RO,—32. Take a look
at the next program:

Squared @

7D00 LWPI >70B8 (Load memory area for the
registers)

7D04 CLR RO (Clear register 0)

7D06 L1 LI R1,>4000 (Load R1 with the hexadecimal
code for the @ symbol)

7D0A BLWFP @>6024 (Print the @ symbol on the

screen)

7DOE LI R1,>2000 (Load code for the blank)

7D12 BLWP @>6024 (Print blank on the screen, delet-
ing the @)

7D16 INC RO (Increase printing position)

7D18 CI RO,31 (Has the last position [31] been
reached?)

7D1C JNE L1 (No. Return to first printing loop)

7D1E L2 LI R1,>4000 (Yes. Load @ code in R1)

7D22 BLWP @>6024 (Print it on the screen)

7D26 LI R1,>2000 (Load blank in R1)

7D2A BLWP @>6024 (Print it on the screen)

7D2E AI R0,32 (Move printing position one line
down)

7D32 CI R0,767 (Has last line been reached?)

7D36 JNE L2 (No. Return to second printing
loop)

7D38 L3 LI R1,>4000 (Yes. Load code for @ into R1)

7D3C BLWP @>6024 (Print @ on the screen)
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7D40 LI R1,>2000 (Load code for blank into R1)

7D44 BLWP @>6024 (Print blank, deleting the @ sign)

7D48 DEC RO (Decrease the printing position)

7D4A CI R0,736 (Has the first position of the last
line been reached?)

7D4E JNE L3 (No. Stay in the third printing
loop)

7D50 L4 LI R1,>4000 (Yes, load code for @ in R1)

7D54 BLWP @>6024 (Print the @ on the screen)

7D58 LI R1,>2000 (Load code for blank into R1)

7D5C BLWP @>6024 ~ (Print blank on the screen)

7D60 AI R0O,—32 (M)ove printing position one line
up

7D64 JNE L4 (If printing position in RO is not
equal to zero, stay in loop 4)

7D66 JMP L1 (Printing sequence complete. Start
over at L1)

7D68 END

This program has no delays. If you want to add them, placing
one after each printed @ symbol will be enough.

The program above can be written in more efficient
and/or shorter ways. There’s almost always more than one
way to write a routine. But with the instructions you know at
this point, the best and clearest way to write this particular
program is the way you just saw.

General Addressing Modes

When an instruction works with two operands in the operand
field, we call the source operand the one we’re going to operate
on or manipulate. The operand where the result of the opera-
tion is placed is called, naturally enough, the destination op-
erand. In the following example

7D00 A R4R3

R4 is the source operand and R3 the destination operand.
There are five ways to work with values in a register or
memory location. Called the General Addressing Modes, they
are:
Workspace Register Addressing. This is what you've
been doing in the example programs so far, working with the
values contained in a register (from 0 to 15):
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A R8,R9 (Adds the word in R8 to the word in R9, placing the
result in R9)

Workspace Register Indirect Addressing. This is when
the register contains the memory location where the value to
be used is found. Indirect addressing is specified by preceding
the register with an asterisk:

A *R3,*R4 (Adds the value found at the address stored in R3 to
the value found at the address stored in R4 and
places the answer in the location specified in R4)

If an asterisk precedes the register, it represents the phrase the
contents found in the memory location specified by the value in
this register. In the previous example, if R3 contained >7D00
and R4 contained >7E00, the instruction adds the word stored
in >7D00 to the word stored in >7E00, placing the answer at
memory location >7E00.

You don’t need to precede both operands with an asterisk
if you want only one of the registers to hold the address of a
memory location. For instance, you could use:
S *R2,R5 (Subtracts the value stored in the location addressed

by the value in R2 from the value in R5 and stores
the answer in R5)

Note that the value found in register 5 was used, not the con- _

tents of a memory location loaded into that register.

You've seen the asterisk, and thus indirect addressing,
used several times already. The line B *R11, which returned
several example programs to EASY BUG, meant to branch to
the memory location addressed by the value in register 11.

Workspace Register Indirect Auto-Increment Address-
ing. Symbolized by following the register with a plus (+)
sign, this mode increases the memory address stored in the
register by one byte or one word, according to the instruction
used. For example, assuming R3 is loaded with memory loca-
tion 7D00, the following instruction

Al *R3+,100

adds 100 to the value found in the memory address stored in
R3 (the asterisk causes this), and then increases the memory
address in R3 by two, leaving >7D02 stored in R3. The +

does this. The increment was of one word, two bytes, because
Al is an instruction operating with words.
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In the next example, imagine that R5 is loaded with
>7EF8, and R7 loaded with 7F50. The instruction

7D00 AB *R5,*R7+

adds the left byte of the word in memory location >7EF8,
stored in R5, to the left byte of the word in memory location
>7F50, stored in R7. The value in R7 is incremented by one
byte because AB is a byte instruction. If this instruction was
executed a second time, the left byte of the word stored in the
memory location found in R5 (>7EF8) would be added to the
byte found in >7F51 (stored in R7), because the value in R7
was already incremented by one byte when the instruction
was executed the first time.

This addressing mode is very useful when working with
data tables, as you'll see in a later chapter.

Symbolic Memory Addressing. This is when you work
directly with a memory location or a label at a memory ad-
dress. The symbolic memory address is preceded by the @
symbol. Some examples are: ,

A @>7F00,@>7EC2 (Adds the word found in >7F00
to the word found in >7EC2,
placing the answer in location
>7EC2)

CB @NM,@>7100 (Compares the left byte of the
word found at the memory loca-
tion labeled NM to the left byte of
the word found in >7100)

SB R7,@>7D08 . (Subtracts the left byte of the
word in R7 from the left byte of
the word stored in memory loca-
tion >7D08, placing the difference
in the left byte of the word at
>7D08)

Indexed Memory Addressing. An indexed memory ad-
dress is preceded by the @ sign and followed by a register en-
closed in parentheses (any register except R0 may be used). To
understand this type of addressing, study the following
examples: :

S @5(R9,R7 (Subtracts the word stored in the
memory address found by adding
5 to the value in R9 from the
value in R7. The difference is
placed in R7)
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A R7,@NM-3(R3) (Adds the word found in R7 to
the word stored in the location
found by subtracting 3 from the
value in NM, and then adding
this to the value in R3. The an-
swer is placed in the same com-
puted address)

Indexed memory addressing is not used as frequently as

the others. We’ll cover it in more detail later.

The previous modes, however, are very useful when

programming. You'll see just how useful in the next chapter.
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Planning an Assembly Language Program
Assembly language programs are not difficult to write, as long
as you plan them carefully. Due to the lack of editing features
in the Line-by-Line Assembler, you'll find that writing programs
at the TI's keyboard is difficult. The only exceptions are ex-
tremely short or simple routines. The best thing to do is to
write your programs on paper first.

Before you start this, though, divide the program into
blocks, as mentioned in the Introduction. For instance:

e CALL CLEAR
® Print title screen
® And so on

Then create and individually test each routine. When
you're sure that all the segments work correctly alone, put
them together to form the complete program.

Writing a complete program on paper and then testing it
might lead to disastrous results, and may leave you staring at
a 4K program, without knowing where the program bug is.
Hours of time wasted.

You'll probably have to do a great deal of what I call re-
search each time you write a new program. This research
ranges from investigating memory tables to interpreting
strange errors or confusing effects from the computer. Never
get discouraged—it’s all part of the intricate world of assembly
language.

Repeated Coding: Subroutines Needed
Every byte counts when you're using the Line-by-Line Assem-
bler. Memory has to be used very carefully. Routines which
are used more than once in the same program should be cre-
ated as subroutines, just as you often do in BASIC. The
instruction to call a subroutine, similar to BASIC’s GOSUB, is
the BL (Branch and Link) instruction. It’s used like the B
(Branch) instruction, transferring control to any memory loca-
tion desired. However, the instructions should not be
confused.

While B sends control to another memory address (as
BASIC’s GOTO does), BL lets you return from a routine to the
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instruction immediately following the BL. That’s just the way
BASIC’s RETURN works. The BL instruction is used like this:

7D00 BL @NM (Branches and links to the sub-
routine starting at the memory
location labeled NM)

7D04 BL @>7BC0 (Branches and links to the sub-
routine starting at memory loca-
tion >7BCO0)

When using BL, the memory location with the instruction
immediately following that containing the BL instruction is
placed in register 11. To return from a subroutine, then, all
you have to do is branch to the value stored in R11:

7FCO0 B *R11 (Branches to the address stored in
R11, returning to the main
program)
Thus control returns to the main program, specifically to the
instruction following the call to the subroutine. This method of
returning from a subroutine is very helpful because the RT
(ReTurn) instruction in the Editor/Assembler is not available in
the Line-by-Line Assembler. Fortunately, B *R11 does the same
thing as RT.

In the following example, the CALL CLEAR routine is im-
plemented as a subroutine labeled CR. Each time the screen
has to be cleared in a program, you’d just branch and link
(BL) to this routine.

7D30 BL @CR (Screen has to be cleared. Branch
and link to the routine at CR)

7F80 CR CLR RO (Screen clearing subroutine be-
gins. Load RO with zero)
7F82 LI R1,>2000 (Load R1 with the ASCII code for

the blank, >20)
7F86 LP BLWP @>6024 (Print the blank on the screen)

7F8A INC RO (Increase printing position)

7F8C CI RO,768 (Has last printing position been
passed?)

7F90 JLT LP (No. Return to printing loop)

7F92 B *R11 (Yes. Clearing routine finished.

Return to instruction following the
subroutine call by branching to
the memory location stored in

52 R11)

L Lo oL b b

£

.

E b



(N O T B

b

i

I T R I

Chanter &

Using NOP
This convenient instruction helps you prepare your programs
for later editing. The NOP (No OPeration) instruction leaves
one or more blank memory locations which the computer ig-
nores as it continues to the next assembled instruction. This
allows you to later correct errors in your program by adding
instructions in those free memory addresses.

Consider the following example, where memory location
>8374 should have been cleared for the program to work cor-
rectly. Luckily, some locations were left open just in case.

7D00 LI R5,4
7D04 NOP
7D06 NOP
7D08 NOP

7D0A BLWP @>6020

Thanks to the free memory locations, you can correct the er-
ror, so that the program lines read:

7D00 AORG >7D04
7D04 . CLR @>8374
7D06 END

Memory location >7D08 will still be free to add some other
missing two-byte instruction if necessary.

Memory locations containing machine language transla-
tions of the NOP instruction are ignored by the Assembler.
You should use NOP whenever you feel something might
have to be added to the program later on.

It's wise to leave some NOP instructions when you are
jumping to a label not yet defined with one of the jump
instructions, because it may end up that when the label is fi-
nally defined, that it’s beyond the 256-byte limit of the
instruction. If there are no NOP instructions after or before the
jump, you won't be able to change it to a B (Branch) instruc-
tion, because it uses two bytes more than the jump
instructions. ‘

The next example jumps to the label NT, which is beyond
range when defined, causing an *R-ERROR*:

7D00 LIR25
7D04 CI R2,5
7D08 JEQ NT
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7D0A NOP
7D0C NOP

7DOE RN (program continues)

7F60 NT CLR R2
7D08 *R-ERROR*

The *R-ERROR* message is caused by the jump (JEQ)
instruction trying to transfer control to NT, which is too far
away. The free locations left after the jump will let you correct
the mistake, replacing the jump instruction with a branch
instruction:

7F62 AORG >7D08
7D08 JNE RN
7D0A B @NT

7DOE END

The error has been corrected by inverting the jump, replacing
it with a branch instruction, as you saw demonstrated in
Chapter 3.

Copying Registers: MOV and MOVB Instructions
Many times you'll need to copy the value from one register to
another register or memory location, or from a memory ad-
dress to another address or register. In these cases, you'll need
the MOV (MOVe word) and MOVB (MOVe Byte) instructions.
The MOV (MOVe word) instruction makes a copy of the
word value in the source operand, placing it in the destination
operand (refer to the short definition of source and destination
operands in Chapter 3).

7D00 MOV R3,R4 (Place the word found in R3 in
R4, leaving R3 unchanged)

7D02 MOV R4,@>7E00 (Place the word found in R4 into
>7E00)

7D06 MOV @>7D24,R5 (Place the word found in location
>7D24 in R5)

The MOVB (MOVe Byte) instruction works in much the
same way, but instead operates only with the left (most
significant) bytes of the words.

7D00 MOVB R7,R2 (Copy the left byte of R7 into the
left byte of R2. The right byte of
R2 and the word in R7 remain

unchanged
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7D02 MOVB *R2+,@>7EF2 (Copy the left byte of the
word found in the address stored
in R2 and place it in the left byte
of the word in >7EF2. The value
in R2 is increased by one byte)

7D04 MOVB @>7EF2,*R8 (Copy the left byte of the word
in >7EF2 into the left byte of the
address stored in R8)

Saving Memory: Fewer Labels

Every time you use a label in your program, you're consuming
four bytes of valuable memory. Though labels are convenient
and easy to use, they should be avoided whenever possible.

When you create a label, it's added to the Symbol Table,
which starts at location >7CD8. When you select the NEW
option of the Assembler, you're placed at the default memory
address of >7D00. Starting your program there will leave
space in the Symbol Table for nine labels. If you use more
than this, the table will overwrite the beginning of your
program.

According to the number of labels you're using, you can
decide where to start the program. Count the number of labels
you're planning to use, and add one (because the computer
adds a null entry as the last entry of the table). Multiply this
number by four, because each entry in the Symbol Table occu-
pies four bytes. Convert the answer to hexadecimal so you can
add it to the location where the Symbol Table begins—this
will give you the exact place in memory to start your assembly
language program.

Assume your program will have 14 labels. The calculation
to find the first free address for your program would be:
(14+1) X 4 = 60 (decimal)

60 = >3C (hexadecimal)
>7CD8 + >003C = >7D14

Location >7D14 is where you should start your program.
If your program will have only three labels, the calcula-
tion would be:
B+1)X4=16
16 = >10
>7CD8 + >0010 = >7CE8
So start your program at >7CES8.
Labels use up a lot of memory and can be avoided in sev-
eral ways. 55



Chapter 4

® Do not use the EQU directive. Instead of giving a memory
location or routine a label, branch to it directly. The first ex-
ample shows how the code would be written with a label;
the second example illustrates avoiding a label.

1. 7D00 N3 EQU >6034
7D00 BLWP @N3

2. 7D00 BLWP @>6034

® These two program segments have exactly the same result,
but the second avoids using memory for the Symbol Table.

® If you know where you're going to place a subroutine, in-
stead of branching to a label and assigning it later, branch
directly to the starting memory address of the routine.

1. 7D00 BL @CC

7EF8 CC CLR RO
2. 7D00 BL @>7EF8

7EF8 CLR RO
Again, the second example avoids using a label.

® The same method can be used with the jump and branch
instructions:

Jump
1. 7D00 JMP Z5

7D50 Z5 LIR75
2. 7D00 JMP >7D50 (No @ is needed)

7D50 LIR7,5
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Branch
1. 7D00 B @PQ

7E50 PQ CLR R1
2. 7D00 B @>7ES50

7E50 CLR R1

@ You can also refer directly to a memory location when using
a DATA table or text if you know where it is, or will be, in
memory.

1. 7D00 LI R0,300
7D04 LI R1,TX
7D08 LI R2,5

7D0C BLWP @>6028

7F30 TX TEXT ‘LABEL’

2. 7D00 LI R0,300
7D04 LI R1,>7F30
7D08 LI R2.5
7D0C BLWP @>6028
7F30 TEXT ‘LABEL’

Both these program segments display the word LABEL on
the screen, but the second uses no label.

® The Assembler predefines the dollar symbol ($) to mean “the
current memory location.” This is a great help when your
program is jumping around in memory without using labels.
For instance, these two instructions mean the same thing.
1. 7D00 JMP $
2. 7D00 NQ JMP NQ
The first example means to jump to the current memory
location, which happens to be >7D00. The second, which

also creates an endless loop, does the same, but it uses a
label.
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To jump three words (six bytes) forward in memory, you
could write:
7D00 JMP $+6 (Control passes to >7D06, cal-

culated by adding six bytes to
>7D00)

To jump two words (four bytes) back in memory, you
would subtract four bytes from the current memory location.

7D0A JMP $—4 (Control passes to >7D06)

Executing Your Program

When you've finished writing an assembly language program,
there are three ways to execute it. The first and most immedi-
ate method is to END the program, exit the Assembler, select
EASY BUG and use the E (Execute) command, followed by the
hexadecimal address where your program begins. This is the
method you've used to execute the example programs so far.

The second way is to add the name and position of your
program to the REF/DEF Table (Table of REFerences and
DEFinitions) and execute the program like the LINES
demonstration program, using the RUN option of the Mini
Memory menu. (You'll see how to add the name and position
to your program in just a moment.)

The third method also requires the name and starting po-
sition of the program added to the REF/DEF Table. To call the
program from BASIC, you must use the CALL LINK sub-
routine with the following syntax:

CALL LINK (“program name”)

where program name is the name of the program as added in
the REF/DEF Table. Care must be taken when linking BASIC
and assembly language programs. Read Chapter 7 before try-
ing to link your own programs.

To test the three execution methods just mentioned, load
the LINES program from tape. To execute it from EASY BUG
with the E (Execute) command, type:

? E7D9E (>7D9E is where LINES begins)

To run LINES from the Mini Memory menu, choose (2)
RUN and when the PROGRAM NAME? message appears,
type LINES and press ENTER.

To run LINES with the BASIC CALL LINK statement, se-
lect (1) TI BASIC from the module’s title screen and then type,
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in immediate mode (in other words, without line numbers):
CALL LINK (“LINES”) and press ENTER.

Adding Program Name and Position

Adding the name and position of your program to the
REF/DEF Table, so that you can run it from Mini Memory o
from BASIC, is relatively simple. ~

The REF/DEF Table starts at >7FFF and grows “back-
wards”’ toward >7000. That means it occupies the last portion
of RAM memory in the module. Each entry is only eight bytes
long—thus several program names can be added to the table.
The program name uses six bytes of memory and the starting
address uses two.

When you load the Assembler, the entry for the NEW op-
tion of the Assembler occupies addresses >7FF8 to >7FFF. The
OLD option occupies addresses >7FF0 to >7FF7. LINES has
its name and starting address from >7FEF to >7FES8.

You can add the name and position of your program
before the entry for LINES (from >7FEF to >7FE8), or use the
entry for LINES directly since your program will overwrite
part or all of it anyway. Of course, your program must not be
longer than the place where you will add the name and po-
sition of it in the table, or you'll overwrite your own program.

Two memory addresses tell you the First Free Address of
the Module (FFAM) and the Last Free Address of the Module
(LFAM). >701C contains the FFAM (first free address after
your program is finished) and >701E holds the LFAM (the
place in memory where your program name and position are
loaded).

To check this, load LINES from tape and choose the NEW
option of the Assembler. Then type:

7D00 045B AORG >701C
to get to FFAM. You'll see:
701C 7FB2

This value (>7FB2) is the FFAM, the first free address
after the program LINES is finished. Press ENTER to get to
the next memory location, >701E, where LFAM is stored. Now
you should see:

7D00 7FE8
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This means that the last free position before the REF/DEF
Table entry for LINES is >7FE7. The entry for LINES begins
in >7FE8.

When you finish writing your program, you must update
these values. Use AORG to get to the correct memory loca-
tions and DATA to place the correct values there. Remember
that your program has to leave eight bytes for the name and
starting address of your program. When you have updated the
values in >701C and >701E, you can proceed to add your
program entry to the REF/DEF Table.

The steps to change the FFAM and LFAM are:
® Use AORG to get to >701C, where the FFAM is stored.
® Use DATA to change the value there to the new first free ad-

dress after your program is finished.
® Use DATA to change the value in >701E to the place in the
REF/DEF Table where you'll add the entry for your program.

To use the same entry as for LINES, use >7FE8. For the entry

before LINES, use >7FE(. For each new entry, subtract eight
bytes from the previous one. Check that the place where

you'll make the entry for your program (the value you place in

>701E) is at least seven or more bytes than the value in
>701C, or there won't be a place to add the entry to your
program.

Once you've updated the FFAM and the LFAM addresses
in memory, you can add the name and starting position of
your program to the REF/DEF Table. To do this, use the
AORG Directive to get to the place in the table where you
want to make the entry for your program. (This should be the
same location you earlier stored in >701E.) Once there, use
the TEXT directive to add the program name. The name can
be one to six characters long—if it’s shorter than six charac-
ters, you must pad the name with blanks. The text you add
with the TEXT directive must be six characters long. Then use
the DATA directive to add the starting position of your pro-

am into memory. If your program starts at >7D30, enter
DATA >7D30. If tZe program’s first instruction is labeled, with
N5 for instance, you could instead use DATA N5.

An Example
It's always easier to understand something if you have an ex-
ample in front of you. Let’s do just that—we'll write a short
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routine which will print TI-99/4A on the screen, and then
we'll save it in the REF/DEF Table under the name of TI-99.

7D00 LWPI >70B8 (Load memory area for the
registers)

7D04 LI R0,298 (Load screen printing position)

7D08 LI R1,TX (Load position of text in memory)

7D0C LI R2,8 (Length of text: eight bytes)

7D10 BLWP @>6028 (Print text on screen)

7D14 JMP $ (Create endless loop to stop the
program)

7D16 TX TEXT ‘TI-99/4A’ (Text to be displayed)

7D1E AORG >701C (Jump to the address with the
FFAM)

701C DATA >7D1E (Set the new FFAM)

701E DATA >7FE0 (Set the new LFAM—where the

entry for the program will be
added to the REF/DEF Table)

7020 AORG >7FE0 (Jump to the location in the table
where you'll add the name and
position of the program)

7FE0 TEXT ‘TI-99 ' (Program name: five characters
plus one blank)

7FE6 DATA >7D00 (Place in memory where the pro-
gram begins)

7FE8 END

Now run the program using the RUN option of the Mini Mem-
ory menu. You don’t need to leave a blank space after TI-99
when prompted for the program name.

This program will not work if it's called from BASIC. The
reason is an existing screen bias discussed in Chapter 7.

More to Come

So far you've learned many of the basics of assembly language
programming. You've been introduced to directives and
instructions, and have even seen how to write and save a sim-
ple program. If you're at all confused about anything already
covered, it would be best to go back and look over it again.
We'll be exploring more and more complex techniques of
assembly language programming as we continue.
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In fact, the next chapter will show you how to create pro-
grams to read and control the keyboard and joystick. Almost
all programs, from spreadsheets to arcade-quality games, use
one or the other to get input from the user. In a short time
you’ll be able to design subroutines which allow assembly lan-
guage speed in reading and using these input devices.
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All BASIC operations like INPUT, CALL KEY, ACCEPT AT,
and CALL JOYST are executed in assembly language with the
aid of the KSCAN (Keyboard SCAN) utility, which is stored at
location >6020. This routine works in the same way as the
CALL KEY subroutine in BASIC. To perform an INPUT or
ACCEPT AT kind of operation in assembly language, we have
to accept characters or numbers one at a time, checking to see
if they are valid, printing them on the screen if they are, and
storing them somewhere in memory until the code for the EN-
TER key is detected, indicating that the operation is complete.
CALL KEY and CALL JOYST operations are also easy to write,
as you'll see in a few moments.

Preparing for the KSCAN Routine

The KSCAN routine needs to know the keyboard device num-
ber when it’s called, so this value has to be put into memory
before the branch (BLWP) to the KSCAN utility is executed.
The keyboard device number is the same as the key unit in
the BASIC CALL KEY subroutine. A 0 means a standard key-
board scan, 1 is used to read joystick 1, and so on. This value
has to be put in the byte at location >8374. To place a 0, just
clear the memory address:

CLR @>8374

To place another value, load it into the left (most signifi-
cant) byte of a register and then move that byte into the
corresponding memory location:

LI R7,>0200

MOVB R7,@>8374

The above lines place a 2 (reading joystick number 2) into
byte >8374.

Once this has been done, you can branch to the KSCAN
routine in location >6020 with:

BLWP @>6020

If a key is pressed, its hexadecimal ASCII code is placed in
byte >8375. You can detect whether a key was pressed by
simply checking another byte, the status byte, at location
>837C, just as is done with the status variable in the BASIC
CALL KEY. In BASIC, if the status variable is 0, no key has
been pressed. If it's —1, a key has been pressed. The status
byte doesn’t work quite like this.
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Checking the Status Byte

Before we go on with anything else, we need to make a short
sidetrip. A byte is divided into eight pieces, called bits. These
eight bits, numbered 0 through 7 from left to right (the
convention used by TI), may be either set (contain a 1) or reset
(contain a 0). The following byte has bits 2 and 4 set and the
rest reset:

012345617 Bit number
00101000 Condition (set or reset)

The values of each set bit double as you move from right
to left. Bit 7, the bit on the far right, has a value of 1 when it's
set. Bit 6 has a value of 2, bit 5 has a value of 4, and so on,
until bit 0 has a value of 128. It looks like this:

0 12 3 4 5 6 7 Bit number
1286432168 4 2 1 Bit value when set

To get the total value of a byte, simply add together the values
of the bits which are set. The byte above, then, would have a
total value of 40 (32+38).

What makes the status byte so important for the KSCAN
routine is that bit number 2 is set if a key is pressed. Other-
wise, it’s reset. The other bits in that byte don't interest us. By
checking the condition of the second bit in the status byte, you
can know whether a key was pressed. To do this checking,
you'll use the COC (Compare Ones Corresponding) instruc-
tion. This instruction compares the bits set in the first operand
to the bits set in the second operand. If all bits set to 1 in the
first operand have a corresponding bit set to 1 in the second
operand, the operands are considered equal. It doesn’t have to
be reciprocal. For example, these two bytes are considered
equal by the COC instruction:

First operand byte 10100100

Second operand byte 11101101

All the bits set in the first byte have a corresponding bit set in
the second byte. If the bytes were reversed (the first becomes
the second, the second the first):

First operand byte 11101101
Second operand byte 10100100

the bytes would be considered unequal by the COC instruc-
tion because not all the set bits in the first byte have a
corresponding set bit in the second byte.
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So how can all this help? If you create a byte with only
the second bit set, like this

00100000

and compare it to the status byte with the COC instruction,
the bytes will be considered equal if the second bit of the sta-
tus byte is set and different if it is reset, regardless of the other
bits. Then you'll know that if the two compared bytes are
equal, a key was pressed. If they're different, no key was
pressed.

This instruction places a byte with only bit 2 set in the
left byte of the memory location labeled MR:

MR DATA >2000

>20 in hexadecimal is 32 in decimal—that’s the binary num-
ber 00100000—the value needed. The right byte of location
MR was filled with zeros so as not to affect the comparison.

Before we go on to see an example, be assured that noth-
ing is amiss if this last section has left you a bit (no pun in-
tended) confused. As you start getting used to thinking in
assembly language, you'll understand these explanations much
better. For the time being, it's enough to just understand the
method to perform a KSCAN, not really about why it's done a
certain way.

The labeled memory location with the comparison byte is
usually placed at the end of the program where it won't be
executed as an instruction. Then, when you check whether a
key was pressed in the KSCAN loop, you can clear a register
(to make sure the unused byte of it is set to zero), move the
status byte into the register, and compare it to the labeled
value. Like this:

CLR R1 (Clear R1 to receive status byte)

MOVB @>837C,R1 (Move status byte into left byte of R1)

COC @MR,R1 (Compare bits set to 1 of the value stored at
MR to the bits set to 1 in R1)

Then, if the result of the COC indicates that the operands are

equal, a key was pressed. Otherwise, no key was pressed.

Displaying a Message

The next example demonstrates the technique to perform a
KSCAN, checking the status byte with the COC instruction.
Note the way that the KSCAN operation is written. The
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following program waits for you to press a key and then dis-
plays the message KEY DETECTED on the screen:

Key Detector

7D00 LWPI >70B8 (Load memory area for registers)

7D04 CLR @>8374 (Clear byte >8374: standard key-
board scan)

7D08 LP BLWP @>6020 (Branch to the scanning routine)

7D0C MOVB @>837C,R1 (Move status byte into R1)

7D10 COC @BT,R1 (Compare set bits of the compari-
son value added at the end of the
program, with label BT, to the set
bits of the word in R1)

7D14 JNE LP (The second bit of R1 is not set
and the bytes are considered dif-
ferent by the COC instruction: No
key was pressed, so return to loop

LP)

7D16 LT R0,298 (Key was pressed. Load screen po-
sition to display the message)

7D1A LI R1,TX (Load position of text in memory)

7D1E LI R2,12 (Load length of text)

7D22 BLWP @>6028 (Display text on the screen)

7D26 B *R11 (Return to EASY BUG)

7D28 BT DATA >2000 (Comparison value for the
KSCAN loop)

7D2A TX TEXT ‘KEY DETECTED’ (Text to be displayed)
7D36 END

Run the program. The message will be printed on the screen
the moment you press any key.

Computer Typewriter
This next example takes further advantage of the KSCAN rou-
tine by reading the ASCII value of the key pressed and print-
ing the corresponding character on the screen, just as if the
computer were a typewriter. (Certainly not a word processor,
but this is an important part of any word processing program.)
The first part of “Computer Typewriter,”” with the key-
board reading loop, is the same as “Key Detector,” the pre-
vious program. However, instead of printing a message when
a key is pressed, Computer Typewriter reads the ASCII of the
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key pressed and displays the corresponding character on the
screen, returning to the KSCAN loop for a new keypress.

Computer Typewriter

7D00 LWPI >70B8
7D04 CLR RO

7D06 CLR @>8374
7DOA LP BLWP @>6020
7DOE MOVB @>837C,R1
7D12 COC @BT,R1
7D16 JNE LP

7D18 MOV @>8374,R1
7D1C SWPB R1

7D1E BLWP @>6024
7D22 INC RO

7D24 CI R0,768

7D28 JLT LP

7D2A CLR RO

7D2C JMP LP

7D2E BT DATA >2000
7D30 END

(Load memory area for the
registers)

(Initial screen printing position)
(Clear byte >8374. Standard key-
board scan)

(Branch to KSCAN routine)
(Move the status byte into R1)
(Compare both bytes with the
COC instruction)

(Bytes different, no key pressed,
return to loop. Else continue
program)

(Key was pressed. Move the byte
with the key’s ASCII value [in
>8375] into the least significant
byte of R1 by moving the com-
plete word at >8374 over)

(For the VSBW routine, the key’s
ASCII value must be in the left
byte of R1, so switch bytes)
(Write the character to the screen)
(Increase printing position)

(Has the last screen position been
passed?)

(No. Return to loop for a new key)
(Yes. Reset screen value)

(Return to loop for a new key)

(Comparison value for the
KSCAN loop)

When you run this program, each key you press prints on the
screen. Some keys with no printable codes (such as the EN-
TER key) will just print as blanks. If the last screen position is
reached, the new characters will begin to overprint the old
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ones. Here are some characters you might like to see printed
(executing with EASY BUG):

FCIN -1

FCTN - 2

FCTN - 3

FCTN - 4

FCTN - 7 (Parts of the TI title screen map)

FCTN - 8

FCTIN - S

FCIN - D

FCTN - X (The copyright symbol from the computer’s title screens)

Note that the character is not printed again if you keep on
pressing the key. This might be a problem with some kinds of
scans, as you'll see later on.

An Assembly Language INPUT

To execute an INPUT operation in assembly language, you
must print each character read and accepted by the KSCAN
loop on the screen, store it in some memory area, and check
to see whether ENTER was pressed to end the input. If it was,
the KSCAN loop ends. If not, the program returns to the loop
for a new key. You should keep track of how many characters
there are in the input value or string.

The next program simulates BASIC’s INPUT (without the
beep sound and flashing cursor), letting you input a string of
characters with no restrictions. It then prints the string be-
neath whatever you entered. The loop to read the keyboard is
the same as the previous examples. Each time a key is pressed,
its hexadecimal ASCII code is moved into a register to be
printed on the screen; it’s also moved to a memory location
for storage. When the ENTER code is detected, 13 (>0D), the
program ends the KSCAN loop and prints whatever you typed
in. The assembly language routine will be similar to the
BASIC statements:

100 INPUT A$
110 PRINT A$

Assembly Language INPUT

7D00 LWPI >70B8 (Load memory area for registers)

7D04 CLR @>8374 (Clear byte >8374. Standard key-
board scan)
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7D08
7D0C

7D10
7D14

7D16
7D18
7D1C

7D20
7D24

7D28

7D2A

7D2E
7D32

7D34
7D36

7D38
7D3C

7D3E
7D40

LP

LI R0,100
LI R1,>3F00

BLWP @>6024
INCT RO

CLR R7
LI R9,>7F00
BLWP @>6020

MOVB @>837C,R1
COC @>BT,R1

JNE LP

MOV @>8374,R1

CI R1,13
JEQ CT

SWPB R1
INC R?7

BLWP @>6024
MOVB R1,*R9+

INC RO
JMP LP

7D42 CT CIR7,0

(Load screen position to print the
prompt)

(Load code for the question mark
prompt)

(Print the question mark)

(Prepare the screen position to re-
ceive input)

(Prepare a register to store the
number of characters in input)
(Load R9 with the memory area
where the input will be stored)
(Start the KSCAN loop to read the
keyboard)

(Move status byte into R1)
(Compare Ones Corresponding to
the value in BT)

(If the values are different, no key
has been pressed so return to
loop)

(Move the key pressed into the
least significant byte of R1. The
left byte is zero because byte
>8374 had been cleared)

(Was ENTER key pressed?)

(Yes. Jump to CT to continue the
program)

(No. Place the keycode in the left
byte of R1)

(Input has one more character. In-
crease character counter in R7)
(Print the character on the screen)
(Store ASCII in memory address
found in R9 and increment this
address by one byte, for the next
character code to be stored)
(Increase screen printing position)
(Return to KSCAN loop for a new
key)

(Start routine when ENTER is
pressed. Check that there is at
least one character to be printed)
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7D46 JEQLP (No character in user’s input. Do
not accept the ENTER key and re-
turn to the KSCAN loop)

7D48 LI RO,164 (Load RO with the screen position
to print the input)

7D4C LI R1,>7F00 (Place in memory where the input
is found, is loaded into R1)

7D50 MOV R7,R2 (Load R2 with the length of the
text. This is the value kept track of
in R7)

7D52 BLWP @>6028 (Print input on the screen)

7D56 JMP $ (Endless loop)

7D58 BT DATA >2000 (Comparison value for the
KSCAN loop)

7D5A END

It’s necessary to check that the input is at least one
character long, for the VMBW routine won’t work if the num-
ber of bytes to be displayed is zero. Since the program keeps
track of the string length in R7, it can also check whether the
value stored there is zero (>7D42). If it is, the program returns
to the KSCAN loop, ignoring the ENTER keypress.

Limiting the length of the input is also helpful when
displaying the string of characters on the screen with the
VMBW utility. If this value was fixed, and the input was
longer, it would be truncated and the remaining characters ig-
nored. If the input was shorter than the number of bytes in
R2, the computer would just read the values in the following
memory locations, whatever they were, and print them on the
screen after the actual input.

When you run the program, a question mark prompt ap-
pears at the top of the screen. Type in whatever you want and
press ENTER. Whatever you entered appears below the input.

Repeating Keys

The previous examples are useful when you have to perform
an INPUT operation in assembly language, or in cases when
you want a key to be read only once each time it’s pressed. In
other words, programs where you want a key to be detected
continuously, not having to release the key first and then press
it again, will not work with the previous method.
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We'll look at a routine which produces a repeating key-
stroke shortly. First, however, let’s see the nonrepeating ver-
sion of this routine.

It moves the plus sign (+) around the screen, leaving a
trail. You guide the + sign with the arrow keys. No screen
limit checks are executed, so don’t move the + off the top or
bottom of the screen, or you'll be writing into other memory
areas and the program might crash. This example uses the sta-
tus byte checking method to read the keyboard, so you'll have
to press and release a key each time you want the + to move
one space in any direction.

Moving Plus—Single Keystroke

7D00 LWPI >70B8 (Load memory area for registers)
7D04 LI R0,300 (Initial screen printing position)
7D08 CLR @>8374 (Clear byte >8374. Standard key-

board scan)
7DOC LP BLWP @>6020 (Branch to KSCAN routine)
7D10 MOVB @>837C,R1 (Move status byte into R1)

7D14 COC @BT,R1 (Use the COC instruction to com-
pare the set bits of the value in BT
to the word in R1)

7D18 JNE LP (If the bytes are different, return
to loop)

7D1A MOV @>8374,R1  (Move the ASCII code of the key
pressed into the right byte of R1)

7D1E CI R1,68 (Was the D key pressed?)

7D22 JNE $+6 (No. Jump six bytes forward)

7D24 INC RO (Yes. Move printing position one
right, since right arrow [D] was
pressed)

7D26 JMP PR (Printing position updated. Go to
the printing routine)

7D28 CI R1,83 (Was the S key pressed?)

7D2C JNE $+6 (No. Jump six bytes forward, to
the next comparison routine)

7D2E DEC RO (Key pressed was the left arrow

[S]. Move printing position left
one by decreasing the value in
RO)

7D30 JMP PR (Position updated. Jump to print-
ing routine)
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7D32 CI R1,69 (Was the E key pressed?)

7D36 JNE $+8 (If not, jump four words forward)

7D38 AI RO,—32 (Up arrow [E] pressed. Move the
+ one position up)

7D3C JMP PR (Jump to the + printing routine)

7D3E CI R1,88 (Was the X key pressed?)

7D42 JNE LP (If not, jump back to the KSCAN
loop)

7D44 AI R0,32 (Down arrow [X] pressed. Move
printing position one down by
adding 32 to the current position)

7D48 PR LI R1,>2B00 (Printing routine. Load R1 with
the code for the +)

7D4C BLWP @>6024 (Print the + sign)

7D50 JMP LP gump back to the loop for a new

ey)

7D52 BT DATA >2000 (Comparison value for KSCAN
loop)

7D54 END

End the program and execute it. The + sign appears when
you press a key. Try it out—move the symbol around the
screen with the arrow keys.

But this program would be much more efficient if the
symbol would continue moving as long as a key was held
down. Another KSCAN method can be used to do that.

When you want a key to be read continuously, you can
directly check the ASCII value of the key in location >8375
and branch accordingly. If no key was pressed, the value in
>8375 will be >FF. Study the following program, which does
the same thing as the previous example—the only real dif-
ference is that it reads the value in location >8375 to perform
the KSCAN loop. (Since this is so much like the previous pro-
gram, it’s not commented, with one exception.)

Moving Plus—Repeating Keys

7D00 LWPI >70B8

7D04 CLR @>8374

7D08 LI R0,300

7DOC LP BLWP @>6020

7D10 MOV @>8374R1  (Move ASCII of key pressed to the

right byte of R1)
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7D14 CI R1,68
7D18 JNE $+6
7D1A INC RO

7D1C JMP DR

7D1E CI R1,83

7D22 JNE $+6

7D24 DEC RO

7D26 JMP DR

7D28 CI R1,88

7D2C JNE $-+8
7D2E AI R0,32

7D32 JMP DR

7D34 CI R1,69

7D38 JNE LP

7D3A Al R0,—32
7D3E DR LI R1,>2B00
7D42 BLWP @>6024
7D46 JMP LP

7D48 END

End the program and run it. Be very careful when you press
the arrow keys (hardly touch them). The program has no de-
lays and the + sign might move a little faster than expected.
That’s part of the magic of assembly language programs—
things move quickly, far more quickly than in BASIC.

No screen limit check is made, so start off by pressing the
left or right arrow keys so the + will not move into other
memory areas. If you wish, you can add a delay loop after the
+ symbol is printed to slow down program execution.

Two Joystick Reading Routines

Now that you know how to read the keyboard for input,
whether it’s single keypresses or repeating keys, you have one
of the most important elements of programming available.
After all, what program doesn’t take some sort of input from
the user via the keyboard?

How about games? Many games (and even programs that
aren’t games) don't use the keyboard, or if they do, use it in-
frequently. Instead, most games use a joystick for user input.
How can you read and use joysticks in assembly language?

It's not any more complex than what you’ve already done.
Joysticks 1 and 2 are read with the KSCAN routine, just as the
keyboard is.
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To read joystick 1, you must place a 1 in the byte at loca-
tion >8374. To read joystick 2, load a 2 in the same byte.
When you branch to the KSCAN routine, the Y-return of the
joystick (see the User’s Reference Guide for details of Y-return
and its companion, X-return) is placed in location >8376 and
the X-return is placed in location >8377. By checking these
values, you can tell in what direction the joystick was moved.
The figure below illustrates the hexadecimal values placed in
both bytes when the joystick is moved in a particular direc-
tion. The first number indicates the value placed in >8377 (X-
return) and the second number the value in >8376 (Y-return).

Joystick Values
(>00,>04)

(>FC,>04) ’ (>04,>04)

(>FC,>00) @ ® (>04,>00) Center (joystick not
moved) is (>00,>00)

(>FC,>FC) b (>04,>FC)

(>00,>FC)

When the joystick is pushed forwards (to the north), the value
in >8377 would be >00 and the value in >8376 >04. If the
joystick was left centered, the value in both bytes would be
>00. The other directions produce their appropriate values in
these two memory addresses.

Making comparisons for all eight possible directions can
be a tedious task. Oftentimes, programmers, even those who
use assembly language, use only four positions of the joystick.
The top two diagonals can be considered as up or north move-
ments, while the bottom diagonals can be considered as down
or south. The two left diagonals can indicate a left or west
movement; the two diagonals on the right would then be right
or east movements. The necessary comparisons are then re-
duced to four.

In the first joystick reader example, we’ll read just four
directions. In the second sample, however, all eight directions
will be read so you can see how it’s done.
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Moving Cross

The following example moves an X around the screen in the
direction you move the joystick. There are no screen limit
checks, so don’t move the X off the top or bottom of the

screen.

7D00 LWPI >70B8

7D04 LI R0,300

7D08 LI R1,>0100

7D0C MOVB R1,@>8374

7D10 LP BLWP @>6020

7D14 CLR R1
7D16 MOVB @>8376,R1
7D1A CI R1,>0400

7D1E JNE T1

7D20 AI R0,—32

7D24 JMP PG

7D26 T1 CIR1,>FC00

7D2A JNE T2
7D2C AIR0,32
7D30  JMPPG

7D32 T2 MOVB @>8377,R1

(Load memory area for registers)
(Initial screen printing position)
(Load joystick number in left byte
of R1)

(Move joystick number into byte
>8374, so joystick 1 will be read
by the KSCAN loop)

(Branch to the KSCAN routine)
(Clear register where the value in
>8376 will be placed. It's cleared
to insure that its right byte will be
zero in the comparison).

(Move the value in >8376 [Y-re-
turn] into the left byte of R1)

(Is the Y-return >04, meaning the
joystick was moved in one of the
three up directions?)

(If it was not, jump to the second
comparison, starting at T1)
(Joystick moved in one of the up
directions. Move printing position
one up by subtracting 32 from the
current position)

(Position updated. Jump to print-
ing routine)

(Second comparison. Was joystick
moved in one of the down direc-
tions—is Y-return >FC?)

(If it wasn’t, jump to third
comparison at T2)

(Move printing position one down
by adding 32 to the current
position)

(Position updated. Jump to print-
ing routine)

(Third comparison. Check the X-
return, so move the byte in >8377
into the left byte of R1)
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7D36 CI R1,>0400 (Is the X-return >04, meaning the
joystick was moved right?)

7D3A JNE T3 (If not, jump to last comparison at
T3)

7D3C INC RO (Update printing position by add-
ing one to current position)

7D3E JMP PG (Jump to printing routine)

7D40 T3 CI R1,>FC00 (Last comparison. Was joystick
moved left?)

7D44 JNE LP (If not, return to KSCAN loop be-
cause the joystick remained
centered)

7D46 DEC RO (Update printing position by add-
ing one to current position)

7D48 PG LI R4,3000 (Printing routine. Start delay loop)

7D4C DEC R4 (Decrease the value in R4 by one)

7D4E JNE $-2 (If it is not zero, delay loop still
incomplete. Jump back one word
in memory to the DEC
instruction)

7D50 LI R1,>5800 (Load ASCII code for the X in R1)

7D54 BLWP @>6024 (Print the X on the screen)

7D58 JMP LP (Return to loop to read the joy-
stick once again)

7D5A END

A delay loop was added to the program to slow down execu-
tion. For the program to run at different speeds, change the
value stored in R4, which is loaded in memory address
>7D48. (Choose the OLD option of the Assembler, and do not
rewrite the line with the label PG; simply enter 7D48 LI
R4,XXX, where XXX is the new delay you want to use.)

The KSCAN loop is prepared by loading location >8374
with the joystick number (1 in our example). Then the branch
to the KSCAN utility is executed and the value in >8376 (Y-
return) is moved into R1 for checking purposes. If the value is
>04, the joystick was moved up or in one of the up diag-
onals—thus the X character is moved up one screen line by
subtracting 32 from its position. If the value returned is >FC,
the joystick was moved in one of the three down directions—
the X is moved one screen line down by adding 32. If the Y-
return was none of these values, the X-return is checked in
location >8377.
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If it's equal to >FC, the X character is moved one position
left. If it's >04, the X moves one position right. Then the pro-
gram returns to the main loop to read the joystick once again.

Moving Cross—Reading Diagonals

This program works practically the same as the previous
one—the major exception is that diagonals are also read. The
only addresses commented are those which are additions to
the previous program. The other instructions can be followed
quite simply by referring to the “Moving Cross” program and
its explanations.

7D00
7D04
7D08
7D0C
7D10
7D14
7D16
7D1A
7D1E
7D20

7D24

7D28

7D2A
7D2E
7D30

7D34

7D36

7D3A
7D3C

LP

LWPI >70B8

LI R0,300

LI R1,>0100
MOVB R1,@>8374
BLWP @>6020
CLR R1

MOVB @>8376,R1
CI R1,>0400

JNE C1

MOVB @>8377,R1

CI R1,0
JNE $+8

AI R0,—32
JMP DR
CI R1,>0400

JNE $+8
AI RO,—31

JMP DR
AI R0,—33

(Joystick moved in one of the
up directions. Check the X-
return to know which one)

(Is the X-return equal to zero?)
(If not, jump eight bytes
forward)

(Was joystick moved diagonally
up and right?)

(If not, jump eight bytes
forward)

(Update printing position to
move the X up one line, then to
the right by one position)

(The only possible position left
for the joystick to have been
moved is up and left, so update
the position to move one line
up and one position left)
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7D40 JMP DR

7D42 C1 CI R1,>FC00 (Was joystick moved in one of
the down directions?)

7D46 JNE C2 (If not, jump to the last
comparison)

7D48 MOVB @>8377,R1  (Yes. Check the X-return to
know in what down direction
the joystick was moved)

7D4C CIRL0 (Was the joystick moved
straight down?)

7D50 JNE $+8 (If not, jump eight bytes
forward)

7D52 Al R0,32 (It was. Add 32 to the current
position, to move one screen
line down)

7D56 JMP DR

7D58 CI R1,>FC00 (Was lever moved down and
left?)

7D5C JNE $+8 (If not, jump forward eight
bytes)

7D5E AI R0,31 (It was. Update position by
adding 31. Screen position will
be moved one line down and
one space left)

7D62 JMP DR

7D64 Al R0,33 (If lever was not moved down
or down and left, then it was
moved down and right. Update
printing position by adding 33
to the current position)

7D68 JMP DR

7D6A C2 MOVB @>8377,R1  (If lever was not moved in any
of the up or down directions,
then it was either moved west
or east [left or right]. Move X-
return into R1 to check this)

7D6E CI R1,>FC00 (Was lever moved left?)

7D72 JNE $+6 (If not, jump six bytes forward)

7D74 DEC RO (It was. Decrease printing po-
sition by one)

7D76 JNE LP

7D7E INC RO (Lever moved right. Update
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7D80 DR LI R1,>5800

7D84 BLWP @>6024
7D88 LI R4,3000
7D8C DEC R4

7D8E JNE $—2
7D90 JMP LP

7D92 END

End the program and run it. If the X character doesn’t move
diagonally, it’s probably because you have a stiff joystick.
Many joysticks, primarily the newer ones from TI, seem to
have trouble detecting the diagonals.

Note that when a diagonal movement is detected in the
program, the position is adjusted by adding or subtracting a
value which changes the position one line, then one character
left or right. Also note that R1 is cleared before a value is
loaded into it. This is so that we can be sure that the right
byte of R1 is 0. Many times when you're comparing two bytes
with a word instruction, the bytes might actually be equal but
considered different because the right bytes are not the same.
Always try to make sure that the right bytes will be equiva-
lent, generally by zeroing out the unused bytes of the word.
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Utilities

You've just seen how to write some of your own assembly
language routines on the TI-99/4A. There are others, how-
ever, built-in routines, that are available to you. These ROM
routines can save you considerable time and effort, for they're
already in your computer. You don’t have to sit down and
write them. Instead, you can access them directly through
assembly language. :

This chapter shows you how to use two of the three util-
ity routines, called the Extended Utilities, which in turn call
other routines stored in your TI's ROM and GROM. The three
routines are: GPLLNK (LiNK to GPL routines in GROM),
XMLLNK (LiNK to routines in ROM), and DSRLNK (LiNK to
Device Service Routines). We'll just look at the first two for
now.

You have to be careful when linking to a preprogrammed
routine in ROM or GROM. Make sure you've loaded the cor-
rect values in the correct addresses before calling the routine.
Just as important, make sure that it doesn’t destroy any mem-
ory areas where you've stored values.

Using GROM routines. To branch to a routine in GROM,
use the GPLLNK utility, which is located at memory address
>6018. To execute it, enter:

BLWP @>6018

The GROM routine you want to execute must be specified
with a DATA statement following the call to the subroutine in
GROM. For example, to call the accept tone GROM routine
(which is routine number 34), you would type:

BLWP @>6018
DATA >0034

When a program has to execute sounds, allow automatic
sprite motion, enable the FCTN = (QUIT) key, and so on, you
have to allow program interrupts. This means that the program
will quickly check whether any operation has to be executed,
and if so, do it. It’s best to quickly enable interrupts and dis-
able them again with the LIMI instruction (Load Interrupt

85



Chapier 6

Mask Immediate), as it’s dangerous to allow a program to con-
tinue running with the interrupts enabled. That’s because if
you access VDP RAM while they are enabled, other values in
VDP will be changed, causing strange effects in your program.
VDP interrupts are disabled by default, so you will first have
to enable them with the instruction LIMI 2, and then disable
them again before accessing VDP RAM with the instruction
LIMI 0. If there is a program segment constantly executed in
your program (most programs have at least one), you can
quickly enable and disable the program interrupts there. That
will be sufficient for the computer to execute any operation
which requires having VDP interrupts enabled. Just add these
two lines in the frequently executed program segment:

LIMI 2
LIMI 0

The computer will come across these two instructions, quickly
enable and disable the interrupts, and then continue. In this
way, you don’t need to worry whether the interrupts are en-
abled or disabled at some obscure point in your program.
GROM routine access. The following program issues an
accept tone when executed. The program will not work when
run with EASY BUG’s EXECUTE command, so the name and
position will be added to the REF/DEF Table. Do this when-
ever your program will be using routines in GROM and/or
ROM. No special data setup is necessary to call the routine.

Accept Tone

7D00 LWPI >70B8 (Load memory area for registers)

7D04 BLWP @>6018 (Link to GROM routine)

7D08 DATA >0034 (Number corresponding to the
GROM routine)

7DOA LP LIMI2 (Start loop and allow VDP inter-
rupts for the sound to be
generated)

7DOE LIMI 0 (Disable VDP interrupts)

7D12 JMP LP (Stay in the loop to stop program
execution)

7D14 AORG >701E
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701E DATA >7FE0

7020 AORG >7FE0

7FE0 TEXT ‘BEEP ’ (Add name and position of the
program to the REF/DEF Table.
Two spaces after the four-
character name)

7FE6 DATA >7D00

7FE8 END

If you change the value of the DATA statement in location
>7D08 to >0036, a bad value sound will be generated.

Another example is the routine to execute the power-up
operation. The following program executes that routine, caus-
ing the same effect as pressing FCTN = (QUIT) during the
execution of a BASIC program. As soon as you run the next
program, the computer will reset itself:

FCTN = (QUIT)

7D00 BLWP @>6018 (Execute GROM routine)

7D04 DATA >0020 (Routine to be executed is power-
up routine)

7D06 END (End program—after the power-

up routine is executed, program
execution stops, so it’s not nec-
essary to stop program with an
endless loop)

End this program and execute it. Remember that the name
and the position of the program had to be added to the
REF/DEF Table, since the program won't run from EASY
BUG. If you've entered the Accept Tone program, just use the
same name to run this new routine—the entry point for both
is location >7D00.

Executing ROM routines. ROM routines can be executed
in the same way as GROM routines. By using the XMLLNK
utility, you can access a ROM routine. All you have to do is
branch to >601C and specify the desired routine with a DATA
statement.

BLWP @>601C (Branch to ROM routine)
DATA >1200 (Convert floating-point number to integer
number)

Remember that some memory addresses may be overwritten
when you use a ROM routine. Double-check that those
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addresses contain no data necessary to your program. If the
data is needed, move it to some other area. Make sure to load
the correct data into the correct memory addresses.

You have to be quite careful when using mathematical
routines, both in ROM and GROM, as they work with
floating-point values and not with integer values. There is a
routine which resides in ROM, routine number >2300, which
converts an integer value to a floating-point value, but it can’t
be used in your program unless you have both the memory
expansion and the Editor/Assembler. You can find more details
of this in Chapter 7.

Using routines in ROM and GROM requires some under-
standing of assembly language, so it may be a good idea to
avoid them until you have a firm basis in assembly language
programming. If you're just beginning to use assembly lan-
guage, you can always come back to these routines later.

Mathematics in Assembly Language

How about two more assembly language instructions? You'll
undoubtedly find uses for these instructions, for they perform
multiplication (MPY) and division (DIV).

Multiplying two numbers. To multiply two numbers in
assembly language, you can use the MPY (MultiPlY) instruc-
tion. This instruction uses two operands; the first may be a
register, a memory address, or a label representing a memory
address, while the second must be a register. Once the mul-
tiplication is executed, the answer is placed in the second op-

erand (the workspace register) and the next workspace register.

For example:
MPY R3,R4

multiplies the value in R3 by the value in R4 and places the
answer in R4 and R5. If the answer is smaller than >FFFF, it
fits entirely in R5. Otherwise, it uses both R4 and R5 (that’s
why two registers are used).

Let’s suppose R3 contains a 1 (>0001) and R7 contains a
7 (>0007). If you then enter:

MPY R3,R7

the answer (>0007) is placed in R7 and R8. Because >0007 is
less than >FFFF, the maximum value which can be repre-
sented by a memory word, it fits entirely in R8. The value in
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R8 is now >0007 and the value in R7 is >0000. R3 remains
unchanged.

The first operand may also be a memory address:
MPY @>7FAO0,R4 (Multiplies the value at location >7FAQ by the

value in R4, and places the answer in R4 and
R5)

Or it can be a memory address with an assigned label:

MPY @NM,R8 (Multiplies the value stored at the address with
label NM by the value in R8, then places the
answer in R8 and R9)

Dividing values. The DIV (DIVide) instruction works
much like MPY. The second operand (two memory words) is
divided by the first operand. The integer result is placed in the
first word of the second operand, the remainder in the second
word of that same second operand.

DIV R3,R7

for instance, divides the value in R7 and R8 by the value in
R3, and then places the integer result in R7. If there’s any
remainder, it’s put in R8.

If the value you're going to divide (the second operand)
can be represented by just one memory word, and is stored in
R4, for example, don’t use R4 in the DIV instruction. Instead,
use R3. You can do this because the second operand is a two-
word memory area (in this case using both registers 3 and 4).
Assume that R3 is loaded with a four and R9 with a nine. R8
must contain a zero so that the value represented by R8 and
R9 can be nine. Then the instruction

DIV R3,R8
divides the contents in R8 and R9 (>00000009) by the con-
tents in R3 (>0004). The answer is placed in R8 (>0002) with
the remainder in R9 (>0001).

You can also divide a value in a pair of registers by the
value at a memory address. '

DIV @>7B74,R7

divides the value in registers R7 and R8 by the value stored at
location >7B74. The integer result is placed in R7 and the
remainder in R8.
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Register Shifting

In some cases you can use an easier method to multiply or di-
vide. If you want to multiply a value by 2, 4, 8, 16, 32, and so
on, and the result of the multiplication will be less than >FFFF
(65535 in decimal), or if you want to divide a number by 2, 4,
8, 26, 32, you can shift the register to arrive at an integer re-
sult (with no remainders). The register shift instructions are
Format V instructions. There are four of them: SLA (Shift Left
Arithmetic), SRA (Shift Right Arithmetic), SRC (Shift Right
Circular), and SRL (Shift Right Logical).

We’'ll be looking at just two of these instructions for now,
SLA and SRL.

SLA (Shift Left Arithmetic). This instruction moves the
bits in a word a determined number of positions left, filling
the vacant positions with zeros. Imagine the following word
(two bytes with eight bits each) as the content of workspace
register 3:

1000101011101110
If you used the following instruction
SLR R3,3

each bit in the word in R3 would be moved three positions to
the left. Vacant positions are set to zero, so the word in R3
would now be:

0101011101110000

This is useful, because, as you might have realized if you're
familiar with binary, moving each digit of the number one col-
umn to the left is the same as multiplying the binary number
by two. Moving each digit two positions to the left is like mul-
tiplying the number by four, moving each three places is the
same as multiplying by eight, and so on.

In other words, if you have the binary number 00000101,
which is 5 in decimal (the bit on the far right has a value of 1,
the bit to its left has a value of 2, the next bit to the left has a
value of 4, and so on, until the last bit has a value of 128) and
you shift each digit two positions to the left (giving you
00010100), it's the same as multiplying 5 by 4. The result is
20, the same decimal value as 00010100.

9